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OPTIMIZED FAST HANKEL TRANSFORM FILTERS 

N I E L S  B 0 I E  CHRISTENSEN'  

ABSTRACT 
CHRISTENSEN, N.B. 1990. Optimized fast Hankel transform filters. Geophysical Prospecting 38, 

In the linear digital filter theory for calculation of Hankel transforms it is possible to find 
explicit series expansions for the filter coefficients. A method is presented for optimizing the 
Hankel filters calculated in this way. For a certain desired accuracy of computation, the 
sampling density and filter length are minimized by choosing the parameters determining the 
filter characteristics according to the analytical properties of the input function. A new 
approach to the calculation of the filter coefficients has been developed for these optimized 
filters. The length of the filters may be further reduced by introducing a shift in the sampling 
scheme. 

545-568. 

INTRODUCTION 

The linear filter method for calculation of Hankel transforms has been the subject of 
numerous papers in the geophysical literature since its introduction by Ghosh 
(1971a, b). Since it was realized that, compared with methods of numerical integra- 
tion, a substantial reduction in computation time could be achieved, many contribu- 
tions have been made to developing the method. The first papers on the subject 
focussed on short filters with a very limited number of coefficients (Ghosh 1971a, b; 
Das, Ghosh and Biewinga 1974; Das and Ghosh 1974), but the widespread use of 
fast digital computers in the 1970s turned the emphasis to methods of computing 
longer filters with the order of 100 coefficients (Koefoed, Ghosh and Polman 1972; 
Johansen 1975). 

Some authors obtained the filter coefficients by direct integration of the convolu- 
tion integral containing the interpolating sinc function and the Bessel function 
(Bichara and Lakshmanan 1976; Bernabini and Cardarelli 1978). Most common, 
however, was the use of a Hankel transform function pair in the generation of the 
filter coefficients. Filters calculated in this way depend on the choice of generating 
functions, and the accuracy in their application can be determined from numerical 
experiments only. This approach probably reached its height with the paper by 
Anderson (1979), where he presents a FORTRAN computer routine capable of per- 
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forming a Hankel transform of order O and 1. This routine has found widespread 
use. Recently a hybrid program of digital filtering and numerical integration has 
been published (Anderson 1989). 

However, Johansen and Smensen (1979), henceforth referred to as J&S, obtained 
explicit series expansions of the filter coefficients and, most importantly found a 
majorant for the error in the application of the filters. This paper is a further devel- 
opment of this approach. 

RECAPITULATION OF T H E  METHOD 
The following two paragraphs are a review of the method of J&S. 

We consider the Hankel integral 

g(r) = S O / ( l ) l J , ( l r )  dl,  Y > - 1. 

By the substitutions 

l = exp (-U), r = exp (U), 

and the definitions 

F(u) = exp (-u)f(exp (-U)), 

G ( 4  = exp (v)g(exp (U)), 

H M  = exp (u)J,(exp (U)), 

(1) may be rewritten as a convolution integral: 

G(u) = F(u)H,(u - U) du or G = F * H , .  sp, 

sp, 

Using the convolution theorem we find 

G(s) = E(s) x fi,(s), 

where 

fi,@) = H,(u) exp (-i2nus) du, 

and analogously for fi and 6. 
fi&) may be evaluated explicitly : 

(3) 

and has the property 1 fi&) I 1, s real. 
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The numerical problem of calculating G(v) is formulated by substituting the 
function F* defined by 

m 

- m  

which is the sampled and interpolated version of F, into (4), which then gives us the 
approximation G* to G 

F*(u)H,(u - U) du, 

m 

= F(nA)H,*(v - nA), 
- m  

with 

H:(v) = ~ ~ m P ( ~ ) H v ( v  - U) du = P - * H,(u). (3 
Considering only values of v = mA, m integer, we have 

m 

G*(mA) = 1 F(nA)H,*[(m - n)A]. 
- m  

G* is thus obtained at discrete points as a discrete convolution between sampled 
values of F and the filter coefficients H,*(kA), k integer. We may then construct an 
approximation G**(u) to G(v) by the usual interpolation scheme 

m 

G**(v) = 1 G*(mA)P' 
- m  

P and P' are interpolating functions in (8) and (12). 

on (10): 
The filter coefficients H,*(v) may be calculated by using the convolution theorem 

H,*(v) = AP(As)fi,(s) exp (i2nus) ds, 
.I':m 

and by introducing the interpolating/filter function transform pair 

sin (nu) P(u) = a = sinsh(u) 
sinh (nau) 

(15) 

Figure 1 shows the filter function P(s) and the interpolating function P(u) for 
different values of the smoothness parameter a. 
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FIG. 1. The filter function &), s real, and the interpolating function P(u) for different values 
of the smoothness parameter a. 

