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Abstract— Inversion of large-scale time-domain transient elec-
tromagnetic (TEM) surveys is computationally expensive and
time-consuming. The calculation of partial derivatives for the
Jacobian matrix is by far the most computationally intensive task,
as this requires calculation of a significant number of forward
responses. We propose to accelerate the inversion process by
predicting partial derivatives using an artificial neural network.
Network training data for resistivity models for a broad range of
geological settings are generated by computing partial derivatives
as symmetric differences between two forward responses. Given
that certain applications have larger tolerances for modeling
inaccuracy and varying degrees of flexibility throughout the dif-
ferent phases of interpretation, we present four inversion schemes
that provide a tunable balance between computational time and
inversion accuracy when modeling TEM datasets. We improve
speed and maintain accuracy with a hybrid framework, where
the neural network derivatives are used initially and switched to
full numerical derivatives in the final iterations. We also present
a full neural network solution where neural network forward and
derivatives are used throughout the inversion. In a least-squares
inversion framework, a speedup factor exceeding 70 is obtained
on the calculation of derivatives, and the inversion process is
expedited ∼36 times when the full neural network solution is
used. Field examples show that the full nonlinear inversion and
the hybrid approach gives identical results, whereas the full
neural network inversion results in higher deviation but provides
a reasonable indication about the overall subsurface geology.

Index Terms— Forward modeling, inverse modeling, Jacobian
matrix, neural networks, transient electromagnetics (TEM).
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I. INTRODUCTION

TRANSIENT electromagnetics (TEM) is a well-proven
method to map the conductivity structure of the sub-

surface. Typical applications of TEM include mapping of
groundwater resources and mineral exploration [1]. In TEM,
a primary magnetic field is established from a coil. When
this primary field is turned off, eddy currents are induced
and propagates into the Earth. These decaying eddy currents
generate a secondary magnetic field from which the subsurface
resistivity is inferred through inverse methods. A key compo-
nent of inversion is the forward problem, represented as in the
following equation:

d = F(m) (1)

where F is the forward operator, m is a vector of model
parameters, and d holds the forward data.

The forward problem computes the data d given m and F .
However, if only d and F are known and the model m is to be
predicted, this process is called inversion. During the inversion,
the aim is to find one or more models m that minimize the
objective function, φ(m), using the following equation:

φ(m) = �Qd(dobs − F(m))�2
L2� �� �

data misfit

+ ��QpRpm
��2

L2� �� �
smoothness constaints

(2)

where F(m) is the predicted data, dobs is the observed data,
and Qd holds the inverse of the data variance. Qp specifies the
variability associated with the constraints described by Rp that
is the roughness matrix that calculates the model parameters
m in the neighboring depth layers.

Least-squares inversion aims at producing one opti-
mal model, minimizing φ(m), by iteratively updating the
model parameters m, for instance, through an iterative
Levenberg–Marquardt minimization algorithm, presented in
the following equation:
mn+1 = mn + �

GT
n C−1

obsGn + RT
p C−1

c Rp + λI
�−1

·�GT
n C−1

obs(dobs − F(mn)) + RT
p C−1

c

	−Rpmn


�
(3)

where Gn is the Jacobian matrix for the nth model parameter
of mn , C−1

obs = QT
d Qd is the covariance matrix holding

the data uncertainties, C−1
c = QT

p Qp defines the strength of the
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smoothness constraints, I is the identity matrix, and λ is the
Marquardt damping parameter. For more details regarding (2)
and (3), the readers are referred to [2] and [3].

The entries of the Jacobian matrix G for a model vector m
are the partial derivatives in logarithmic space computed by

Gst = ∂ log(ds)

∂ log(mt)
= mt

ds

∂ds

∂mt
(4)

for the sth parameter in the data vector d and the tth parameter
in the model vector m.

The Jacobian matrix G can also be written as

Gt = mt

d
∂d
∂mt

. (5)

Most of the computation time in a least-squares algorithm
lies within the calculation of G. If the G matrix holds
M parameters, M + 1 forward calculations are required to
populate G. The model parameters m are continuously updated
until the forward response of a model fits the observed data
within some specified bounds.

