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Rapid inversion of 2-D geoelectrical data by multichannel deconvolution

Ingelise Møller∗, Bo H. Jacobsen‡, and Niels B. Christensen‡

ABSTRACT

Modern geoelectrical data acquisition systems can
record more than 100 000 data values per field day.
Despite the growth in computer power and the de-
velopment of more efficient numerical algorithms,
interpreting such data volumes remains a nontrivial com-
putational task. We present a 2-D one-pass inversion
procedure formulated as a multichannel deconvolution.
It is based on the equation for the electrical potential
linearized under the Born approximation, and it makes
use of the 2-D form of the Fréchet derivatives evaluated
for the homogeneous half-space. The inversion is for-
mulated in the wavenumber domain so that the 2-D spa-
tial problem decouples into many small 1-D problems.
The resulting multichannel deconvolution algorithm is
very fast and memory efficient. The inversion scheme
is stabilized through covariance matrices representing

the stochastic properties of the earth resistivity and data
errors.

The earth resistivity distribution is assumed to have
the statistical characteristics of a two-parameter, self-
affine fractal. The local apparent amplitude and fractal
dimension of the earth resistivity are estimated directly
from geoelectrical observations. A nonlinearity error co-
variance matrix is added to the conventional measure-
ment error covariance matrix. The stochastic model for
the dependence of nonlinearity error on electrode con-
figuration as well as resistivity amplitude and fractal di-
mension is determined pragmatically through nonlinear
simulation experiments. Tests on synthetic examples and
field cases including well control support the conclusion
that for long data profiles this method automatically pro-
duces linearized resistivity estimates which faithfully re-
solve the main model features.

INTRODUCTION
Over the past decade 2-D geoelectrical data for combined

sounding and profiling have seen extended use. The data vol-
ume collected per field day has increased with the advent
of computerized data acquisition systems (e.g., Griffiths and
Turnbull, 1985; Dahlin, 1996), several of which are commer-
cially available. Data volumes are also increased by data ac-
quisition techniques using moving electrodes (Sørensen, 1996;
Panissod et al., 1998), which can produce more than 10 line kilo-
meters of densely sampled, multiconfiguration data per day.
With these developments, the geoelectrical method is now well
suited to large-scale mapping of groundwater (Christensen and
Sørensen, 1998; Møller and Sørensen, 1998) as well as archeo-
logical/geotechnical applications (Panissod et al., 1998).

However, interpretation of large amounts of profile data de-
mands efficient 2-D inversion procedures. Over the years, a
variety of 2-D geoelectrical inversion procedures have been
proposed, most of them based on iterative linearized inversion
(e.g., Sasaki, 1989; LaBrecque et al., 1996).
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Two-dimensional inversion of large data sets using iterative
inversion is computationally expensive because partial deriva-
tives must be calculated and because large linear systems of
equations must be solved.

We present an approximate one-pass 2-D inversion proce-
dure which speeds up the inversion by orders of magnitude rel-
ative to iterative linearized procedures. The method is formu-
lated as a multichannel deconvolution and is developed from
the approach presented by Li and Oldenburg (1992) for 3-D
data. The 2-D problem is solved in the wavenumber domain.
Regularization is controlled through pragmatically determined
covariance matrices describing the correlated covariance prop-
erties of the earth resistivity as well as data errors. The spatial
variability of the earth resistivity distribution is represented
by a two-parameter, self-affine fractal. Empirical relations for
estimating amplitude and fractal dimension directly from data
are found through simulation experiments.

The nonlinear forward problem and the linear inversion
computation present a problem for all one-pass algorithms
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(e.g., Li and Oldenburg, 1992; Loke and Barker, 1995). We
quantify this problem in terms of the nonlinearity error, defined
as the difference between the actual nonlinear response and
the linearized response. With increasing subsurface resistivity
contrast, this extra error term becomes important relative to
the measurement noise and also relative to the total response.
Disregarding this nonlinearity error in one-pass stochastic in-
version will lead to serious underregularization, particularly in
regions where the structural constrasts are large.

Using wavenumber spectra of the measured signal, we can
predict the nonlinearity noise variance. Tests demonstrate that
reasonable regularization of the inverse problem results when
this additional data error is taken into account.

For long profiles the algorithm presented speeds up the
2-D inversion by a factor of 100 000 relative to a single con-
ventional linearized iterative step. Moreover, because the de-
gree of added nonlinearity regularization adapts to local sig-
nal power, the output is an automated and effective resistivity
estimate under the intrinsic limitations in a one-pass linear in-
version of a nonlinear problem.

