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Contamination of groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field
experiment in western Denmark, we investigate to what extent surface electrical resistivity tomography (ERT)
can detect and image dissolved CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5 and
10 m and monitored its migration using 320 electrodes on a 126 m × 25 m surface grid. A fully automated
acquisition system continuously collected data and uploaded it into an online database. The large amount of
data allows for time-series analysis using geostatistical techniques for noise estimation and data interpolation
to compensate for intermittent instrument failure. We estimate a time-dependent noise level for each ERT
configuration, taking data variation and measurement frequency into account.
A baseline inversion reveals the geology at the site consisting of aeolian and glacial sands near the surface and
marine sands below 10 m depth. 3-D time-lapse ERT inversions clearly image the dissolved CO2 plume with de-
creased electrical resistivity values. We can image the geochemical changes induced by the dissolved CO2 until
the end of the acquisition, 120 days after the injection start. During these 120 days, the CO2 migrates about
25 m in the expected groundwater flow direction. Water electrical conductivity (EC) sampling using small
screens in 29 wells allows for very good verification of the ERT results. Water EC and ERT results generally
agree very well, with the water sampling showing some fine-scale variations that cannot be resolved by the
ERT. The ERT images have their strength in outlining the plume's shape in three dimensions and in being able
to image the plume outside the well field. These results highlight the potential for imaging dissolved CO2 using
non-intrusive surface electrical resistivity tomography.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Geological carbon sequestration is a promising technique for
reducing CO2 release into the atmosphere by capturing the CO2

(e.g., at power plants) and injecting it into deep reservoirs for
long-term storage. Potential storage formations are abandoned oil and
gas fields, saline formations and coal beds (Benson et al., 2005). Irrespec-
tive of the storage formation, the reservoirs must be sealed by several
layers of fully intact cap rock that prevent leakage into shallow forma-
tions. The risk of leakage from properly chosen reservoirs with adequate
cap rock is very small. Nevertheless, it is important tomonitor themigra-
tion of the CO2 for the safe and efficient operation of underground CO2

storage (Benson et al., 2005).
Efficient operation of the CO2 injection requires monitoring and

simulation of the migrating CO2 in the reservoir. Monitoring outside
arhus University, C. F. Møllers
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the reservoir is mostly important for leakage detection and serves
regulatory as well as public perception purposes. Although unlikely,
the increased reservoir pressure can lead to leakage of reservoir
brine (high salinity water) or CO2 into shallow aquifers (Birkholzer
et al., 2009). Therefore, before permitting any geological CO2 storage,
monitoring strategies for leaked brine and CO2 need to be in place.
Brine leakage is often considered more critical and its modeling
(Nicot, 2008) and detection (Günther et al., 2013) is currently
being investigated. Reservoir brine is mostly of high salinity and
can therefore increase salinity levels in groundwater above acceptable
drinking water limits. At the same time, leaked brine is characterized
by a strong decrease in electrical resistivity, due to the dissolved salt.
Here, we concentrate on monitoring the CO2 itself and not the brine it
is replacing.

Under reservoir conditionswith temperatures above 31 °C and pres-
sures above 73.8 bars, CO2 exists in a supercritical phase, which partly
behaves like a fluid, partly like a gas. The potential of geophysical
methods for monitoring of supercritical CO2 in the reservoir has been
demonstrated in several pilot storage studies (e.g., Giese et al., 2009;
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Hovorka et al., 2006, 2011). These studies used crosswell installations to
measure the change in seismic velocity (e.g., Ajo-Franklin et al., 2013) or
electrical resistivity (Carrigan et al., 2013; Doetsch et al., 2013; Schmidt-
Hattenberger et al., 2013) that was induced by injected supercritical
CO2. The advantage of these geophysical methods is the comparably
high spatial resolution at the interwell scale of tens of meters and the
sensitivity to changes in bulk properties, such as supercritical-phase or
gas saturation.

While only few examples show the potential of geophysical reser-
voir monitoring, even fewer examples of geophysical leak detection
and monitoring of CO2 in shallow aquifers exist. Only very few studies
(Dafflon et al., 2013; Lamert et al., 2012; Strazisar et al., 2009) have in-
vestigated the electrical signature of dissolved CO2 in groundwater.
Both Lamert et al. (2012) andDafflon et al. (2013)find that electrical re-
sistivity initially decreases after the CO2 injection, due to an increase of
bicarbonate and dissolved species. Dafflon et al. (2013) also find that as
pH decreases further, resistivity rebounds toward initial conditions, due
to a reduction of dissociated species. While they observe changes in re-
sistivity adjacent to the equipped boreholes, limitations in their setup
prohibit Dafflon et al. (2013) from fully imaging the extent and shape
of the dissolved CO2 plume. We are trying to overcome this limitation
by using 3-D surface electrical resistivity tomography (ERT)monitoring
of dissolved CO2 in a shallow aquifer.