In order to avoid the computationally hefty inver-
sion process, artificial neural networks (ANNs) can be
trained to directly determine the resistivity structure of the
Earth [4]–[10]. This approach is tempting, but it has several
drawbacks, including the limitations in including data noise
explicitly, loss of lateral and spatial coherence in the inverted
models, and the need for network retraining when changing
the geophysical system or any of its settings. For these reasons,
we focus on using neural networks to calculate the derivatives
to be used in the least-squares inversion framework. A similar
approach has been attempted in [11]; however, this study is
restricted to a synthetic study of few layer models and requires
prior knowledge about the subsurface structures.

Neural networks can be used to predict sufficiently accurate
TEM forward responses [12], [13], but the precision of state-
of-the-art networks is still insufficient for computing deriv-
atives, because the uncertainty of the predicted response is
random and not systematically biased. Therefore, we train and
use a separate network for computing derivatives. Our neural
network is trained on the derivatives for multilayer models
based on impulse responses, and the system transfer function
is convolved post-network [14]. This makes it possible to work
with almost system-independent neural networks to invert
field data. In addition, by keeping the least-squares inver-
sion framework, the coherence between the inverted models
can be retained and a priori information and/or smoothness
constraints can be applied without retraining the network.
One disadvantage is that the evaluation of the matrix–matrix,
matrix–vector products, and inverse matrix adds a computa-
tional overhead [15]. Our neural network is named “jNet,”
short for “JacobianNet” since it is used directly to compute
the Jacobian matrix. We investigate the performance benefits
for a towed TEM system [16] and compare several iterative
inversion schemes. We examine accuracy and computation
time between these.

This article is structured in the following order. In Section II,
we define the inputs and outputs for the neural network and
discuss the data preprocessing workflows and the network

Fig. 1. Typical structure of a three-hidden-layer deep neural network.

architecture. Inversion results on field data are shown in
Section III. In Section IV, we discuss the limitations and
prospects of the proposed scheme. We give the conclusion
in Section V.

II. PROPOSED METHODOLOGY

ANNs are computing systems that are inspired by biological
neural networks aiming to simulate the way that a human brain
analyzes and processes information. ANNs have self-learning
capabilities to perform specific tasks by considering a set of
examples [17]. These systems are composed of processing
units called artificial neurons, aiming to loosely model the
biological brain. Generally, neurons are organized in layers,
and the neurons in one layer are connected to the neurons
of neighboring layers. The connections between neurons are
called weights and biases. A typical structure of ANN is shown
in Fig. 1.

An iterative formula (6) is used to move forward through
the network to calculate each neuron in the next layer, called
as a forward pass

f l
i = σ

⎛
⎝


j

wl
i j f l−1

j + bl
i

⎞
⎠ (6)

where wl
i j is the weight for the connection from the j th neuron

in the (l−1)th layer to the i th neuron in lth layer, bl
i represents

the bias for the i th neuron in The lth layer, and f l
i is the

activation of the i th neuron in the lth layer. Finally, σ is the
activation function that adds nonlinearity to the system.

The expression (6) can be rewritten in a matrix form as in
the following equations:

zl = 	
wlf l−1 + bl



(7)

f l = σ
	
zl



. (8)

Given the final output of (8) depending on the number of
layers l, the weights and the biases are optimized for a cost
function C . This process is called a backward pass. To update
the network weights w and biases b, a backward propagation
algorithm [18] based on (9)–(11) is used

∂C
∂wl

= ∂C
∂f l

∂f l

∂zl

∂zl

∂wl
(9)
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∂C
∂bl

= ∂C
∂f l

∂f l

∂zl

∂zl

∂bl
(10)

∂C
∂f l−1

= ∂C
∂f l

∂f l

∂zl

∂zl

∂f l−1
. (11)

The weights and biases are then updated as given in the
following equations:

wl = wl − α
∂C
∂wl

(12)

bl = bl − α
∂C
∂bl

(13)

where α is the learning rate. For detailed understanding of
ANNs, the readers are referred to [19]–[22].

There are several factors that need to be considered before
training a neural network. First, it is important to specify the
inputs and outputs. Second, to achieve maximum accuracy
performance from a network, it is essential to normalize the
data appropriately. Finally, it is important to select the optimal
network configuration.