FORMULATION OF THE MULTICHANNEL
DECONVOLUTION

Theory

Geoelectric 2-D profile data, expressed as apparent resistiv-
ities ρa, are nonlinear functions of electrical resistivities ρ:

ρa(x, s) = g[ρ(x′, z′), s] s= s1, s2, . . . , sS, (1)

where g describes the earth response for this resistivity distri-
bution to one out of S possible electrode configurations. The
x-axis is assumed to be perpendicular to the strike direction,
and the z-axis points downward.

Equation (1) can be expanded into a Taylor series with re-
spect to a reference medium, ρref:

ρa(x, s) = g[ρref(x′, z′), s]+
∫ ∞

0
dz′

∫ ∞
−∞

8(x′, z′, x, s)

× [ρ(x′, z′)− ρref(x′, z′)] dx′ + R, (2)

where8 is the 2-D form of the Fréchet derivative evaluated for
the reference medium and R is the second-order remainder.

The parameters are transformed logarithmically so that the
parameter perburbation is

δm(x, z) = log ρ(x, z)− log ρref(x, z). (3)

Likewise, the data perturbation is

δd(x, s) = log ρa(x, s)− log g[ρref(x′, z′), s]. (4)

The logarithmic transformation prevents nonphysical nega-
tive resistivities and makes the problem more linear because
it equalizes large and small resistivity levels. The parameter
perturbation [equation (3)] and the data perturbation [equa-
tion (4)] are inserted in equation (2). The Fréchet derivative
for logarithmic data with respect to logarithmic parameters is
given by

∂ log ρa

∂ log ρ
= ρ

ρa

∂ρa

∂ρ
. (5)

Note that for a homogeneous reference medium, ρa= ρ.

Ignoring the remainder term, R, in equation (2), the Born
approximation is obtained (Boerner and West, 1989). When
using a stratified reference medium, we obtain

δd(x, s) '
∫ ∞

0
dz′

∫ ∞
−∞

8(0, z′, x − x′, s) δm(x′, z′) dx′,

(6)
where the inner integral is a convolution between 8(0, z′, ·, s)
and δm(·, z′). The value8 inherits the translational invariance
of the reference medium—in this paper a homogeneous half-
space. Expressions for the 2-D form of the Fréchet derivative
appear in the following section.

Model parameterization, δm(x, z), is discretized in terms of
M layers; thereby the resistivities ρ(x, z) are approximated
with functions ρ(x, l ), which describe the lateral variation in
one layer. Under this discretization, equation (6) yields

δd(x, s) '
M∑

l=1

∫ ∞
−∞

8̄(x − x′, l , s) δm(x′, l ) dx′, (7)

where

8̄(x, l , s) =
∫ zl

zl−1

8(0, z′, x − x′, s) dz′. (8)

Expression (7) is a multichannel convolution when the lateral
discretization and data in all electrode configurations are rep-
resented regularly along the profile.

Fourier transformation of expression (7) leads to a sum of
products:

δ̃d(k, s) '
M∑

l=1

˜̄8(k, l , s) δ̃m(k, l ), (9)

where the wavenumber k= 1/λ is reciprocal wavelength and
the tilde denotes Fourier domain variables.

For each wavenumber, equation (9) forms a linear system of
equations:

δ̃dk ' G̃kδ̃mk + ẽk, (10)

where δ̃dk= [δ̃d(k, 1), . . . , δ̃d(k, s), . . . , δ̃d(k, S)]T , δ̃mk=
[δ̃m(k, 1), . . . , δ̃m(k, l ), . . . , δ̃m(k,M)]T , an entry in G̃k is G̃ksl =
˜̄8(k, l , s), and ẽk contains the Fourier transforms of the data

errors. The linear system of equations in equation (10) can
be regarded as a k-slice in a 3-D matrix as illustrated in
Figure 1.

FIG. 1. Sketch of vectors and matrices forming the many small
linear systems of equations [equation (10)] in the wavenumber
domain.
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Adopting the stochastic viewpoint (e.g., Jackson, 1979;
Tarantola and Valette, 1982a), a solution to equation (10)
becomes

δ̃mk=
(
G̃H

k C̃−1
dk

G̃k + C̃−1
mk

)−1G̃H
k C̃−1

dk
δ̃dk (11)

where G̃H
k is the hermitian form of G̃k, C̃dk is the data error

covariance matrix describing the statistical variability of the
data errors at this wavenumber k, and C̃mk is the model covari-
ance matrix describing the statistical variability of the model
perturbation, δ̃mk.

The resulting resistivity estimate at a given depth z is

ρ(x, z) = ρref exp{F−1[δ̃m (k, z)]}, (12)

where F−1 denotes inverse Fourier transformation in the hor-
izontal direction.

Fréchet derivative for 2-D resistivity data

The Fréchet derivative for the homogeneous half-space for
the electrical potential Vpp, at P= (a, 0, 0) from a current in-
jection at C= (0, 0, 0) is (see Boerner and West, 1989; Park and
Van, 1991)

∂1Vpp(0,a)
∂ρ(x′, y′, z′)

= I

4π2

x′(x′ − a)+ y′2 + z′2

(x′2 + y′2 + z′2)3/2[(x′ − a)2 + y′2 + z′2]3/2
.