Surface and crosswell ERTmonitoring has been successfully used for
solute transport monitoring in a number of studies (e.g., Binley et al.,
2002; Cassiani et al., 2006; Doetsch et al., 2012b; Kemna et al., 2002;
Singha and Gorelick, 2005; Slater et al., 2000). The main advantage of
surface ERT monitoring is its applicability on the relevant horizontal
groundwater flow scale of 50–100 m. Surface ERT monitoring has
been reported to image salt tracers down to a depth of about 20 m
(Robert et al., 2012) and recent studies showed its potential for moni-
toring of heat tracer tests (Hermans et al., 2012)with a possible applica-
tion to hydrothermal systems. Surface ERTmonitoring is alsominimally
invasive and largely automated, which facilitates long termmonitoring.
However,most instruments currently on themarket are not designed to
withstand the tear of continuous long-term acquisition, so that many
projects suffer from gaps in the ERT time-series due to intermittent in-
strument failure. The limitations of surface ERT monitoring of ground-
water systems relate to the non-uniqueness of the geophysical
response. For example, moisture content variations in the unsaturat-
ed zone can cause strong near-surface resistivity variations, which
can mask groundwater related changes at greater depth (Coscia
et al., 2012). More generally, each ERT data set can be explained by
a large number of models and the inversion should be constrained
injection well

Grou
f

x

y 
[m

] 

5 

8 

2 m

Fig. 1. Aerial photo of the field site near Esbjerg and its location in Denmark (see inset). A tota
25 m. The same local coordinate system with its origin at the injection well is used in all Figur
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by other geophysical methods or geological knowledge wherever
possible (e.g., Doetsch et al., 2012a).

In this contribution, we describe 3-D surface ERT monitoring of dis-
solved CO2 in a shallow aquifer (2–10 m depth). We simulate leaked
CO2 from a deep reservoir by injecting food-quality CO2 at 5 and 10 m
depth into an aquifer near the west coast of Denmark. A pilot study at
the same site (Cahill and Jakobsen, 2013) demonstrated that there is a
clear decrease of water resistivity (about 30%) caused by dissolved
CO2, so that a clear resistivity signal could be expected in the ERT mon-
itoring. Our geophysical monitoring was embedded into an extensive
hydrological monitoring program (Cahill et al., under review) that ana-
lyzed the geochemical effects of the injected CO2 on groundwater
quality.

We first describe thefield site and experiment (Section 2), before in-
troducing our field installation and instrument setup that was specifi-
cally designed for this study (Section 3.1). Special preprocessing
(Sections 3.2 & 3.3) was necessary before inverting the baseline and
monitoring ERT data (Section 4). Finally, we interpret and discuss the
ERT results with the help of the hydrological measurements (Section 5).

2. Field site and experiment near Esbjerg, Denmark

2.1. Hydrogeological setting

A shallow aquifer field site near Esbjerg in western Denmark (see
inset in Fig. 1) was chosen for the CO2 injection experiment. The field
site is located about 6 km from Denmark's west coast and the geology
is dominated by sands, partly with some portion of gravel or clay.
Fig. 1 shows an aerial photograph of the field site that consists of a
grassy clearing (center) and two forested regions. The coordinate sys-
tem in Fig. 1 is used throughout this article; it has its origin at the CO2

injection points at lat/lon: 55° 39.029′ N, 8° 14.293′ E and it is rotated
240° from north. Surface topography is relatively flat at an elevation of
15 m, with a few sand dunes in the forested region towards southwest
(x = 60–80 in Fig. 1).

The top 5 mof the subsurface (elevation ~ 10–15 m) consists of fine
aeolian sand, overlain by a thin layer of topsoil. The aeolian sand is un-
derlain by glacialmeltwater sandbetween 5 and 10 mdepth (~5–10 m
elevation), followed by finemarine sand below 10 m depth (5 m eleva-
tion). The groundwater table is relatively stable and slightly falling from
1.5 mdepth in the spring to 2 m in the fall. The hydraulic gradient is rel-
atively low at 0.0014, falling towards south-southwest. Results of a pilot
study (Cahill and Jakobsen, 2013) were used for the planning of the
main field experiment and confirmed the layered geology.
N
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2.2. CO2 injection experiment

The CO2 injection experiment was designed to simulate CO2 leakage
in the shallow subsurface at 5–10 mdepth andmonitor itsmigration by
both water sampling and surface electrical resistivity tomography
(ERT). The CO2 was injected in a total of four screened borehole inter-
vals in two wells at 4–5 and 9–10 m depth at the locations x = 0 and
y = ±1 m to create a curtain of CO2 perpendicular to the groundwater
flow direction (Cahill et al., under review).