A. Neural Network Inputs and Outputs

The jNet input consists of 32 variables. The first 30 input
variables correspond to the 1-D subsurface resistivity model m
with log-increasing thicknesses, a top layer thickness of 1 m,
and a depth to last layer boundary at 120 m. The 120 m corre-
sponds to the absolute maximum depth of investigation (DOI)
for the particular TEM system. The layer thicknesses are
fixed and are not considered as input parameters. Since our
TEM instrument uses offset transmitter and receiver coils,
the distance z between these is also an input parameter. The
final input variable is the index t in the model vector m for
which the partial derivative will be calculated as (5).

The network output is the partial derivative ∂d/∂mt for
the corresponding inputs. We do not include mt/d in the
network output since d and m are constants in (5). The partial
derivatives for network training are computed as symmetric
differences of full nonlinear forward responses using ±2%
perturbations with respect to the tth model parameter. All
other parameters are held fixed. The responses are generated
at 83 discrete time gates from 50 to 37 ms with exponentially
increasing gate widths sampled at 14 gates/decade. Although
the actual TEM data span a narrower time interval, a wider
range is considered to obtain accurate response after convolu-
tion with the system response.

The derivative values at several early time gates are zero
and contain limited information [see Fig. 2(a) and (b)]. The
useful information begins with the first nonzero time gate,
and the position of the first nonzero time gate moves toward
later times with the perturbation at deeper layers, as shown
in Fig. 2(c) and (d). To improve precision in the predicted
derivatives, we also include the first nonzero time-gate index
g as an output variable. It is used in the postprocessing to
force all the entries before the first nonzero time gate in the
predicted derivatives to zero.

B. Data Normalization

It is advantageous to normalize and map the input and
output variables to a common scale for faster convergence

Fig. 2. Visualization of the partial derivatives for a 10-�·m half-space model.
(a) Partial derivative (∂d/∂m) showing its large dynamic range. (b) ∂d/∂m
normalized by the forward response resulting in more variation and reduced
dynamic range. (c) First nonzero entry in the sensitivity matrix. (d) Pictorial
visualization of the sensitivity matrix computed from (4).

prior to training. Since the forward response does not vary
linearly with resistivity, we consider logarithmic variations in
the subsurface models m that are then normalized between
[a, b] using the following equation:

mN = a + (b − a)
	
log10(m) − log10(mmin)



log10(mmax) − log10(mmin)

(14)

where mN is the normalized resistivity model of m and mmin

and mmax denote the global minimum and maximum resistivity
values acquired from the training model space, respectively.

The distance between the transmitter and receiver coils
affects the TEM signal. Therefore, it is considered an input
parameter and is normalized linearly by the min–max scaling
by the following equation:

zN = a + (b − a)(z − zmin)

zmax − zmin
(15)

where zN and z are the normalized and actual center-to-center
distance between the transmitter and receiver coil, respectively,
and zmin and zmax are the minimum and maximum possible
distances, 7.28 and 10.28 m, respectively.

Similarly, the model parameter index t , at which the per-
turbation is to be applied, is also normalized linearly to map
it to a common scale similar to (15), where tmin and tmax are
the minimum and maximum indexes in model parameter m,
respectively. Since we consider 30-layer resistivity structures,
this value is restricted between [1, 30].

Hence, the network input for a common scale of [−1,1] is
defined as a 32 × 1 vector as in the following equation:

Xt =
⎡
⎣ mN

zN

tN

⎤
⎦. (16)

The performance of neural networks is not only affected
by the changes within a data curve but also by the degree of
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Fig. 3. Transformation of normalized partial derivatives of 700 logarithmi-
cally spaced half-space models between 1 and 1000 �·m. (a) Normalized
partial derivatives. (b) Fifth root of the normalized partial derivatives.

variation between the observed data curves [12]. Therefore,
instead of considering the partial derivatives directly, which
have insignificant variation, i.e., the imperceptible difference
between six curves [see Fig. 2(a)], we first normalize it by
the forward response d of the unperturbed model to impart
larger variation and reduced dynamic range [see Fig. 2(b)].
To have additional variation and to map to a common scale,
we transform the normalized partial derivatives as in the
following equation:

Yt = 5

��
1

d
∂d
∂mt

�
. (17)

Root scaling effectively decreases the parameter span, and
only considering odd roots ensures that the sign of the original
data is kept. The output for any odd root results in a similar
pattern. Heuristically, we apply the fifth root. Fig. 3 shows
that the fifth root of the normalized partial derivatives results
in significantly larger data variation than the normalized partial
derivatives for 700 logarithmically spaced half-space models.
This transformation results in better variation than the typically
employed z-score method in neural networks.