H:(u) is computed as a contour integral in the complex 5 = s + ia plane (Fig. 2). 
The expressions for HT(u) as sums of residues are derived in Appendix A. Here only 
the key points will be mentioned. 

fi,(<) decreases faster than any exponential function in the lower half-plane as 
O -+ - CO and P(5) decreases exponentially as I s 1 -, CO, and thus the expression for 
H:(u) as a sum of residues in the lower half-plane is convergent for all U. However, 
the expression is used only for U c U-, (U- = O), since for U > U-, the summation of 
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FIG. 2. The position of the poles of E?,(t) and of Af(A5) and the integration paths Cl and C, 
in the lower and upper half-plane, respectively. 

numerically large complex terms with alternating phase results in loss of accuracy. 
The resulting expression is given by 

For U > U’, the integral is approximated by a sum over residues in the upper 
half-plane. Though fi,(() increases faster than any exponential function as CT -+ CO, 
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the effect of the exponential factor in the integrand of (13) is to introduce a 'valley' 
in which we may place the return path of the contour. The depth of the valley 
increases with increasing U, and thus there exists a U +  so that the integral through 
the valley becomes negligible (< 10-I6) for U > U'. 

For U > U +  we find the following expression: 

I N 
Hl(u)  = 2a exp (- 2nas, U) Im exp (i27c.9, U) 1 exp (-4nas, nu)EÎ,(t:) , (17) 

n = O  

where N is the number of poles included in the summation. 
The valley of the return path is a very deep and wide one, and thus the condition 

that the error integral through the valley must be negligible has the consequence of 
truncating the summation in (17) long before the valley bottom is reached for any 
reasonable desired relative accuracy of Hl(u) ,  e.g. 1 O - I 2 .  

In the interval U- < U < U', computation is performed by multiplying the inte- 
grand of (13) with an 'annihilator' function &(), given by 

which for properly chosen b and oc is sufficiently close to 1 on the real axis to have 
a negligible influence on H,*(u) and which introduces an additional exponential 
decay as o -+ W. This will make the valley deep enough for the integral through the 
return path to be negligible. The price paid for this is the introduction of an addi- 
tional row of poles on the line o = oc , which must be taken into account together 
with the poles from P in the upper half-plane (Fig. 3). 

ERROR ESTIMATION 
J&S have shown how the absolute error in the calculation of G* may be evaluated 
as 

I G(u) - G*(u) I I 2 I P(s) I [1 -  AS)] ds, s-, 
and by applying the spectrum majorization theorem to F(u), we find that 

I F(s) I I K(o0)  x exp (-2.nOo I s  I ), 
and 

K ( o 0 )  = max I f(2 exp (I iu,)) 1 d2, r 
wheref(2eio) is analytic within the area 1 O 1 < U,. 

Inserting (20) in (19) and evaluating the integral we obtain 

I G(u) - G*(u) 1 I 4 x K(o0)  x E ( o 0 ,  a, sc) 

(19) 



HANKEL TRANSFORM FILTERS 551 

8 

O 

- 
8 

63 

8 

8 
O O O 

8 

8 

8 

8 

Ldc 8 
O O O 

8 

8 

8 

8 

a poles from B 
@ poles from H, 
@ poles from Q 

A 

FIG. 3. As Fig. 2, but with the position of the poles of Q(<) added. The integration path in the 
upper half-plane is shown. 

where K(o,) is given by (21) and 

exp ( - 27~0, s,) as, 
sin ( 2 7 ~ ~ s ~  0,) 

E h , ,  a, s,) = 

In J&S the value of the smoothness parameter a is subjected to the restriction 
2 m s ,  = 1/M, M = 1, 2, 3, . . . . This makes it possible to discard certain terms in the 
summation of residues from the poles of fi,((). 

MAIN FEATURES OF THE METHOD 
There are four points to be made concerning the Hankel filters developed by Johan- 
sen and Sorensen. 