(13)

Analytical integration of equation (13) in the y-direction, i.e.,
along strike, yields the 2-D form of the Fréchet derivative. We
obtain for x′<a/2

∂1Vpp(0,a)
∂ρ(x′, z′)

= I

2π2β

{
K(q1)− E(q1)
β2 − α2

− ax′
[
(β2 + α2)E(q1)− 2α2K(q1)

]
α2(β2 − α2)2

}
;

(14a)

for x′ =a/2,

∂1Vpp(0,a)
∂ρ(x′, z′)

= I

8π

[
1

(x′2 + z′2)3/2
− 3x′2

2(x′2 + z′2)5/2

]
;

(14b)
and for x′ > a/2,

∂1Vpp(0,a)
∂ρ(x′, z′)

= I

2π2αβ2

{
α2E(q2)− β2K(q2)

α2 − β2

− ax′
[
(α2 + β2)E(q2)− 2β2K(q2)

]
(α2 − β2)2

}
,

(14c)

where α2 = x′2 + z′2, β2 = (x′ − a)2 + z′2, q1 =
√

(β2 − α2)/β2,
q2 =

√
(α2 − β2)/α2, and K and E are the complete elliptical

integrals of the first and second kind. Loke and Barker (1995)

reach similar expressions to equations (14a–c), except for mis-
prints in the arguments of the elliptical integrals.

The potential for a four-electrode configuration is a sum of
four pole–pole potentials so that the total 2-D Fréchet deriva-
tive is

∂1V4p(x, s)
∂ρ(x′, z′)

= ∂1Vpp(0, xM − xA)
∂ρ(x′ − xA, z′)

− ∂1Vpp(0, xN − xA)
∂ρ(x′ − xA, z′)

− ∂1Vpp(0, xM − xB)
∂ρ(x′ − xB, z′)

+ ∂1Vpp(0, xN − xB)
∂ρ(x′ − xB, z′)

, (15)

where xA and xB are current electrodes, xM and xN are po-
tential electrodes, s is the index of the associated electrode
configuration, and x is the reference position of the electrode
configuration. Because apparent resistivity is expressed as

ρa = K

I
1V, (16)

where

K = 2π
1

|xA − xM |−
1

|xA − xN |−
1

|xB − xM | +
1

|xB − xN |
,

the 2-D form of the Fréchet derivative for ρa(x, s) with respect
to ρ(x′, z′) is

8(x′, z′, x, s) = K

I
· ∂1V4p(x, s)
∂ρ(x′, z′)

, (17)

which is the expression used in the multichannel decon-
volution.

Figure 2 displays the 2-D form of the Fréchet derivative
for the apparent resistivity for a pole–pole-like electrode ar-
ray (configuration s6 in Figure 4), with the current electrodes
placed at x=−15 and 15 m and the potential electrodes placed
at x=−25 and 45 m.

Fractal covariance model for subsurface resistivity

As already implicitly assumed in equation (11), we describe
the spatial variation character of log ρ(x, z) in the frame-
work of stationary stochastic processes (e.g., Pilkington and
Todoeschuck, 1990).

The degree of spatial correlation is parameterized in terms
of fractal dimension D of a self-affine process, which is

FIG. 2. 2-D form of the Fréchet derivative for an electrode
configuration with current and potential electrodes placed at
x=−15 m (A), x= 15 m (B), x=−25 m (M), and x= 45 m (N)
(configuration s6 in Figure 4). Light gray indicates negative
values; dark gray, positive values. Contour intervals are−0.010,
−0.003, −0.001, 0, 0.001, 0.003, 0.010.
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characterized by the von Kármán covariance functions

C(x, z, A, ν) = A2 C0

(
r

L

)ν
Kν(r/L), (18)

where A is the amplitude, C0 is a constant, r =√x2 + z2 is spa-
tial distance, L is the correlation length, and Kν is the modified
Bessel function of second kind and order ν. The value C0 is se-
lected so that A is the rms amplitude in the band 4 m≤ λ≤ 64 m.
We refer to Aas the logarithmic amplitude of the resistivity and
ν as the shape parameter, which is related to the fractal dimen-
sion D as ν= 3− D (e.g., Maurer et al., 1998).

Prior knowledge on the presence of horizontal layering may
be included by assuming a correlation length that is greater
laterally than vertically. This will increase lateral coherence
in the inversion result but will also reduce lateral resolution.
Although layers are to be expected in sedimentary areas, this
study uses an isotropic model covariance function so that a
possible lateral coherence is purely data driven.