Finally, the first nonzero time-gate index g is also scaled
to a common scale similar to (15). In this context, gN is the
normalized index value and gmin and gmax are the minimum
and maximum first nonzero gate-time indexes in the training
set, 1 and 65, respectively.

Hence, the 84 × 1 network output stacked vector becomes

Y =
�

Yt

gN

�
. (18)

C. Network Architecture

We use a five-layer fully connected deep neural network,
as shown in Fig. 1. The first layer corresponds to the input
variables and consists of 32 neurons. The next three layers,
i.e., the hidden layers, have 384 neurons each. The final
regression layer consists of 84 neurons. In our experience,
not much improvement is gained when deeper network archi-
tecture is used. In addition, heuristic analysis by a logarithmic
grid search of the number of neurons in the hidden layers
shows that the selected number of neurons gives the best
performance.

As an activation function, we utilize the hyperbolic tangent
function since our inputs and outputs can take both posi-
tive and negative values. The hyperbolic tangent function is
continuous, differentiable, and zero centered, which improves
the modeling of strongly negative/positive and neutral
values.

The Nguyen–Widrow initialization algorithm [23] is used
to initialize the weights and biases of the network. The cost
function used for training is given in (19), which consists of
the sum-of-squares of the network errors with a regularization
term that consists of the mean of the sum-of-squares of the
network weights and biases. The regularization term improves
generalization and makes the network less susceptible to
overfitting

C = γ

N

i=1

(Yi −Yi)

2

� �� �
network errors

+(1−γ )

⎛
⎝ 1

n

n

j=1

w2
j +

1

n

n

j=1

b2
j

⎞
⎠

� �� �
regularization term

(19)

where γ is the performance ratio set to 0.99 in our case.
The scaled conjugate gradient backpropagation algo-

rithm [24] is used to update the weights and biases to minimize
the cost function. We use the full-batch algorithm to avoid the
tuning of an additional parameter, i.e., the mini-batch size,
as its performance in comparison to the mini-batch algorithm
with different batch sizes is similar [25]. This tradeoff is
achieved at the cost of more training time.

We apply an early stopping criterion to ensure that training
is stopped when validation loss starts to increase, while the
training loss may still be decreasing. We choose the check
count to be 30 000 epochs, which means that the training stops
if the validation loss does not go lower than the best validation
performance for the succeeding 30 000 iterations.

III. RESULTS

For a solution that generalizes to broad geological settings,
it is essential that the resistivity models used for the training of
the neural network cover the entire model space. One way to
achieve this is to generate random models. However, random
models will hold many nonresolvable resistivity structures and
variations for the tTEM method and therefore not directly
suitable for the network training. Hence, it is favorable to
restrict the model space to geophysically resolvable models.
Therefore, we generate forward responses of 0.6 million
models where the resistivity of each layer is chosen uniformly
between 1 and 1000 �·m. The forward responses of these
models are inverted using a standard least-squares inversion
algorithm [26] to obtain geologically plausible and geophysi-
cally resolvable models.