(1) It is possible to estimate the error. For a given input function f ( A ) ,  the 
opening angle of the region of analyticity determines K(o,), and we may find a 
cut-off frequency s, and a smoothness parameter a, such that I G(v) - G*(v) I -= E for 
a given E. Practically, two problems arise. Firstly, we are generally interested in an 
estimate for a class of input functions, for example input functions from geoelectrical 
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soundings over a horizontally stratified earth. It turns out that K(wo) is strongly 
dependent on the model assumed, so we must evaluate K ( o o )  for a whole class of 
earth models. Secondly, it may be rather difficult to evaluate K(wo) for any model of 
interest. However, numerical experiments may give an estimate of the ‘effective’ 
K(wo) defined by 

max I G(u) - G*(u) I 
Keff(wo) = 4E(w0, a, s,) * 

Let us assume that we have made computations with two different filters, one with a 
very dense sampling scheme (suffix O), and one with a more sparse sampling density 
(suffix 1). We then have 

These calculations must be done for a representative class of models. In the case of 
geoelectrical soundings a number of two- and three-layer models with relevant resis- 
tivity contrasts and layer thicknesses must be considered. 

(2) The error decreases exponentially with the cut-off frequency s, . This means 
that even a moderate increase in sampling density will make the error decrease 
drastically. An increase in sampling density of one sample per decade will make the 
error majorant decrease by a factor of 73, corresponding to nearly two digits for 
wo = rc (analytic input functions). For wo = 3rc (d.c. geoelectric soundings) the error 
majorant decreases by a factor of 8.5, which will give approximately one more digit, 
and for wo = $ 7 ~  (electromagnetic problems) the error majorant decreases by a 
factor of 3. 

(3) The filter coefficients decrease exponentially as I U I -+ CO. This is an important 
property of the Hankel filters constructed in this way, since it restricts the discrete 
convolution to a limited interval. 

Let 2nas, = 1/M, M = 1,2, 3, . . . . As U + CO, (17) becomes 

H:(u) - exp ( -2nas, U) = exp (26) 

while for U -+ - 00 (16) becomes 

(+) H,*(u) - exp (2rcas, U) = exp 

whichever decays the slowest. 
We see that a smaller a (greater 

or H,*(u) - exp [(v + l)u], (27) 

M), corresponding to a sharper cut-off of the 
filter function P, results in a slower decay of the filter. 

(4) The filter coefficients H,*(u) are accurate. The filter coefficients are 
expressed as series expansions, which makes it possible to evaluate them to any 
desired accuracy, which also means that they actually decay exponentially as men- 
tioned in point (3). In contrast to this, filter coefficients generated by use of the FFT 
routine will asymptotically reach a certain numerical ‘ noise level ’ below which they 
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will not decrease. Besides round-off errors of the input function and the discrete 
convolution, and truncation errors, this introduces an additional source of error in 
the output function, which may be of importance in case of high accuracy computa- 
tions. However, the importance of this depends on the representation error of the 
computer used. 

ANALYSIS OF THE ERROR EXPRESSION E ( 0 0 ,  U, S,) 

In J&S the smoothness parameter a of the filter function P was restricted by the 
choice 

M = l , 2 , 3  ,.... (28) 
1 

2nas, = - M’ 

From the asymptotic behaviour of the filters mentioned in the previous section, we 
see that this means that the filter cannot decay faster than exp (-U) as U -* 00, 

corresponding to M = 1. For M > 1, the situation is worse. With increasing M, the 
oscillations of the tails of the filter persist longer. Hence we wish to choose a value 
of a greater than that permitted by (28), thus making the filter decay faster as U 3 00. 

As U + - 00, the filter cannot decay faster than exp [(v + l)u], but we can take full 
advantage of this by choosing a so that 2nas, > v + 1. However, choosing a greater 
value of a might have serious consequences for the error expression E(oo  , a, s,) so 
let us examine this expression as a function of a. 

From (23) 

exp (- 2nw0 s,) as, 
sin (2nas, oo) J%o, a, s,) = 

The two terms both have singularities for 2as, wo = II, n = 1, 2, 3, . . . , but it can be 
shown that the singularities cancel each other thus making E ( o o ,  a, s,) continuous. 

Outside the singularities we find 

lim E ( o o ,  a, s,) = Emin(oo, a) = exp 
sc-m 

This is what we see in Fig. 4. For a given a, we cannot make the error smaller than 
Emin(oo, a) given by (30). We observe that a greater a corresponds to a greater 
Emin(oO, a). Furthermore, for a given a, permitting E ( o o ,  a, s,) to be smaller than a 
desired accuracy, there is no point in choosing s, greater than a value around the 
‘knee’ of the curve E ( o o ,  a, s,). Choosing s, = 1/2a00, corresponding to the first 
singularity in (29), places s, at this ‘ knee ’ point. 