The 1-D auto and cross-spectra, which are analytically given
cosine transforms of equation (18) and are required for equa-
tion (11), are [Erdélyi (1954), eqs. 1.13(45) and 1.12(41)]

C̃(k, z, A, ν) = A2 C0
√
π |z|ν+1/2

√
2 L2ν [1/L2 + (2πk)2]ν/2+1/4

× K−ν−1/2
[|z|√1/L2 + (2πk)2

]
z 6 = 0,

(19)

FIG. 3. Data pseudosections, model estimates, and model resolution kernels for data in Wenner, pole–pole, and PACES arrays.
(a) True model with low-contrast anomalies; a small conductive block (33 ohm-m) and a larger resistive block (75 ohm-m) in a
50 ohm-m half-space. Apparent resistivity pseudosections for (b) Wenner configurations with electrode spacings 2, 4, 6, 8, 12, 16,
24, and 32 m; (c) pole–pole configurations with electrode spacings 2, 4, 6, 8, 10, 12, 14, and 18 m; and (d) PACES array (Figure 4).
The depth conversion used in (b), (c), and (d) are equivalent to Edwards’ (1977) median depth of investigations. Results of a
multichannel deconvolution of the (e) Wenner, (f) pole–pole, and (g) PACES data, where the inverse operator uses Cm described
by an exponential correlation [ν= 0.5 and A= 0.05 in equation (18)] and Cd described by uncorrelated errors with σ = 0.03.
Corresponding model resolution kernels to the model estimates in (e), (f), and (g) for an element between 3 and 4 m [(h), (i), and
(j)] and between 12 and 14 m [(k), (l), and (m)]. The upper colorbar maps colors for (a)–(g); the lower colorbar maps for (h)–(m).

C̃(k, 0, A, ν) = A2 C0
√
π 2ν 0(ν + 1/2)

2L2ν[1/L2 + (2πk)2]ν+1/2
ν > −1/2.

(20)

Entry (i, j ) in the model covariance matrix for the wavenumber
k is given as C̃mk (i, j ) = C̃(k, zi −zj , A, ν). In this paper we use
model covariance matrices with correlation length somewhat
longer than the profile length (L = 1000 m) and varied ν and A.

Resolution test

Figure 3a displays a test model with resistivities that vary by a
factor of 1.5 from the background value. Synthetic data for this
low-contrast model were calculated using a finite-difference
code (McGillivray, 1992). The same dense finite-difference
mesh was used in all calculations, and testing for a homoge-
neous half-space model resulted in computation errors typi-
cally <0.5% and globally <1.5%. Data displayed in Figure 3b
as an apparent resistivity pseudosection were calculated for
eight Wenner configurations with electrode spacings between 2
and 32 m. The data pseudosection displays the characteristic
pant legs anomaly pattern. This plotting artifact is also seen
in the data pseudosection for pole–pole data with eight elec-
trode spacings between 2 and 18 m (Figure 3c), but the pant
legs are less recognizable in the data pseudosection for the
Pulled Array Continuous Electrical Sounding (PACES) array
in Figure 3d. The PACES array is built up around one set of cur-
rent electrodes with 30-m spacing, using Wenner configurations
and pole–pole-like configurations (Figure 4), so data collected
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simultaneously in all electrode configurations have different
lateral focus. The data pseudosections are converted into ap-
proximate depth following Edwards’ (1977) median depth of
investigation defined as the depth, where the cumulative nor-
malized 1-D form of the Fréchet derivative (Oldenburg, 1978)
is 0.5.

Figures 3e–g show results of a multichannel deconvolution
of the data displayed in Figures 3b–d, respectively. In all three
cases, data are sampled every meter, meaning that the model
partition consists of regular cells 1 m wide. The model is di-
vided into 21 layers with layer thicknesses of 1 m for 0 to 10 m
depth, 2 m for between 10 and 20 m depth, and 5 m down to
45 m depth. Beneath 45 m lies a basal half-space. The model
estimates are achieved by assuming a model covariance matrix
Cm, describing an exponential correlation [ν= 0.5 and A= 0.05
in equation (18)]. The data error covariance matrix, Cd, de-
scribes uncorrelated errors with a standard deviation of 0.03,
although for clarity the multichannel deconvolution is carried
out on noise-free data in all three cases.

The model estimates in Figures 3e–g are more representative
of the true model than are the pseudosections. The pole–pole
case shows the best lateral resolution, and the Wenner case has
better vertical resolution. The PACES case is intermediate.

These observations are confirmed by the model resolution
kernels for a shallow and a deep cell in Figures 3h–m. In gen-
eral, resolution diameter is proportional to focal depth, al-
though the pole–pole kernel is slightly narrower and deeper
than is the Wenner kernel. Again, the PACES case is interme-
diate.