Fig. 4(a) shows two examples of inverting random models
into geophysically resolvable models. For the first scenario,
the forward data of a random model with low resistive
layers (represented by a thin blue line) are inverted and the
shallow layers can be resolved (presented as a thick blue
line). The variation in deeper layers is not resolved due to the
limited DOI of tTEM system for such low resistive shallow
layers [16], [27]. For the second scenario where the forward
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Fig. 4. Resistivity models for the training and testing of the network.
(a) Example of two random and reinverted geophysically resolvable models
(thick line represents reinverted models). (b) Density of the training set.
(c) Density of the validation set. (d) Density of the field example models.

data of a model with relatively high resistive layers (shown in
thin red line) are inverted, the overall larger variations in the
model are recovered. Smaller variations are not captured in the
inverted model due to limited sensitivity and equally limited
resolving capability of TEM method toward thin resistive
layers. Even if an actual subsurface model is represented by
a high resistive model, it is expected that any TEM method
would have difficulty in resolving such a model. Therefore,
it is logical to use a set of training models that are geophys-
ically resolvable. The comprehensive training model space of
realistic subsurface patterns that are geophysically resolvable
is shown in Fig. 4(b). It takes ∼4 days to generate the training
model space and ∼6 h to produce the corresponding forward
responses and partial derivatives. However, this process needs
to be done only once for a given TEM system. We generate
symmetric derivatives for 30-layered models, and the forward
solver is called 61 times for each model to constitute the G
matrix given in (5).

The validation set that is used for the early stopping criterion
is comprised of 697 resistivity models obtained from the data
of a survey conducted at Søften, Denmark [see Fig. 4(c)].
Since the perturbation is required for each of the 30 layers,
a total of 20 910 samples are used. It takes ∼3 h for the early
stopping criterion to take effect and conclude the network
training on two NVIDIA GeForce RTX 2080Ti GPUs. Once
trained, it can be put into practice for faster inversion of any
2-D or 3-D volume tTEM datasets.

The output of our network is postprocessed to transform
back to raw values as

∂
	

d

∂
	
mt

=
�

	

Yt · d
�5

(20)

and

	
g =

�
	
gN − a

�
(gmax − gmin)

b − a
+ gmin. (21)

Then,

∂
	

d

∂
	
mt

=

⎧⎪⎨
⎪⎩

∂
	

dg
�
∂

	
mt

= 0, for g ≤ ceil(
	
g )

∂
	

dg
�
∂

	
mt

otherwise.
(22)

To test the performance of jNet, we use field data from
another survey from Gedved, Denmark. The data are initially
inverted using the full nonlinear solution to obtain 5978 resis-
tivity models, as shown in Fig. 4(d). These models are used
to generate the partial derivatives from the full solution to
compare it with the output of jNet. Since the direction of the
model update depends on the sign of the partial derivatives in
the Jacobian matrix, we use the sign as the primary metric for
performance evaluation. The sign accuracy of jNet on the test
data is over 98%. It is to note here that the errors in jNet will
affect the inversion as any other inaccuracy would. We also
show a visual comparison of the normalized partial derivatives
constructed by a full nonlinear solution, and jNet for a starting
[see Fig. 5(a)–(d)], intermediate [see Fig. 5(e)–(j)], and the
final model [see Fig. 5(i)–(l)] shows a similar pattern and
magnitude. Therefore, we expect the proposed strategy to
perform well.

To qualitatively evaluate the performance of jNet, we ini-
tially employ three iterative inversion schemes where the full
nonlinear forward response (fFull) is used for the evaluation
of the objective function, and the difference is only in the cal-
culation of the Jacobian matrix. To have a full neural network
solution, we also replace fFull with a neural network forward
modeling surrogate (fNet) [13] retrained on the models used
for jNet. By this, we invert full 3-D volume datasets collected
from two surveys conducted in Gyldenholm and Gedved, two
regions in Denmark, consisting of 11 601 and 5978 tTEM
soundings, and evaluate the following solutions.

1) Full Nonlinear Inversion: fFull+jFull.
2) Hybrid Inversion: fFull+jNet until a certain misfit is

reached, then changing to fFull+jFull.
3) jNet Inversion: fFull+jNet.
4) Full Neural Network Inversion: fNet+jNet.

Fig. 6 shows a cross section from each of the two surveys
where the full inversion (fFull-jFull) serves as a reference (first
row of Fig. 6). The hybrid inversion (fFull-jNet/jFull) gives
identical results (second row of Fig. 6), whereas the jNet
inversion (third row of Fig. 6) results in a minor deviation
from the reference result. The full neural network inversion
(fNet-jNet) gives sufficiently accurate results for medium-
to-high conductivity regions [see Fig. 6(g)]; however, larger
divergence is observed for high resistive areas [see Fig. 6(h)].
This is due to the forward responses from fNet having higher
error for high resistive (low conductive) models.