We may use the following procedure for the determination of a and s, : 
(1) The analytical properties of the input functionf(A) determine coo. 



554 NIELS B 0 I E  CHRISTENSEN 

O .  

- 5  

-10 

-1 5 

-20 

-25 

-30 

-35 

-10 

a=1.0 

a-0.1 

a = 0.07 

0-0.05 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

lim log,, E ( ~ o i a , S c )  
a-O 

r \ 

\ 

I I I 1 1  I I I ' ;  I " '  * 
i 1 3  i 5 S i 0 9 i o i i i 2 U  sC 

FIG. 4. The error expression E(w, , a, s,) as a function of s, for different values of the smooth- 
ness parameter a. The points corresponding to optimized filters are marked with a cross. 

(2) Having estimated K(o0), we specify E(wo, a, s,) < E in order to calculate 

(3) We choose the greatest possible value of a, so that E(w0, a, s,) < E at the 

(4) We choose s, = 1/2aw0. 

G**(u) to a certain desired accuracy. 

' knee ' point. 

In order to perform step (3), we need an expression for E(wo, a, s,) at s, = 1/2aoO. 
On taking limits, we find 
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exp (- C )  
, 2as,w, = 1. 

1 "  
nu0 p = 2  

+- c p z  - 1 

For a I 1 (i.e. s, 2 1/20,), the terms involved in the sums in (31) and (32) are 
smaller than 1 %  of the main terms and may therefore be discarded giving 

1 
s >- 
- 200' (33) 

Figure 5 shows E ( o o ,  s,) as a function of s, . The exponential decay with s, is 
retained. From (31) and (29) we find that the quotient of the error for optimized 
filters and the asymptotic value of the error, as a -, O, is 

E(oo ' x 2n00 s, + 3 
lim E(w,, a, s,) 
a-to 

which typically attains a value between 10 and 50. 
Filters constructed in this way will be called ' optimized filters' for the following 

reason: For a given accuracy, a is chosen as large as possible thus making the filter 
as short as possible, and s, is chosen as small as possible thus reducing the calcu- 
lation of F(nA) to a minimum. 

Figure 6 shows optimized JO filters (2as, oo = 1) where s, = 1.25 and O,, = n, $71, 
and in. We see that the oscillating end of the filter becomes increasingly damped as 
O, gets smaller (a becomes greater), while the left side remains unchanged. 

It is interesting to see the effect of this choice of a and s, on the filter function 

Substituting 2as, oo = 1 in the asymptotic expansion for AP(As) we find 
AP(As). 

AP(AS) - exp ( - - "1) = exp (-2nwoIsI), (35) 

The exponential decay of the filter function AP(As) for large I s I is thus identical to 
the exponential decay of the majorant for I P(s) I given in (20). 

CALCULATION OF H:(u) FOR ARBITRARY a 

We need to devise a method for calculating the filter coefficients H,*(u) without the 
previously imposed restriction on a in (28). 

For U < U- we shall use the full expression of (16). The approximated expression 
of J&S may no longer be used, as we have abandoned the restriction 2nas, = 1/M, 
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FIG. 5. The error expression E ( o ,  , s,) for optimized filters as a function of s, . 

M = 1, 2, 3, . . . . The resulting sums are numerically stable for U < In 2, so we may 
choose U- = In 2 and use (16). 

For U > U+, (17) is used unchanged. Theoretical investigation of the error inte- 
gral through the ' valley ', combined with numerical experiments, shows that the 
choice of U +  = 4 + 0 . 1 ~ ~  will make the error integral through the valley smaller than 
1 o - I 6 .  

In the interval U- < U < U+, we shall develop an alternative way of computing 
H,*(o). 

Using the convolution theorem on (10) we get 

H,*(s) = H,(s) x A~(As) .  (36) 
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Now we construct the generalized function 

where III(s) is the 'shah' function (Bracewell 1965) defined by 
m 

III(s) = C 6(s - n). 
- m  

2,*(s) is thus a sampled version of fi,*($. 
The convolution theorem gives us 

%,*(U) = i$',*(s) exp (i271~s) ds, Lm 
= H,*(u) * III(A1u), 

On the other hand, 

m 

= 1 AP(nAAl)fiv(nAl) exp (i2.nvnA1). 
- m  

Combining (39) and (40) and splitting the term with n = O from the rest of the 
summation in (39), we finally arrive at 

m 

H,*(u) = Al 1 AP(nAA,)fi,(nA,) exp (i2zunAl) 
- m  

m 

n =  1 
(41) 

We see that H,*(u) is expressed as a discrete Fourier sum minus sums of filter coefi- 
cients of arguments to the left and right of U. 