Nonlinearity error

Figure 5a shows the low-contrast model from Figure 3a to-
gether with a high-contrast model in which block resistivities
differ by a factor of 10 from the reference half-space. Model
responses are calculated for the PACES array. The thin curves
in Figure 5b and c are the model responses of electrode con-
figuration s6 with current and potential electrodes located at
x=−15, 15, −25, and 45 m, respectively. The positive resis-
tive anomaly seen in the data of electrode configuration s6 is
shifted about 20 m to the right of the center of the causative
body, representing the lateral focus of the configuration, which

FIG. 4. PACES array. Sliding electrodes are mounted on a ca-
ble and towed by a small vehicle. The array has one set of
current electrodes (larger •) separated by 30 m. Lines s1, s2,
s3, s4, and s6 are pole–pole-like electrode configurations with
pole–pole separations of 2, 3, 4, 5, and 10 m. Lines s5 and s8
are Wenner configurations with 10- and 30-m electrode spac-
ings. Line s7 is a symmetric configuration with 19 m between
current and potential electrodes. The ∧ marks the lateral fo-
cus of each electrode configuration. The Fréchet derivative of
configuration s6 is shown in Figure 2.

is the area of the 2-D Fréchet derivative with most sensitivity
(Figure 2).

The linear Born approximation response [equation (7)] for
the low-contrast case (heavy curve in Figure 5b) agrees, within
a fraction of 1%, with the full nonlinear response (thin curve).
Thus, the Born approximation is valid for this low-contrast
model.

In the high-contrast case, the differences between the lin-
ear Born approximation response (heavy curve in Figure 5c)
and the nonlinear response (thin curve in Figure 5c) indicate a
nonlinearity error well over 10%. As we invert nonlinear data
with a linear inversion procedure, we regard the nonlinearity
error as noise. Thus, in the high-contrast case the measurement
noise is dominated by the nonlinearity noise, and we therefore
suggest the nonlinearity error be taken into account as a part
of the data errors (Tarantola and Valette, 1982b).

Quantification of nonlinearity error variances

To develop regularization for nonlinearity error, a quantita-
tive stochastic study of the nonlinearity error is required. Re-
alizations of the resistivity distribution using the von Kármán
family of covariance functions [equation (18)] are computed
for three values of ν (0, 0.25, and 0.5) and four values of A (0.1,
0.2, 0.5, and 1). Ten realizations of every parameter combina-
tion (ν, A) are computed using the same ten seeds in the ran-
dom number generator. Nonlinear model responses of these
120 realizations are calculated for the PACES array shown in
Figure 4, using the finite-difference code of McGillivray (1992).
The nonlinearity error is defined as

enon = log
(
ρnon

a

)− log
(
ρ lin

a

)
, (21)

where ρnon
a is the nonlinear response and ρ lin

a is the approxi-
mate linear response given by the Born approximation. The

FIG. 5. PACES data in low- and high-contrast environments.
True models with (a) low-contrast (as Figure 3a) and
high-contrast anomalies with a small conductive block
(5 ohm-m) and a larger resistive block (500 ohm-m) in a
50 ohm-m half-space. Model responses (b) and (c) are of
PACES configuration s6 of the low-contrast model and the
high-contrast model, respectively. The thin and heavy curves
are nonlinear and linear model responses of the true models in
(a), respectively.
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stacked and smoothed autopower spectra of the nonlinearity
error reveal power law decay above a corner wavenumber cor-
responding to a wavelength λcorner ' 4zf where zf is the vertical
focus depth [defined as Edwards’ (1977) median depth of in-
vestigations] for the electrode configuration used. The nonlin-
earity error decay is almost parallel to the decay of the signal
spectrum; for typical contrast levels the nonlinearity noise is
unfortunately comparable in amplitude to the signal spectrum.
Below the corner wavenumber the signal spectrum continues
to rise toward smaller wavenumbers, whereas the nonlinearity
noise tapers off into an almost constant level. These constant
levels are well approximated by the expression

Pnon(ν, A, zf) = cA4z(4ν+2)
f , (22)

where c is a constant scale factor. The factor A4 is to be ex-
pected in the power spectrum because the remainder term in
the Born approximation is second order. The dependence on
focus depth, zf, is perhaps less easy to predict. The nonlinearity
error autopower enters into the total error covariance matrix
as

C̃dk = C̃meas
dk
+ C̃non

dk
. (23)

This formulation would allow a detailed specification of both
autopower and cross-power spectra of both the measurement
noise and the nonlinearity noise.