For the medium-to-high conductivity regions (first column
of Fig. 6 which shows a cross section from the Gyldenholm
survey), the hybrid inversion shown in Fig. 6(c) deviates 0.4%
in terms of comparison to the reference inversion, which is
shown in Fig. 6(a). The jNet inversion presented in Fig. 6 has
a mean resistivity difference of 4.3%, while the full neural
network of geometric mean of model resistivity differences in
inversion as in Fig. 6(g) results in a deviation of 4.9%.
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Fig. 5. Visualization of iterative model update and their corresponding partial derivatives. (a), (e), and (i) Resistivity models of first, intermediate, and final
iteration for a TEM signal, respectively. (b), (f), and (j) Corresponding partial derivatives from full solution (jFull). (c), (g), and (k) Predicted partial derivatives
from jNet. (d), (h), and (l) Sign accuracy between jFull and the jNet derivatives.

For low conductive areas (a section from Gedved survey
in the second column of Fig. 6), the hybrid inversion shown
in Fig. 6(d) results in a difference of mean of model resistivity
of 0.3% compared with the reference inversion presented
in Fig. 6(b). The jNet inversion as in Fig. 6(f) has the mean
resistivity difference of 12.8% and the full neural network
inversion shown in Fig. 6(h) gives a mean resistivity difference
of 13.2%.

In Table I, we show a detailed analysis of four inver-
sion schemes in terms of total misfit φ(m) defined in (2).
We also show the time comparison between different inversion
schemes. The comparison is made on a 3-D volume dataset
of another survey conducted in Sondersoe, Denmark, which
consists of 2822 soundings. Table I shows that the hybrid
inversion uses an additional iteration while being at least four
times faster than the reference inversion. The jNet inversion
uses the same number of iterations as the reference inversion
and achieves a speedup factor of over 13. Each iteration in
the inversion is expedited ∼14 times when jNet is used. The
full neural network inversion is ∼36 times faster than full
nonlinear inversion and achieves a speedup of a factor of
∼39 per iteration. It also takes the same number of iterations
as the full nonlinear inversion. The jNet and full neural
network inversions result in slightly higher misfits, which
corresponds to errors introduced by fNet and jNet. However,

TABLE I

INVERSION TIME COMPARISON (ONE CPU CORE)

the inaccuracies are compensated in the hybrid inversion
framework by additional iterations that uses accurate model-
ing. On a single CPU core, jNet produces ∼1750 derivatives
per second in comparison to ∼25 derivatives per second by
the conventional approach [26]. Therefore, a speedup factor
of over 70 is realized when jNet is used for the calculation
of partial derivatives. We also note that the system response
convolution takes 65% of the time during fNet and jNet
calculations.

Our fNet and jNet have been trained on models produced
by a smooth inversion result in order to limit the training
model space to geophysically resolvable models. To investi-
gate whether these networks can also be employed with an
alternative regularization scheme, we invert the field data from
Gyldenholm and Gedved surveys by using a minimum gradient
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Fig. 6. Inversion results (masked below the depth of investigation) and the corresponding data residual (blue line and right axis). (a) and (b) Inversion by the
formulation of the Jacobian by full nonlinear forward modeling (full nonlinear inversion). (c) and (d) Inversion by the Jacobian calculated by neural network
for most iterations and finalized by full nonlinear derivatives (hybrid inversion). (e) and (f) Inversion where the Jacobian is computed by neural network in
every iteration until convergence (jNet inversion). (g) and (h) Inversion when Jacobian is computed by neural network in every iteration and the forward
response is computed from a neural network (full neural network inversions).

support (MGS) regularization scheme [28] (also called a sharp
regularization). Fig. 7 shows an equivalent set of inversions
as in Fig. 6, which shows that full nonlinear inversion, hybrid
inversion, and the jNet inversion find the boundaries of various
geological units effectively and result in similar data residual.
However, the full neural network inversion results in higher
deviation, which is a similar trend observed for smooth inver-
sion as in Fig. 6(g) and (h). This suggests that the proposed
schemes can be readily employed in practice.