Injection of gas phase, food-quality CO2 started onMay 14th 2012 at
the rate of 12 L/min. All timing information is given with respect to this
injection start on May 14th 2012. After 14 days of injection and the
detection of complete water desaturation at some sampling points,
the injection rate was reduced to 6 L/min (16 kg CO2/day). CO2 injection
continued at this constant rate until July 24th, for a total injected CO2

amount of 1600 kg in 72 days.

2.3. Water sample analysis

The water sampling campaign of Cahill et al. (under review) was
targeted at finding a reliable indicator for leaked CO2 in a freshwater
aquifer as well as monitoring geochemical changes and water quality
changes induced by the CO2. 29 monitoring wells were installed be-
tween x = −1 m and x = 20 m and y = −4 m to y = 4 m, with
the groundwater flow direction approximately parallel to the x-axis.
The water sampling positions in most boreholes were located at 2 m
(just below the water table), 4 m and 8 m depth. Water samples were
taken before the beginning of the CO2 injection and 10 times within
the first 120 days after beginning the injection. Each water sample
was tested for electrical conductivity (EC), pH, dissolved oxygen,
alkalinity, Si, major and minor cation concentrations. The EC was
used to check for errors in major cation concentrations assuming
a near constant relation between EC and total sum of cationic
charges. Except for HCO3

−, changes in anion concentrations were
not expected, and only a few samples were also analyzed for
major anions, confirming expectations as changes were within
the range seen in the background samples taken prior to the CO2

injection.
A pilot study (Cahill and Jakobsen, 2013) found that electrical con-

ductivity was the most stable indicator for migrated CO2. Cahill et al.
(under review) confirm this result and additionally find that the
advectively moving CO2 first elevates concentration with a peak
especially in Mg, Ca, Na, Al and HCO3

−, followed by increasing acidi-
fication and a continued elevated concentration of the mentioned
ions. While disentangling geochemical signatures and monitoring
of dissolved element concentrations are important for water quality
analysis, we concentrate here on the water conductivitymeasurements
that relate directly to the ERT measurements.

3. ERT monitoring setup and data acquisition

3.1. Surface ERT layout and instrument setup

A total of 320 stainless steel electrodes were installed in 5 lines (64
electrodes each), to continuously monitor the subsurface electrical
resistivity. Each electrode was placed in a bentonite-filled hole at the
surface to ensure low contact resistances in the sandy environment.
The ERT grid covered an area of 126 × 25 m,with the long axis approx-
imately parallel to the groundwater flow direction (Fig. 1). The inline
electrode spacing was 2 m, with a line spacing of 5–8 m. 3-D coverage
was ensured by inline as well as crossline measurements. The ground-
water flow direction was determined before the experimental design
and due to the homogeneous sandy geology, groundwater flow was
expected to be homogeneous and to not change direction over time.
Under these circumstances, the lines parallel to the flow direction
allow longer and more detailed imaging of the plume.
The acquisition, control and communication system (Fig. 2) was
specifically designed for stand-alone monitoring, with as little user
interaction as possible. While the general location of the field site at
Denmark's west coast is not remote, the unavailability of electrical
power or cabled communication connections asked for special design
of the monitoring system. Power was provided by an uninterrupted
power supply (UPS), consisting of a gasoline powered AC generator,
four 120 Ah 12 V car batteries and a buffering and control system. The
control system always charged two batteries,while the other two batte-
ries were used for acquisition; capacitors acted as voltage buffers at the
battery switching moments.

The actual acquisition system consisted of a field computer, a 10-
channel Iris Instruments Syscal® with inbuilt 64-channel switching
capability and 5 switch boxes (SB1-5 in Fig. 2) developed in-house.
The switch boxes enabled automatic data acquisition with all 320
electrodes using a resistivity meter designed for only 64 electrodes.
The resistivity meter was connected to the first switch box with
two 32-channel multi-core cables and could always reach two sets
of 32 electrodes. Each switch box has two 32-channel inputs and
each input has two possible outputs: either a connection to the
next switch box or a set of 32 electrodes connected to the switch
box through a multi-core cable. Fig. 2 illustrates how cabling the
switch boxes in alternating directions enables three types of layouts.
It is possible to a) have one complete 64-electrode line active
(Fig. 2a), b) acquire 3-D data between cables on the same survey
side or c) get 3-D coverage by activating cables on different lines
and survey sides.

All switch boxes, as well as the resistivity meter, were directly
controlled by a field computer, which continuously cycled through
a sequence of 25 cable combinations. The computer activated the
specific cables by instructing the switch boxes and instructed the
resistivity meter to acquire data using electrode combinations opti-
mized for those cables. After complete acquisition of a data set, the
computer archived the data and continued by measuring the next
cable combination. While acquiring one data set, archived data was
automatically uploaded to an online database on servers at Aarhus
University. The online database was accessed through wireless com-
munication, which could also be used to remotely access the com-
puter for system checks or for changing acquisition settings and
schedule.