Examples presented in this paper approximate C̃non
dk

as a di-
agonal matrix with diagonal elements independent of k but
varying as Pnon(ν, A, zf) in equation (22). Because the nonlin-
earity error decreased above the corner wavenumber, our ap-
proximation is conservative. Note that the nonlinearity error
expressions share the amplitude A and the shape parameter
ν with the model covariance expressions. For consistency, the
same A and ν control both Cm and Cnon

d in the following.
Actual measurement noise, though small in general, may

well increase with increasing electrode separation. For pulled
arrays (see Figure 4) some crosscorrelation would be expected
where different configurations share some of the moving elec-
trodes. However, rarely are we able to quantify these noise
characteristics. Therefore, in this study we assume the measure-
ment error to be white and equal in all electrode configurations;
hence, C̃meas

dk
is diagonal with constant elements σ (ẽmeas)2.

Estimation of (ν, A)

When electrical well logs are abundant, it is possible to es-
timate values for A and ν by variogram fitting. In practice,
electrical profiling is often meant to reduce the drilling costs,
so independent estimates of A and ν are difficult to obtain.

However, representative values for A and ν may be esti-
mated from the electrical profile directly. Since the overall sig-
nal amplitude is proportional to A and because the shape pa-
rameter ν controls the amplitude ratio between long and short
wavelengths, these two stochastic parameters may be derived
from apparant resistivity variance estimates in two wavelength
bands.

Based on synthetic tests on responses from resistivity real-
izations with known A and ν, we found the following empirical
equations for apparent ν,

νapp = 1− 0.9
rmsshort

rmslong
, (24)

and for apparent A,

Aapp = 14(rmsshort + rmslong), (25)

where rmsshort and rmslong are root-mean-square amplitudes for
signals in bands λ ∈ [4, 16] m and λ ∈ [16, 64] m stacked from
four intermediate electrode configurations of the PACES array
(s3, s4, s5, and s6 in Figure 4). For other choices of electrode
arrays and wavelength bands, expressions for apparent A and
ν may require modification.

Figure 6 shows the running estimate of νapp and Aapp for data
which are responses of realizations of von Kármán covariance
functions. The estimates seem unbiased and agree satisfactorily
with the true values. The rms running averages were computed
using a 100 m interval. Longer running average intervals would
give more stable values of Aapp and νapp but would also smear
possible boundaries where the properties of the electrofacies
change.

SYNTHETIC EXAMPLE

In this example, the data error covariance matrix specified
in the previous section is included in the inverse operator of
the multichannel deconvolution [equation (11)]. The attributes
ν and A are estimated using the empirical equations (24) and
(25).

Figure 7a displays part of a stochastic resistivity structure,
which is a realization of the covariance function [equation (18)]
with the parameters A= 0.5 and ν= 0.25. The corresponding
model responses, computed for the PACES array, are displayed
as an apparent resistivity pseudosection in Figure 7b. Model re-
sponses for the individual electrode configurations are plotted

FIG. 6. Estimation of νapp and Aapp. Realization of a stationary
process with von Kármán covariance functions [equation (18)]
with L = 1000 m; (a) ν= 0 and (b) ν= 0.5. Model responses for
PACES configuration s6 of the von Karman realizations in (a)
and (b) with A= 0.1 (black curves) and A= 0.5 (heavy gray
curves) are shown for (c) ν= 0 and (d) ν= 0.5. Apparent ν
estimated from the model responses in (c) and (d) is plotted in
(e) and (f), respectively. Corresponding apparent A is plotted
in (g) and (h).
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at the lateral focus points (marked in Figure 4), defined as

xf =
{

(xc + xp)/2 if pole–pole-like configuration

(xA + xB)/2 if symmetric configuration
,

(26)
where xc and xp are the pole–pole-like electrodes to make the
data pseudosection informative. Running estimates of appar-
ent ν and A (Figure 7d) for these data show a νapp undulating
around 0.25 and an Aapp around 0.5. A model estimate of data
with 3% white noise is displayed in Figure 7e, which is a re-
sult of a multichannel deconvolution using an inverse operator
with covariance matrices that are controlled by the true values
of ν (0.25) and A (0.5). The model estimate gives a blurred
image, especially at depth, but many details are still recovered
in the upper layers. The apparent resistivity response of the
model estimate (Figure 7c) shows good agreement with the
data (Figure 7b).

FIELD EXAMPLES

Field data only approximately satisfy the requirements for
the multichannel deconvolution. Spatial sampling is often ir-
regular, and field data are not periodic. Regular sampling is
achieved through interpolation. Periodicity is imposed through
padding and periodic interpolation. To minimize end effects,
the total padding length must be larger than the length of the
largest electrode configuration.

FIG. 7. A stochastic resistivity structure resulting from a re-
alization of equation (18) for ν= 0.25 and A= 0.5 is used as
the true model (a). Model responses computed for the PACES
array are displayed as an apparent resistivity pseudosection
(b) shifted laterally according to equation (26) and converted
into depth as in Figure 3. (c) The model response of the model
estimate in (e). (d) The estimated apparent ν and A for the
data in (b). (e) The model estimate from data with 3% white
noise obtained by an inverse operator controlled by ν= 0.25
and A= 0.5.