Choosing Al so small that U - (l/A,) < U -  and U + (l/Al) > U +  for all 
U -  < U < U', (41) enables us to calculate H,*(u) in the range U -  < U < U+. l /Al  = (U' 
- U-) gives the greatest value of A, meeting this demand and is thus the best one, 

as a smaller A, would result in denser sampling on the real axis of AP(As)fi,(s). 
Compared with the method of J&S, we see that the new expression has trans- 

formed the sampling of AI'(As)fi,(s) on the line o = oc (at the poles of Q(<), Fig. 3) 
to a sampling on the real axis. The Fourier sum in (41) converges as In I + CO. 

Remembering IA,(s)l = 1, s real, the absolute value of the terms is equal to 
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AP((nAA,) which decreases exponentially (35) for values of the argument greater than 
approximately 1 (Fig. 1), i.e. I nAAl I > 1. 

To ensure speed of operation and numerical stability, the summation of coeffi- 
cients with arguments to the left and right of U is done by inserting the summations 
giving H:(u) for U < U- and for U > U +  in (41). The resulting double summations can 
be reduced to only one summation by changing the order of summations, as the 
summation over n in (41) becomes the sum of a geometric progression, which is 
expresssible in closed form. 

IMPLEMENTATION OF THE PROGRAM 
As can be seen from (16), (17) and (41), only elementary functions enter in the 
expressions for H,*(u) except for fi,(() which contains the complex gamma function 
r((). With respect to the elementary functions, certain precautions have to be taken 
concerning the numerical accuracy for special values of the arguments, but no more 
than in ordinary programming procedures. The complex gamma function is calcu- 
lated using the asymptotic expansion (Abramowitz and Stegun 1970, eq. 6.1.40). 
Retaining six terms in the series with Bernoulli number coefficients will ensure an 
absolute accuracy of the logarithm of the gamma function smaller than 1 O - I 2  for 
arguments numerically greater than 6.6. For smaller arguments, an integer is added 
to make the absolute value greater than 6.6, and the correct value is then obtained 
using the recursion formula ï ( 1  + z) = z ï ( z ) .  

The number of residues to be added is quite small. Inspection of (16), (17) and 
(41) shows that the residues entering as coefficients in the power series are indepen- 
dent of U, so need only be calculated once for a given set of filter parameters Y, s, , a. 
For optimized filters, the maximum number of terms to be added for any U, any v, 
0.5 < s, < 10, and +a < coo < a is: 

- on the negative imaginary axis, 12 
- on the lines I s I = s, in the lower half-plane, 9 
- on the lines I s I = s, in the upper half-plane, 18 
- on the real axis, 95. 
Computational time is approximately 0.5-1 s for calculating the coefficients 

needed in the power series and thereafter approx. 10 ms per filter coefficient for 
U < U- and for U > U', while for any filter coefficient with U- < U < U', the compu- 
tational time is approx. 50 ms. A set of 200 filter coefficients can thus be calculated 
in less than 5 s. Computation times refer to a NORD 110 mini computer, but most 
modern PCs are as fast. 

A FORT RAN^^ program has been written to calculate filter coefficients for any 
choice of parameters. A subroutine performs the convolution with a JO and/or a JI  
filter. A user complex input function must be supplied together with the interval 
over which the convolution is to be evaluated. The routine minimizes the number of 
calls to the input function by saving previously calculated values. A similar routine 
performing cosine and sine transforms is available. These programs will be sent on 
request on a 56" floppy disc in DOS format, so no filter coefficients will be given 
here. 
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L J 

EVALUATION OF O P T I M I Z E D  FILTERS 
The question now arises as to whether optimized filters are an improvement on the 
old ones. 