The installed system offers a cost effective and flexible way to use a
64-channel resistivity meter with many more electrodes. The system
can easily be extended to as many switch boxes as desired and the
cost for each switch box is relatively low, because it only contains two
switches for 32-channel cables, and individual channels do not need
to be individually switched. The switch boxes were custom designed
for this project, but are expected to be used in future projects, where
large electrode numbers are important.

3.2. Data acquisition

The ERT acquisition systemwas installed in April 2012. Data acquisi-
tion commenced onApril 27th,more than twoweeks prior to the begin-
ning of the CO2 injection. Fig. 3 shows the daily number of acquired data
points. While themaximum number of data per day is ~18,000, various
problems with the Syscal resistivity meter (e.g. unstable power supply,
unstable hardware, unstable firmware and unstable controlling soft-
ware) caused some acquisition interruptions. Most failures could be
fixed in a timely manner, but some needed external instrument repair
and created data gaps of up to 20 days. Even with some gaps, more
than 650,000 data points were acquired within the first 120 days after
the start of the CO2 injection.

The acquired data included gradient and dipole–dipole configura-
tions on each of the five 64-electrode lines, as well as equatorial
dipole-dipole data for parallel lines. For the offset lines as in Fig. 2c,
the acquired data consisted mostly of measurements with one current
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electrode on each line and potential electrodes both on the same and
different lines. All measurements were optimized for the specific 10-
channel resistivity meter, speeding up the acquisition by a factor of 8
compared to a single channel system.

The total number of 9640 four-electrode configurations consisted of
1380 measurements (900 gradient and 480 dipole–dipole) for each of
the five profiles and 2740 3-D configurations across lines. Data were
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3.3. Preprocessing

Prior to inversion of the acquired time-lapse ERT data, it was
preprocessed for quality control, outlier detection, and noise estimation.
The large amount of data allows for a detailed time-series analysis, but it
also necessitates automatic processing and outlier detection. The filter-
ing and analysis functions and their parameterswere therefore carefully
chosen and tested on subsets of the data set.

3.3.1. Quality control and filtering
The 650,000 resistancemeasurements were first resorted into time-

series for each of the 9640 four-electrode configurations. The average
number of measurements per configuration was 67 and time-series
with less than 40 data points recorded during the full experiment
were excluded from further processing. Additionally, 300 dipole–dipole
configurations with geometrical factors of k N 10,000m were found
to have low measurement voltages and poor quality and were thus
removed. The remaining 8719 time-series were filtered for outliers
by assuming that resistances vary smoothly with time. Visual inspec-
tion showed that no smooth time-series varied more than a factor of
2 from its median value, so all data points outside this range were re-
moved. Further outlier detection used local and global standard de-
viations to judge the distance of an individual data point from the
time-series. The sources for these outliers were mainly temporarily
unconnected electrodes (e.g., due to electrode-chewing animals).

After outlier detection, time-series with strong oscillations were re-
moved from the data set as well. These time-series were found by com-
paring the sum of absolute changes over the full survey time to the
maximum variation. Time-series with the accumulated changes
exceeding the maximum variation by more than a factor of 8 were
deleted.

In a next step, reciprocal measurements were combined. Reciprocal
measurements exist only for the dipole–dipole type configurations, be-
cause the reciprocal measurements for gradient-type configurations
cannot be optimized for multiple channels and would have needed
excessive acquisition time. In some cases, where the quality of the two
reciprocal time-series was comparable, they were combined into a sin-
gle time-series. In cases with strong quality differences, only the higher
quality time-series was used for further processing. We found that it
was important first to compile the two reciprocal time-series for outlier
detection and quality control, instead of directly combining reciprocal
measurements into a single time-series or comparing individual recip-
rocal measurements. In many cases, there was a consistent shift be-
tween the reciprocal time-series that would have otherwise been
classified as random noise. The quality control resulted in 520,000 indi-
vidual measurements in 7713 time-series that were used in the further
processing.

3.3.2. Geostatistical time-series interpolation
In order to compensate for irregular acquisition intervals and for

gaps in the data acquisition, we interpolated the ERT data using one-
dimensional geostatistical tools (Kitanidis, 1997), implemented in
the software package Gstat (Pebesma and Wesseling, 1998). In
the geostatistical analysis, acquisition time was used as “location” and
the logarithm of measured resistances as input data. We first analyzed
the time-series by calculating and fitting variograms to each “type” of
ERT configuration. A “type” is here characterized by its distances
between the four electrodes, but not by the location within the survey
grid. This resulted in 25 gradient and 7 dipole–dipole variograms, each
with a high number of lag samples (N100,000) and further 150
variograms for the 3-D measurements with low sample numbers. All
of the highly sampled variograms can be explained with a spherical
variogramwith no nugget effect and a range of 35 days. The sill (ampli-
tude) varies strongly between the different variograms, but could be re-
liably fitted when the range was fixed, even for the poorly sampled
variograms. A typical experimental and fitted variogram for gradient
type configurations is shown in Fig. 4.

