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ABSTRACT

In many cases, inversion in 2D gives a better description of the
subsurface compared with 1D inversion, but, computationally, 2D
inversion is expensive, and it can be hard to use for large-scale
surveys. We have developed an efficient hybrid 2D airborne fre-
quency-domain electromagnetic inversion algorithm. Our hybrid
scheme combines 1D and 2D inversions in a three-stage process,
in which each step is progressively more accurate and computa-
tionally more expensive than the previous one. This results in
an approximately 2x − 6x speedup compared with full 2D inver-
sions, and with only minor changes to the inversion results. Our
inversion structure is based on a regular grid, in which each sound-
ing is discretized individually. The 1D modeling code uses layered

models with derivatives derived through the finite-difference
method, whereas our 2D modeling code uses an adaptive finite-
element mesh, and it uses the adjoint-state method to calculate
the derivatives. By incorporating the inversion grid structure into
the 2D finite-element mesh, interpolation between the different
meshes becomes trivial. Large surveys are handled by using local
meshing to split large surveys into small sections, which retains the
2D information. The algorithm is heavily optimized and parallel-
ized over the frequencies and sections, with good scalability even
on nonuniform memory architecture systems, on which it is gen-
erally hard to achieve a satisfactory scaling. The algorithm has been
tested successfully with various synthetic studies as well as field
examples, of which results from two synthetic studies and a field
example are shown.

INTRODUCTION

Airborne electromagnetic (AEM) surveys typically contain thou-
sands of line kilometers of data and are routinely flown for mapping
of geology, groundwater, saltwater intrusion, etc. Most data are in-
verted using 1D model algorithms, which have proven to be robust
and computationally fast. However, specific targets with a high con-
ductivity contrast between undulating bedrock and sediments, or con-
ductive sheet-like mineralizations, need higher dimensionality in the
underlying model to be resolved accurately (Doyle et al., 1999; Wilson
et al., 2012; Yang and Oldenburg 2012b). The challenge in moving
beyond 1D modeling is that it is prohibitively computationally expen-
sive to invert for a 2D or a 3D model and this limits the usage of these
inversion algorithms on a routine basis, even for frequency-domain
electromagnetic (EM) data sets of just a few discrete frequencies.
Full 3D EM inversion algorithms have existed for more than a

decade (Haber et al., 2007b), and with the concept of the moving

footprint (Cox et al., 2010), several 3D codes using local meshes
have been presented (Cox et al., 2012; Yang et al., 2014). Both these
algorithms are capable of handling large surveys, in the time- or
frequency-domain, by sectioning the survey into smaller parts using
a local meshing approach. Local meshing means that the survey is
split into smaller parts, in which each part contains a small subset of
transmitter-receiver pairs, as well as all the models within their foot-
print domain (Liu and Becker, 1990; Beamish, 2003; Reid et al.,
2006). Here, the footprint is defined as the area of significant lateral
sensitivity of the survey system, and its size is thus dependent upon
the system itself and the resistivity of the earth. Reid et al. (2006)
show that, for a frequency-domain system, the footprint may be as
large as 10 times the flight altitude for low induction numbers.
Common survey systems operate either in the time domain, or with
multiple frequencies spread across the frequency spectrum, and
although these latter systems usually have one transmitter frequency
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operating within the low induction approximation, most of their
transmitter frequencies operate at higher induction numbers, for
which the footprint is much smaller. From this, we argue that when
a survey is flown with a line separation of 200–500 m, most of any
crossline information is lost and the survey results are essentially
reduced to only contain inline information. Considering this and
the inherent computational burden of doing full 3D inversions, it
is clear that there are areas where it is sufficient and even desirable
to operate within a 2D formulation. Several 2D inversion algorithms
have been presented over the years: Mitsuhata and Uchida (2002),
Wilson et al. (2006), Li et al. (2016), and Key and Ovall (2011)
develop 2D finite-element algorithms, whereas Abubakar et al.
(2008) use a finite-difference approach and Yu and Haber (2012)
present a finite-volume approach. In general, finite-difference
approaches are considered the most simple and inaccurate of the
three approaches, but they can sometimes be justified due to
their superior parallel scaling. The finite element is the most accu-
rate of the methods, but it is also the most computationally heavy,
and largely, the question of whether the finite element or finite
volume is the superior choice remains open (Jahandari et al.,
2017).
In this paper, we present a hybrid 1D/2D inversion code for fre-