Firstly, optimized filters retain all the required characteristics (1H4) in the 
section: Main features of the method, and they represent an improvement in (3). The 
optimized filters decay faster than the old ones in one direction (U + CO) while in the 
other direction (U + - C O )  the filters may or may not provide improvement since 
they cannot decay faster than exp [(1 + v)u]. From the convolution expression 

G*(u) = F*(u)H,(u - U) du Lm 
we see that (U - U) + CO for a given U corresponding to U + - CO, i.e. 1 + CO inf(1). 
Iff(1) - exp (-d) as A + CO, then F(u) - exp (-ae-’) as U + - CO, which shows 
that F(u) .drops rapidly to zero as U + - CO, and the length of the discrete convolu- 
tion is determined mainly by the sharp cut-off of F(u). In this case, the optimized 
filters are not a great improvement. However, if f(1) - constant, or if f(1) - A”, 
p > O, as 1 + CO, then it is important that H:(u) rapidly approaches zero as U + CO. 

In addition integrals which are not absolutely convergent, i.e. f(1) - il”, p > 1/2, as 
1 + CO, may be computed using the optimized filters. The calculations will give the 

-4  . . . * , , . . . * , . . . , . , . . , 
-5. 

.- 

-1 O 1 2 3 4 5 

log1o(r) 
FIG. 7. The performance of the Hankel filters using the routine ZLAGHO (Anderson 1982) (1) 
compared with the present Hankel fiiters (2) on an analytic input-output function pair. The 
sampling density of (1) is A = 0.2 ( N 11.5 samples per decade) while the sampling density of 
(2) is A = 0.23 (10 per decade). 
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correct Cauchy principal value. In the preliminary phase of programming, one need 
not be concerned with separating the kernel function into a convergent and a non- 
convergent part, for example taking out the half-space response in geoelectrical 
soundings. Another example is the calculation of responses from d.c. marine electri- 
cal soundings, where source and receiver are placed at the same depth. 

Figure 7 compares the performance of Hankel filters generated by the present 
method of series expansions, and Hankel filters generated by the FFT procedure 
using the FORTRAN routine ZLAGHO (Anderson 1982) on an analytic input-output 
function pair. The figure shows the absolute error in G(v), i.e. 
I G(u) - G*(u)I = r x Ig(r) - g*(r)I since this is the expression which is evaluated in 
(22). We see that the error using the present filters is between one and two decades 
smaller than that produced by Anderson’s filters although the sampling density is 
15% smaller. 

To illustrate that the optimized filters are capable of giving the correct Cauchy 
principal value, Fig. 8 shows the absolute error in G(u) for two transforms, which are 
not absolutely convergent. Note that the factual error in G(u) decreases as - l/r. 

Figures 7 and 8 illustrate a typical behaviour of the fast Hankel transform filters 
introduced in this paper. The error estimation only predicts that the absolute error 
in G*(o) will be smaller than a certain constant. The factual error, however, often 
decreases as l/r as r -, 00 and as r as r + O. This means that for exponentially 
decreasing output functions, the result of the discrete convolution will only reflect 
the error of the calculation and not the true value of the output function for large 
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FIG. 8. The absolute error on G(u) for two transforms which are not absolutely convergent. 
Sampling density is 10 per decade and optimized filters with wo = in have been used. 
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values of r. The present filters are thus not a remedy against the problems encoun- 
tered in the calculation of the following integral (Goldman 1987) for large values of 
U :  

SAMPLING A T  T H E  ZEROS OF H$(v)  

In the early history of the filter method for Hankel transforms, one of the significant 
improvements consisted of sampling the filter function H,*(u) at its zeros as U -+ 00, 

by introducing an appropriate shift in the sampling scheme. At that time, the filter 
coefficients decayed very slowly, as H,*(u) - l /u as U -+ CO due to the use of the 
sinc-function instead of the ‘sinsh’ function (14) in the Fourier domain. The 
problem was analysed by Koefoed as early as 1972 and the shifting operation has 
been used by most authors since then. By sampling at the zeros of H,*(u), a substan- 
tial reduction of the length of the filter was obtained. We may apply a similar 
method to the optimized filters, thus further reducing the length of the filters. 

The convolution expression 

G*(u) = F*(u)H,(u - U) du (43) SI, 
may be rewritten as 

G*(u) = F*(u’ + AO)H,[(U - Ao) - U’] du‘, S-, 
which, formulated discretely, becomes 

Co 

G*(mA) = F(nA + Ao)H,*[(m - n)A - Ao], 
- m  

(45) 

and we see that we may introduce a shift A. in the sampling of H,*(u) if we also 
introduce it in the sampling of F(u), and still get the computed values at the pre- 
vious sample points of G*(u). 