Ordinary kriging was then used to interpolate data for continuous
coverage using the filtered time-series and the estimated variograms.
Relative measurement errors of 0.5–1.5% were used for the kriging
input, estimated for each time-series from the ratio of the accumulated
changes and themaximum variation. The kriging outputs are resistance
data at arbitrary times (e.g., daily) and data uncertainty, taking the
time-coverage into account. Fig. 5 shows two interpolated time-series,
estimated uncertainties and the underlying raw data. In this context,
the advantage of kriging compared to other interpolation algorithms is
the way it deals with irregular acquisition times. At highly sampled
time intervals with very dense, possibly conflicting measurements,
kriging yields weighted averages at the interpolation time. For interpo-
lation times that are far from any actual measurements, high estimated
errors reflect the interpolation uncertainty. For long time periods with-
out any data, neither the kriging nor any other interpolationmethod can
create data that contains additional information. The strength of the
kriging is most pronounced at times with partial data coverage, where
it gives high weight to sampled data points and downweights ERT con-
figurations that only exist at larger time distances. An alternative to



Fig. 6. Interpolated normalized apparent resistivity time-series centered around x = 0, for
a) the center profile through the injection point and b) the profile farthest to the southwest
(at y = ~−15). The time-series in a) show a clear change mostly to lower resistances di-
rectly after the start of the injection at day 0. The time variation in the data from the profile
away from the injection point (b) is not coherent and mostly originates from near surface
resistivity variations unrelated to the injected CO2.
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kriging could have been to only select data in intervals with full cover-
age and then interpolate in the model space. However, inversion is an-
other data transformation and we find it better to do the interpolation
as close to the original data as possible.

Fig. 6 shows the kriged time-series for configurations centered
around the injection well (Fig. 6a) and on the parallel line farthest to
the southwest (Fig. 6b). Most time-series with the midpoint around
the injection well show a clear effect of the injected CO2, directly after
the injection start on day 0. Groundwater resistivity is expected to de-
crease as a result of the dissolved CO2 and some apparent resistivity
time-series show a decrease, while others show an increase following
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4. 3-D baseline and time-lapse ERT inversions

4.1. Mesh generation and baseline resistivity model

State of the art ERT modeling and inversion codes allow for a wide
variety of discretization and regularization options (e.g., Günther et al.,
2006). For example, unstructured meshes allow arbitrary topography
and subsurface structure to be included in the inversion mesh and reg-
ularization can be decoupled at known interfaces (Doetsch et al.,
2012a). We use an unstructured tetrahedral mesh and include surface
topography, the groundwater table and one additional subsurface re-
gion in the mesh (Fig. 7). Electrode positions were measured with dif-
ferential GPS, and surface topography is interpolated linearly between
electrode locations. The small hydraulic gradient and a stable ground-
water table allowed the groundwater level to be included at thefixed el-
evation of 13.0 m above sea level. The additional region in the ERTmesh
was included to allow fine discretization (maximum 0.5 m3 cell size) in
the volume of interest, while keeping computer memory requirements
and run time manageable. The inversion mesh included a total number
of parameter 160,000 cells that were refined to 1,250,000 cells for the
forward calculation.

Data from the time of the beginning of the CO2 injection (day 0)
were inverted to retrieve the undisturbed subsurface resistivity distri-
bution without any effect of the CO2. The open source ERT modeling
and inversion package BERT (Günther et al., 2006; Rücker et al., 2006)
was used for the inversion. The time-lapse error estimated as part of
the interpolation (Section 3.3.2) includes uncertainties within the
time-series, but does not include ERT specific noise such as numerical
errors in the forwardmodeling, coupling problems, or inexact electrode
positions. For these reasons a baseline error of 3% was added to the
estimated time-lapse error, resulting in a median error of 4.0%. The
data were weighted with the inverse of these estimated errors. A first
order smoothness regularization, where the resistivity differences
between adjacent cells was minimized, was used in the inversion. This
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regularization constraint was applied 10 times stronger in the horizon-
tal than in the vertical direction to honor the layered geology. The inver-
sion converged to a normalized RMS of 1 in four iterations.