PACES data from Ølst

With the PACES method (Sørensen, 1996; Møller et al.,
1998), more than 30 profile kilometers of data covering about
12 km2 were collected in an exploration for smectite-rich clay.
Upper Paleocene clay from the Ølst Formation (Heilmann-
Clausen et al., 1985) is exposed in hills formed by glaciotec-
tonics at Ølst, Jutland, Denmark. The heavily disturbed clay
deposits are surrounded by glaciofluvial sand and gravel de-
posits and are overlain by a thin, clayish till (Nielsen, 1973).

Multichannel deconvolution was applied to data profiles
with typical lengths of 900 m. A 150-m interval is displayed
in Figure 8a as a resistivity pseudosection shifted laterally ac-
cording to equation (26) and converted into depth. From the es-
timated apparent ν and A (Figure 8c), a ν= 0.60 and an A= 0.4
are picked to control the inverse operator. Figure 8d displays
part of the model estimate.

The response of the model estimate in Figure 8d (Figure 8b)
generally agrees with the measured data (Figure 8a) but in-
dicates that the transition between low and high resistivities
between 440 and 460 m is even sharper than that obtained in
the model estimate.

Resistivities above 100 ohm-m are interpreted to be dry
glaciofluvial sand and gravel, resistivities below 5 ohm-m are
interpreted to be Palaeocene clay, and the intermediate re-
sistivities at about 30 ohm-m are interpreted to be a clay-
ish till. The almost vertical contact between clay and sand
can be followed in adjacent lines supporting the assumption
of a 2-D structure with strike direction perpendicular to the
profile.

CVES data from Grundfør

Profiles of continuous vertical electrical sounding (CVES)
data were collected at Grundfør, Jutland, Denmark, as part of
a larger groundwater project under the Danish Environmen-
tal Research Programme. In these projects, the Quaternary
aquifers that exist in buried valleys incised into Tertiary clay
deposits were mapped and studied.

Using the ABEM Lund imaging system (Dahlin, 1996), data
were collected in Wenner configurations with 10-electrode
spacings between 5 and 120 m. Figure 9a displays data from
the central profile. A model estimate is obtained using an in-
verse operator controlled by ν= 0.65 and A= 0.25 (read from
Figure 9c). The rectangles indicate four Ellog drillings, which
were <10 m offline. The Ellog method is based on an electri-
cal log and a gamma log measured continuously while drilling
(Sørensen, 1989). The augering method uses no drilling mud
and provides a relatively undisturbed estimate of the true for-
mation resistivity. The measured resistivities are indicated as
color in the rectangles in Figure 9d. Thin beds present in the logs
are not resolvable with surface electrical methods. Therefore,
we judge the correspondence between the Ellog resistivity and
the resistivities obtained by the multichannel deconvolution to
be satisfactory.

The profile displayed in Figure 9 maps a cross-section of the
sediments that have filled and covered a buried valley, known
to cut about 120 m into Tertiary clay. The valley is about 1 km
wide, and its slopes are outside the profile. The low (about
25 ohm-m) and intermediate (about 40 ohm-m) resistivities in
the lower part of the section are interpreted as clay and more
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coarse-grained sediments deposited in a glaciolacustrine envi-
ronment (Gravesen, 1997). The upper part of the section dom-
inated by higher resistivities is interpreted as glaciofluvial sand
and gravel deposited in front of the latest glacial advance, which

FIG. 8. Data collected using the PACES method at Ølst are
displayed as an apparent resistivity pseudosection (a) shifted
laterally according to equation (26) and converted into depth
as in Figure 3. (b) The model response of the model estimate
in (d). (c) The estimated apparent ν and A from the data in
(a). (d) The model estimate obtained by an inverse operator
controlled by ν= 0.60 and A= 0.4.

FIG. 9. Data collected at Grundfør using Wenner configura-
tions with electrode spacings between 5 and 120 m are dis-
played as an apparent resistivity pseudosection (a) converted
into depth as in Figure 3. (b) The model response of the model
estimate in (d). (c) The estimated apparent ν and A from the
data in (a). (d) The model estimate obtained by an inverse op-
erator controlled by ν= 0.65 and A= 0.25. The small rectangles
in (d) indicate the location of electrical resistivity logs, which
are displayed as color in the rectangles.

deposited a thin, incoherent till (resistivities about 40 ohm-m)
seen as the topmost deposit in the section.

DISCUSSION

Implementation aspects and performance

The 2-D Fréchet derivative, which is relatively expensive to
compute, is calculated once and stored for each electrode array
and profile sampling. The model covariance matrices are also
calculated in advance for unit amplitude and a suite of different
values of the shape parameter ν. Various tests show that model
estimates of the same data set obtained using slightly different
ν are almost the same, indicating the shape parameter can be
sampled rather coarsely, e.g., in steps of 0.25. The nonlinearity
error variance Cnon

d is rapid to compute and does not have to
be stored in advance.