For optimized filters, we have 2nas, = (n/oo) x 2as,00 = (n/wo) 2 1, thus the 
asymptotic decay of the filters given by (26) and (27) now reads 

H,*(u) - exp (- u), u -, Co, 

For u -+ - 00, the decay is controlled by exp [(v + l)u] for v + 1 < (n/oo). However, 
as u + co and as U + - 00 in the case U + 1 < (n/oo), we may find a shift A. such 
that the filters will decay faster. 
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Let us consider the case U + CO. Retaining the first two terms in (17) we find 

H,*(u) x 2a exp (- 2nas, U) Im {exp (i2ns, u)A,(s, + ias,)} 

+ 2a exp (- 6nasc U) Im {exp (i27csC 0)8 , (s ,  + i3asC)}. 

Let H(s, + ias,) = Ae", and if the first term in (48) must be zero then 

im {exp (i2nsC U) x Ae"} = 0 3 
2ns, U + 8 = p7c, p integer 3 

1 
A, p integer, A =-. 

2% 
(49) 

Thus we see that by choosing A, = -(û/n)(A), we have determined a shift I A, I < A 
so that the first term in (48) is zero. The asymptotic behaviour of H:(u) is then 
determined by the second term, such that 

H:(u) x exp (- 6nas, U) x 2a Im {exp (i2nsC u)fi,(s, 4- i3asC)} 

= exp (- 3 u )  x 2a Im {exp (iîns, u ) ~ , ( s ,  + i3asC)} (50) 

for optimized filters. The exponent is thus three times greater for shifted filters than 
for non-shifted filters. For optimized filters with O, = n, this means that H,*(u) - 
exp (- 30) instead of exp (-U), with O, = $c we have H:(u) - exp (- 6u) instead of 
exp (-214, and with O, = in we find H:(u) - exp (- 124 instead of exp (-44. 

Similarly, we may try to find a shift A0 such that the first term in the sum of 
residues from the poles of AP(As) in (16) vanishes for U -, - CO, i.e. 

2a exp (2nas, U) Im {exp (i2nsC u)A,(s, - ias,)} = O. (51) 
Observing that fi,(s, - ias,) is the complex conjugate of [fi,(s, + ius,)-'], we have 
fi,(s, - ias,) = A-'eie therefore we must have 

(52) Im { exp ( i 2 q  U) x A - leie} = O, 
which leads to the same result as for U -+ CO. The shift A,, which makes the sampling 
of H:(u) coincide asymptotically with its zeros for U + CO, thus also makes the sam- 
pling coincide with the zeros for U + - CO. 

Just as for the optimization procedure, the shifting of the sampling points affects 
the filters mainly in one interval, as U -+ CO, while as U + - CO the decay cannot be 
faster than exp [(v + l)u] (47). The effect of shifting the filter is thus to enhance 
further the advantages of the optimization procedure, while no new aspects of 
improvement are introduced. 

Figure 9 shows the rapid decay of the shifted optimized filters compared with 
non-shifted optimized filters. We see that the shifted filters decay 3 times faster 
(exponentially). 

In the case of computer convolution routines customized to a special purpose 
the shifted filters will be advantageous. For more general purpose routines we may 
wish to use the same input function with different filters, and we must have the same 
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V 

FIG. 9. The decay of shifted (-) and non-shifted ( - - - ) optimized JO-filters for wo = in as 
U +  00. 

sampling points for all filters in order to minimize the number of calls to the input 
function by using previously calculated values. The convolution routines written by 
the author (see previous section) use non-shifted optimized filters. 

DISCUSSION 
In an earlier section reasons were given why the present approach to the calculation 
of Hankel filters must be considered superior to the Fourier transform method on a 
generating function pair. The optimization procedure for Hankel filters presented 
here makes it possible to reduce the filter length. Under some circumstances, it may 
be possible to further reduce the filter length by introducing a shift in the sampling 
scheme of the filter coefficients. 

Recent years have seen the presentation of new short filters (Guptasarma 1982; 
Nissen and Enmark 1986), and the logarithmic sampling scheme of the Hankel 
filters has also been applied in combination with FFT routines to the calculation of 
Fourier transforms (Haines and Jones 1988). New interest in short filters was evoked 
by the introduction of small personal computers and the growing interest in model 
calculations from two- and three-dimensional models in electromagnetic problems. 