The resulting baseline resistivity model mbg (Fig. 8) shows a top
layer with very high resistivities (N1000 Ωm) above the groundwater
table, intermediate resistivities of 300–500 Ωm in the saturated zone
down to an elevation of 5 m and low resistivities below 5 m elevation.
The high resistivities in the unsaturated zone indicate that the aeolian
sand holds only small amounts of pore water. The surface undulations
between x = 40–80 m are sand dunes that have no influence on the
groundwater table or flow. The intermediate resistivities between
elevations of 5 and 13 m indicate the fully water saturated glacial and
aeolian sands. This zone is the target for the CO2 injection. The low resis-
tivities below the elevation of 5 m mark the marine sands that contain
more conductive groundwater (see Fig. 4 in Cahill et al., under review).

4.2. Time-lapse ERT inversions

In contrast to the baseline ERT inversion that aims at recovering the
subsurface resistivity distribution, time-lapse inversions aim at imaging
the changes in subsurface resistivity. These changes over time are typi-
cally much smaller than resistivity variations between different geolog-
ical units and development of time-lapse inversion strategies is an
active field of research. We use the methodology of Doetsch et al.
(2012b) that is a combination of the difference inversion approach of
LaBrecque and Yang (2001) and the ratio inversion approach of Daily
et al. (1992). We invert the logarithm of the corrected data

ed tð Þ ¼ d tð Þ
d t ¼ 0ð Þ g mbg

� �
; ð1Þ

with the data d(t) at time t and the forward response from the baseline
model g(mbg). Multiplying d(t) with the ratio of the baseline response
g(mbg) and data at time t = 0 ensures that only relative changes in
the data are inverted. Removing the baseline misfit thereby removes a
large part of the error, originating both from the ERT data (e.g., electrode
positions) and numerical errors in the forward model. The time-lapse
inversion calculates updates to the baseline model using changes in
the data.

Inversion tests with a few selected time-steps and different 2-D and
3-D approaches showed that both the inversion mesh and the time-
lapse regularization are critical for good inversion results. Especially
for 3-D inversions, with generally larger parameter cells than in 2-D, it
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Fig. 8. Baseline ERT inversion before the beginning of the injection. The subsurface material con
tivities close to the surface indicate the unsaturated zone, with the water table at 2 m depth. Re
content and background water resistivity.
was important to include the water table in the mesh and uncouple
the regularization across this boundary. Otherwise, strong resistivity
variations in the unsaturated zone due to e.g., rainfall events made im-
aging of the CO2 plume almost impossible. While the near-surface ef-
fects could not be removed from the data, including a vadose zone
layer allowed for high-quality results to be obtained within the aquifer.
Results weremuch improved by including a high-resolution zone in the
region of main interest.

We use the 7713 preprocessed d(t) time-series to invert for changes
to the baseline resistivity distribution shown in Fig. 7. Daily data snap-
shots are extracted using the geostatistical interpolation (Section 3.3.2),
along with the estimated time-lapse error that is added to an error
floor of 1%. The error floor of 1% assures numerical stability by avoiding
overweighting of few data points and is smaller than the 3% error floor
in the baseline inversion (because the modeling error is partly removed
by the ratio inversion).

Tests with different model regularization showed the importance of
the time-lapse regularization choice. We found that it was best always
to start the inversion from the baselinemodelmbg and use a regulariza-
tion that enhances smoothness of themodel update and simultaneously
minimizes the distance tombg. By minimizing the distance to the base-
line model, only changes that are necessary to fit the data are included
in the model update. All time-lapse inversions converge to a model
that explains the data within the estimated error within 4 iterations
(normalized RMS of 0.62–1.04).
5. Results, interpretation and discussion

5.1. Time-lapse ERT results

2-D cuts through the 3-D inversion result along the center profile are
shown in Fig. 9a, c and e. These images show the time-lapse results for
three representative times, normalized by the baseline inversion
model, so that a resistivity ratio of 1 corresponds to no change in resis-
tivity, a ratio b1 corresponds to a decrease in resistivity, and a resistivity
ratio N1 illustrates an increase of resistivity with time. All three images
(Fig. 9a, c and e) show an increase in resistivity (red zones) close to the
surface. These near-surface variations reflect the varying water satura-
tion in the unsaturated sand due to drying and precipitation events
and are not related to our experiment. As an example, at a water satura-
tion of 20%, a decrease in saturation by 5% already causes an increase in
resistivity by 30%, using Archie's second law (Archie, 1942) with a
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sists of aeolian and glacial sands with varying amounts of clays and gravel. The high resis-
sistivity differences below the water table are due to variations in grain size, porosity, clay
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saturation exponent of 2. The ground was generally quite wet during
the acquisition period, due to frequent precipitation (see Fig. 3b). This
means that during dry periods, the sandy soil can easily drain so that
water saturation decreases by 5–10%. These near surface variations
were partly masking the resistivity variations within the aquifer and
only a combination of very fine discretization, decoupling at the
groundwater level and regularization includingminimization of the up-
date to mbg enabled imaging of the dissolved CO2 plume.