The algorithm is developed as a Matlab script, which leaves
room for computational optimization. Still, estimation of
10 752 (512× 21) model parameters through a multichannel de-
convolution of 4096 (512× 8) data values demands <2 MB of
memory and requires 0.2 s on a 400-MHz Pentium II computer.
The solution of the same problem (10 752 model parameters
and 4096 data values) set up as mest = CmG(GCmG+Cd)−1dobs

in the space domain and solved using a Cholesky factorization
of GCmG + Cd would demand 1.3 GB of memory and would
take about 20 hours of computer time.

Nonlinearity error regularization

A one-pass inversion with a data error covariance matrix
accounting for, say, 1% measurement noise may lead to dra-
matically underregularized results. We suggest that the nonlin-
earity error be taken into account as an additional error covari-
ance matrix, with diagonal elements given by equation (22). A
coarser approximation would be to scale the constant diago-
nal measurement error covariance matrix. This would be the
result in a Tichonov or Occam approach, where a free regular-
ization parameter is adjusted until some criterion is fulfilled.
For this choice of nonlinearity regularization, Møller (1999)
found significantly poorer test results. The actual nonlinearity
noise spectrum was found to decrease at higher wavenumbers.
Møller (1999) did not find significant differences between esti-
mates which took this decay into account and estimates based
on the conservative constants in equation (22).

Multichannel deconvolution is most suitable for inversion
of long profiles. Profile lengths shorter than three times the
longest electrode separation give rise to model estimates need-
ing extra stabilization in the lower part of the model.

Should regularization be adaptive?

Elementary statistical theory states that the expected value
and variance of a series of repeated measurements is com-
puted from the average and the deviations from the average.
Moreover, expressions for the confidence interval of the true
expectation value may be based on these estimates of expecta-
tion value and variance. We view the empirical equations (24)
and (25) for estimates of parameters A and ν in the same spirit.
When the subsurface resistivity distribution is a realization of a
von Karman process [see equation (18)], Aapp and νapp will only
be approximate, as seen in Figure 6, and therefore the result-
ing regularization may be slightly suboptimal. The theoretial



808 Møller et al.

argument for adaptive regularization is weaker when the actual
resistivity distribution is likely not a von Karman realization.
We were therefore surprised to see how well adaptive regular-
ization worked even for highly nonstochastic and rather unre-
alistic synthetic models like Figure 3 (Møller, 1999) as well as
for typical field cases.

This study considers electrode spacings with focus depths zf

between 1 and 16 m. Nonlinearity errors as well as apparent A
and ν are measured from data in the band 4 m≤ λ≤ 64 m. When
other electrode spacings with other focus depths are used, we
suggest measuring apparent A and ν in the band zf≤ λ≤ 16zf,
where zf is the geometric mean of all focus depths.

Practical combination of automated multichannel
deconvolution and nonlinear inversion

Multichannel deconvolution gives a first-order interpreta-
tion of large sets of profile data. The empirical equations (24)
and (25) for apparent A and ν allow for automated multi-
channel deconvolution. Both synthetic and field examples have
shown that the estimated apparent A and ν lead to reasonable
model estimates, and only rarely did changes from these values
lead to significantly better or more reliable results.

From the initial deconvolution, sections with small apparent
amplitude variations will be accepted as almost linear, while
sections with larger apparent amplitude will be interpreted by
means of an iterative inversion. Sections with only 1-D struc-
tures will be interpreted with 1-D inversion schemes.

CONCLUSIONS

We have presented a one-pass 2-D inversion algorithm for-
mulated as a multichannel deconvolution using the 2-D Fréchet
derivative for the homogeneous half-space. Because the mul-
tichannel deconvolution is solved in the wavenumber domain,
the algorithm is fast and memory efficient.

The inversion is regularized through covariance matrices re-
flecting the stochastic properties of the earth resistivity and
data errors. A nonlinearity error covariance matrix is added to
the conventional measurement error covariance matrix.

The stochastic properties of the nonlinearity error are de-
rived from a nonlinear simulation experiment. An empirical ex-
pression is derived for predicting nonlinearity error variances
for given resistivity amplitude and fractal dimension in a self-
similar stochastic model for resistivity distribution. Moreover,
expressions are derived for estimating apparent amplitude and
fractal dimension of the logarithmic resistivity distribution di-
rectly from measured apparent resistivity data. The combina-
tion of these elements defines an inversion procedure where
regularization of the nonlinearity error adapts to the general
resistivity amplitude level.

Both synthetic tests with known resistivity structure and a
field test with electrical well-log control support the conclusion:
for long data profiles, this method produces excellent linearized
resistivity estimates.
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