IV. DISCUSSION

A visual analysis of the presented inversion results shows
that the hybrid inversion framework is the recommended
approach for future inversion schemes where high precision
is required. The jNet inversion also captures all the features
of the underlying geological structure and results in minor
deviations in comparison to the conventional inversion scheme.
Therefore, it can be used for applications that have some
amount of tolerance in modeling accuracy. The full neural
network inversion (fNet-jNet) results in near-identical results
for medium-to-high conductive areas but has higher deviation
in low conductive regions. However, it is significantly faster
and provides a reasonable indication about the overall sub-
surface geology. Therefore, it can be used for preliminary
inversion to estimate the potential target areas in real time.
It may be effective for applications where relatively higher
inaccuracies can be tolerated, as the overall structures and

approximate resistivity values are still captured quite well.
The resistivity models obtained from the full neural network
inversion can also be used as starting models for the hybrid
inversion framework.

Given that certain applications have larger tolerances for
modeling inaccuracy and that there can be varying degrees
of tolerance throughout different phases of interpretation [3],
the presented inversion schemes give the flexibility in tuning
an adaptable balance between computational time and inver-
sion accuracy when modeling tTEM datasets.

It is important to note that we predict the double-sided,
i.e., the symmetric derivatives instead of the typically used
single-sided derivatives, since there is no additional overhead
for the neural network. However, the speedup factor for jNet
is given against the full nonlinear inversion when single-sided
derivatives are used. If jNet is compared head-to-head with
inversions based on double-sided derivatives, the speedup fac-
tor is doubled. It should also be noted that the computational
time is calculated on a single processing core, and the utiliza-
tion of GPUs for neural networks would drastically reduce the
inversion computation times. In addition, the optimization of
the system response convolution would further expedite the
inversion process significantly.

The errors introduced in inversion by jNet are compensated
by the hybrid framework where the derivatives from jNet are
switched to the full nonlinear solution in the final iterations.
For the case study presented in Table I, it takes only one
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Fig. 7. Inversion results (masked below the depth of investigation) and the corresponding data residual (blue line and right axis) using the sharp inversion
setup. (a) and (b) Full nonlinear inversion. (c) and (d) Hybrid inversion. (e) and (f) jNet inversion. (g) and (h) Full neural network inversions.

additional iteration. However, this may not hold true for every
tTEM dataset as the inversion process is entirely model-
dependent. However, in our experience, the hybrid framework
generally requires 1–2 additional iterations on average to
converge.

We have preferred to use a deep fully connected network
due to its robustness, easy transferability, and effectiveness in
approximating any arbitrary function to good accuracy [29].
However, it might be possible to further improve the accuracy
of fNet and jNet by including sharp boundary models in the
training model space and by making use of, e.g., state-of-the-
art convolutional neural networks for refined inversion results,
which is to be considered in future work.

Although it takes ∼5 days for the preparation of the dataset
and training the network, it has to be done only once for a
particular TEM system, i.e., the tTEM system in our case.
Once this procedure is completed, the network can be used
indefinitely for faster inversions of any 2-D or 3-D volume
tTEM datasets with satisfactory performance accuracy.

One of the limitations of the proposed study is its restriction
to 1-D models. The extension to 3-D is possible but is not a
trivial task and may be considered in future work. In addition,
the field datasets used in this study are obtained from a
ground-based towed TEM system. For the applicability of the
proposed scheme for airborne systems, the network has to be
trained taking flight height into consideration.

V. CONCLUSION

We have presented a use case of neural networks within the
inversion framework for a ground-based TEM system. The
proposed framework provides a customized balance between
inversion accuracy and computational time when modeling
tTEM datasets. Neural network-based partial derivatives open
up for faster inversions with little to no loss in inversion
precision. A significant speedup factor of over 70 is realized
in the calculation of the Jacobian matrix when the derivatives
from jNet are used. We conclude that our hybrid inversion
framework provides an efficient way of speeding up the inver-
sion process. Inversion results show that the proposed scheme
can safely be used since it gives near-identical results with the
full nonlinear inversion for the tTEM system. The proposed
methodology can also be extended for other ground-based and
airborne systems.
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