The near-surface decrease in resistivity above the injection points
at x = 0 is however related to the CO2 and its high injection rate at
the beginning of the experiment. We interpret this decrease in resis-
tivity to be due to an increase in water saturation, caused by escaping
gaseous CO2. The initial CO2 injection rate was too high for the CO2 to
be dissolved, so that bubbles of gaseous CO2 migrated upwards and
escaped to the atmosphere. This escaping CO2 displaced moisture
and some of the water in the aquifer, pushing it into the unsaturated
zone. The actual amount of water was probably very small, but as
mentioned above, at a water saturation of 20%, an increase in saturation
by 5% already causes a decrease in resistivity by 30%. The effect of the
decreased resistivity above the injection well is becoming weaker
with time and cannot be observed in the last image at day 114 after
the injection (Fig. 9e).

Below the strong variations in the near-surface, one can clearly see
the dissolved CO2 as a decrease in resistivity in Fig. 9a, c and e. The im-
ages show how the plume migrates and disperses with the groundwa-
ter flow. The dissolved CO2 moves mostly between a depth of 4 and
6 m and can be imaged until the end of the experiment at day 120.
While the 2-D slices show the evolution of the CO2 plume along the cen-
ter profile, the main strength of the electrical monitoring is the 3-D im-
aging of the plume, as illustrated by Fig. 10. The CO2 plume, which is
here defined by a threshold of a 7% decrease in resistivity (resistivity
ratio of 0.93) spreads not only in the direction of the groundwater
flow, but also extends to awidth of approximately 10 m in the direction
perpendicular to the groundwater flow. Interesting is also the finger
that extends from the main plume in southeastward direction, which
could mark a preferential flow path.

5.2. Comparison with electrical resistivity groundwater sampling

Before and during the CO2 injection experiment, groundwater elec-
trical resistivity was measured on samples extracted from 29 wells
(Cahill et al., under review). The timing of the sampling campaigns is
marked as dashed lines in Fig. 3. These water resistivity measurements
give a uniquepossibility to compare the ERT resultswith in situ data. Be-
cause the groundwater sampling measures the resistivity of the water
only and ERT recovers the resistivity of the full subsurface including
water and matrix, the absolute resistivity values from the two methods
cannot be compared. For time-lapse analysis however, the two data
types can be compared by evaluating the relative change in resistivity.
Assuming that the rock matrix is non-conductive, relative changes to
the groundwater resistivity will induce the same relative changes for
the subsurface resistivity.

In order to compare the water resistivity samples with the ERT re-
sults, we first normalize all water resistivities by their values measured
before the beginning of the CO2 injection. For the visualization, we then
interpolate the normalized water resistivities using kriging. We use an
exponential model with a range of 3.6 m that was fitted to the experi-
mental variogram; the interpolation was restricted to the saturated
aquifer. The resulting normalized resistivity images along the central
ERT profile are shown in Fig. 9b, d and f. Regions away from the sam-
pling points are shown in gray, based on the uncertainty estimation of
the kriging.

Comparison with the ERT images shows that the two methods
generally image the CO2 in the same region. There are, however,
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some significant differences. In general, the water samples show a
stronger change in resistivity. This is not surprising, because the reg-
ularization in the ERT inversions favors models that can explain the
data with as little change as possible. Other possible regularizations
using robust (L1-type, e.g., Farquharson, 2008) model norms or fo-
cused inversions (Rosas Carbajal et al., 2012; Vignoli et al., 2013)
could help to recover the true amplitude of the change in resistivity.
The smaller amplitude of the change in the ERT results also leads to
smaller plumes in the ERT images, due to the same color scale
being used for both data types. This might make the plume appear
smaller in the ERT images and lead to underestimation of the trav-
eled distance of the plume front.

The strength of the ERT is the three-dimensional sensitivity distribu-
tion over the entire survey area. The CO2 plume can thus be character-
ized in three dimensions and especially the outline of the plume can
be detected in the larger than 100 × 25 m area. Water sampling is
more accurate at the measurement locations, but in an actual applica-
tion it would not be feasible with such a high spatial density of water
samples. The resistivity distribution at days 53 and 114 (Fig. 9d and f)
show fine detail within the sampling area, but it is not possible to
judge how far downstream the dissolved CO2 has moved, because the
farthest downstream sampling points already detect an increased EC.
Also, migration of the CO2 in even a slightly different direction or trans-
port through preferential flow paths cannot be detected. By contrast,
Fig. 10 demonstrates how ERT can recover the 3-D shape of the
plume, including the zone in the southwest, which could potentially
be a preferential flow path.