These new filters are generated by a least-squares procedure (Koefoed and Dirks 
1979) where the ‘best ’ set of coefficients using a certain number of points is sought, 
which will yield the correct Hankel transform of a certain input function. Again, the 
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coefficients depend on the choice of transform function pair, and the accuracy of 
their application can only be estimated numerically. They perform surprisingly well 
in most situations, better than other Hankel filters with the same number of coeffi- 
cients. However, for high accuracy computations, where longer filters are required, 
the possibility of finding a global error limit of the calculations offered by the 
method presented here must be considered more important than the improvement 
in speed of the least-squares filters. 
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APPENDIX A 
It will be here shown how the expressions (16) and (17) for H,*(u) are found as sums 
of residues in the complex plane. 

We shall calculate 

H,*(u) = AP(As)fi,(s) exp (i2nus) ds, s_9, 
where 

and 

P(s) = 3 tanh [: (s + i)] - tanh [ !! (s - $)I. 
a 

fi,((), ( = s + ia, is analytic except for the points z, = -(i/n)(n + i ( v  + 1)), n = O, 1, 
2, . . . , where it possesses simple poles with the residues 

AP(A() is analytic except for the points 5 = k s, + i2asC(n + +), n = . . - 2, - 1, O, 
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FIG. 10. The logarithm of the absolute value of the integrand in (Al) for v = 1, wo = in, 
s, = 3/n, U = 0.8, 2as, wo = 1 (optimized filters). The surface is seen from a point 10" from the 
negative imaginary axis towards the positive real axis, and 10" above the complex plane. 

1,2, . . . , where it possesses simple poles with the residues 

while exp (i2zus) is analytic everywhere. 
Figure 10 shows the logarithm of the absolute value of the integrand in (Al) seen 

from a point 10" from the negative imaginary axis towards the positive real axis, 
and 10" over the complex plane. The poles are given a finite value for clarity. We see 
the row of poles of fi,(t) down the negative imaginary axis and the two rows of 
poles of AP(A(). 

Consider the contour C, (Fig. 2) in the lower half-plane 5 = s + ia, O < O. As 
a + - CO, fi,(g) approaches zero faster than any exponential function, AP(Ag) stays 
bounded outside its poles and exp (i271ug) decreases exponentially for v < O and 
increases exponentially for U > O. Thus the integral along the lower horizontal 
return path vanishes in the limit as O + - CO regardless of the sign of U. For fixed a, 
I s (  + CO, fi,(() decreases as I n ~ 1 ~ ~ ~  in the lower half-plane, exp (i2zuS) stays 
bounded, and AP(A5) N exp (- 2z I s 1/2as,), so the integrals along the vertical paths 
of C ,  vanish in the limit. 
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We obtain 

H,*(u) = -2ni (residues inside C2), 
W 2-(2n+v+l) 

= - h i  C i(-i)” AP(A~,) exp (i2nuz,) 
1 n = û  nr(n + l)r(n + v + 1) 

W u  + c - - fi,[s, - i2asc(n + 3)] exp {i2nu[sC - i2asC(n + +)I} 
,=O 2n 

(A61 
Substituting z, in the exponential function and noting that fiv( - E) = fi,({), we find 
that the second and third sums are each others conjugates and we obtain (16) 

exp (2nu)AP(Az,,) (-- 1)” 
4T(n + l ) r (n  + v + 1) 

al 

H,*(u) = 2-’ exp [(v + i)u] 1 

where 

Now, consider the contour C, (Fig. 2) encircling the upper half-plane 5 = s + io, 
<r > O. As O -, CO, fi,({) approaches infinity faster than any exponential function, 
Ap(A{) stays bounded outside its poles and exp (i2nu5) increases exponentially for 
U < O and decreases exponentially for v > O. Though fi,(5) increases faster than any 
exponential function, the exponential decay of exp (i2nu5) for U > O introduces a 
‘valley’ in which we may place the horizontal return path in the upper half-plane. 
The minimum in the valley decreases as U increases, so there exists a certain U +  such 
that the integral through the valley becomes negligible for U > U+. For fixed a, 
I s 1 -, CO, fi,({) increases as I ns l Z n a  in the upper half-plane, exp (i2nus) stays 
bounded, and Ap(A{) - exp (-271 I s 1/2as,), so fi,({) increases more slowly than 
Ap(A{) decreases and the integrals along the vertical paths of Cl vanish in the limit. 
We obtain 

HY(u) = 2ni (residues inside C,), 
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Again we observe that the second and third sums are each others conjugates and we 
obtain (17) 

N 
H ~ ( u )  = 2a exp (- 2aasc U) Im exp (i2asC U) 1 exp (-4.nasc nu)1?,((;) 

n = O  
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