5.3. Surface ERT monitoring of leaking CO2

The results presented here clearly show the potential of surface ERT
monitoring of CO2 in shallow aquifers. Taking this to large industry scale
monitoring of leakage from CO2 reservoirs is possible if attention is
given to the following:

– Long term monitoring: While our project covered a third of a year,
monitoring of potential leakage from deep CO2 storage reservoirs
will have to be active for several years or even decades. This calls
for development of a fully automated data processing and inversion
system wrapping the algorithms outlined in this paper. In addition,
stable measurements of data are necessary in order to stack data to
a sufficiently low noise level.
– Covered area: While we concentrated on an area of 126 × 25 m, CO2

storage reservoirs on industry scale will extend to several square
kilometers. Covering e.g., a square kilometer in 3-Dwith permanently
installed electrodes and a target depth of 100–150 m is possible with
existing hardware. Full switching capability between electrodes is
desirable, but this study has shown that sufficient coverage can be
obtained by switching in and out entire cables. The simpler setup
greatly reduces costs.

– Sources of resistivity changes: The unsaturated-zone variations in this
study demonstrate that other sources of resistivity changes can
make it difficult to identify leaking CO2. This problem will be ampli-
fied in long-term studies and calls for monitoring of precipitation,
temperature and soil moisture using off the shelf instrumentation.
Also, it is crucial for the interpretation of the ERT data to have access
to a network of screenswith continuouswater sampling and chemical
analysis.

– Induced polarization: Induced polarization might be closely related to
the chemical reactions at the grain surfaces. We have not shown re-
sults from the induced polarization data also collected, but this is
the subject of ongoing research. In a large-scale setup with very long
cables it will be necessary to separate potential and current cables in
order to avoid capacitive coupling.

– Geochemical reactions: While electrical conductivity (or resistivity)
was found to be the most reliable indicator for CO2 at our field site
(Cahill and Jakobsen, 2013), this might not be the case in other aqui-
fers (Dafflon et al., 2013). The resistivity response to dissolved CO2

needs to be carefully assessed for each aquifer and geological
situation.

These challenges are critical for detecting dissolved CO2 in potable
aquifers. The situation is different for monitoring of supercritical CO2

using crosshole ERT. In this case, the electrical signal is stronger and eas-
ier to predict, but electrode installation and cabling might be problem-
atic (Carrigan et al., 2013; Doetsch et al., 2013; Schmidt-Hattenberger
et al., 2013). Also, crosshole ERT has a very limited areal coverage and
cannot be used to monitor leakage over large areas from underground
week zones.

6. Conclusions

A CO2 injection experiment in a shallow aquifer has beenmonitored
with surface ERT. TheCO2was injected for 72 days into a potable aquifer
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at 5 and 10 m depth and monitored using 320 electrodes installed on a
surface grid of 126 × 25 m size. An advanced computer-controlled
setup enabled fully automatic switching between subsets of the 320
electrodes, acquisition of ERT data and data upload into an online data-
base. Data was acquired for 120 days, with some gaps in the data acqui-
sition caused by intermittent instrument failure. These gaps in the ERT
time-series compromised the overall data quality, but geostatistical
interpolation (kriging) was found to be able to fill the data gaps and
estimate reasonable time-lapse errors for the inversion.

For the 3-D time-lapse ERT inversion, we found that the unstruc-
tured mesh was critical for imaging the dissolved CO2 plume. The best
results were obtained using a 3-region mesh that includes the unsatu-
rated zone, a high-resolution zone for the CO2 plume and a region cov-
ering the rest of the saturated aquifer. This mesh enabled high
resolution of the plume, while keeping computer run time andmemory
requirements manageable. The time-lapse update was always calculat-
edwith respect to the baselinemodel of the undisturbed aquifer and the
time-lapse regularization choice was found to be very important. We
found that a combination of minimization of the lateral variation
(smoothing) and minimization of the variation from the baseline
model gave the best results.

The time-lapse inversion results clearly show the plume of dissolved
CO2 as a decrease in electrical resistivity, while resistivities in the unsat-
urated zone mostly increase, due to drying sand. The CO2 plume and its
outline can be followed in 3-D for the full 120-day duration. The CO2

plume is found to move mostly in the anticipated groundwater flow di-
rection, but also shows some spreading in other directions and a possi-
ble preferential flow path. The ERT results generally agree with results
from water resistivity samples taken in 29 wells in the survey area.
The water samples show more detail in the sampled well field and
ERT is superior in outlining the plume in 3-D, especially once it left the
well field.

Our results clearly show that electrical resistivitymonitoring can de-
tect dissolved CO2 in potable aquifers and image the shape and develop-
ment of the CO2 plume. Challenges for detection of leakage from deep
CO2 storage include long monitoring times and large survey areas that
will be necessary. Future work will also be necessary on the electrical
signature of geochemical changes induced by CO2.
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