quency-domain helicopter EM (HEM) data designed for inverting
field-scale surveys on desktop computers. Because an efficient 2D
modeling algorithm is vital to achieve this goal, and because our
2D algorithm has not previously been published, this paper begins
with the construction of our 2D algorithm and the foundation it is
built on. The 2D algorithm is based on the 2.5D formulation by
Stoyer and Greenfield (1976), along with field separation into pri-
mary and secondary fields, where the high-frequency singularity
is handled by the introduction of a finite resistivity of the air (Mit-
suhata, 2000). The algorithm has a triangular finite-element mesh for
the 2D forward and derivative calculations and a regular grid for the
inversion. When having multiple meshes, interpolation schemes are
needed to map variables between the meshes. In general, interpola-
tion between meshes is a nontrivial task (Caudillo-Mata et al., 2017),
but in our case, the task is made trivial, by using the regular grid as a
skeletal structure for building the finite-element mesh. Due to limited
memory, as well as performance concerns, we introduce sectioning,
which splits large survey lines into smaller sections. Sectioning is
only done when carrying out the 2D forward and derivative calcu-
lations, during which we enforce sufficient overlap, such that vital
2D information is preserved. Based on the overlap size, we show
how section sizes should be chosen to reach optimal performance.
The algorithm is written in Fortran and uses OpenMP, Intel MKL
libraries, as well as a custom-built block-parallel sparse iterative lin-
ear solver. The algorithm is part of AarhusInv, which is provided as
freeware for noncommercial academic purposes (Auken et al., 2014).
Following the presentation of our 2D algorithm, we present a hy-

brid scheme, inspired by the work presented in Christiansen and
Auken (2004) and Christiansen et al. (2015). The method starts
by performing 1D forward and inverse calculations; later, it
switches to 2D forward calculations and 1D derivatives; and, finally,
it ends with full 2D calculations. The result of this is a code that
produces 2D results, but with a substantially shorter computational
time than traditional 2D algorithms. We demonstrate these compu-
tational benefits using two synthetic models and a field example.
Finally, we discuss the trade-off between computational speed
and accuracy, how the algorithm is best parallelized, and we illus-

trate the code’s parallel scaling and performance on a multiproc-
essor system.

METHODOLOGY

The 2.5D forward algorithm is based upon the framework of
Stoyer and Greenfield (1976). In a 2.5D formulation, the earth is
described in 2D (homogeneous in the cross-section direction),
but the source is 3D. The source needs to be 3D, to describe accu-
rately the sources used in AEM because AEM sources do not pro-
duce source fields, which are reasonably homogeneous in any
direction. Our 2.5D algorithm was originally developed for marine
EM measurements, but sources in the air have been added, so it can
now be used to invert airborne frequency-domain EM data (Vöge
et al., 2015). For hybrid inversion, we include the 1D algorithm
of Auken et al. (2014), which is based on the layered 1D model
solution presented in Ward and Hohmann (1988).

Governing equations

Starting from Maxwell’s equations in the frequency domain,

∇ × Eþ iωμ · H ¼ 0; (1)

∇ ×H − iωε · E ¼ J; (2)

where E and H are the electric and magnetic fields, J is the electric
source current, i is the imaginary unit, ω is the frequency, μ is the mag-
netic permeability, and ε is the complex dielectric permittivity, with
ε ¼ ε0 − iðσ∕ωÞ, where σ is the conductivity. To minimize the forward
inaccuracy, the fields are split into primary and secondary fields:

E ¼ Ep þ Es; H ¼ Hp þHs: (3)

So, equations 1 and 2 can be written as

ð∇ × Ep þ iωμ · HpÞ þ ð∇ × Es þ iωμ · HsÞ ¼ 0; (4)

ð∇ ×Hp − iωε · EpÞ þ ð∇ ×Hs − iωε · EsÞ ¼ J: (5)

We separate the conductivity into a conductivity for the primary field
model σp and a secondary field model σs, where σs ¼
σ − σp. From this, we get iωε ¼ iωε0 − ðσp þ σsÞ ¼ iωεp − σs,
which allows us to split equations 4 and 5 into separate equation sys-
tems for primary field

∇ × Ep þ iωμ · Hp ¼ 0; (6)

∇ ×Hp − iωεp · Ep ¼ J; (7)

and the secondary field

∇ × Es þ iωμ · Hs ¼ 0; (8)

∇ ×Hs − iωε · Es ¼ σs · Ep: (9)

The primary field is computed analytically, so the inaccuracy of
the finite-element method affects only the secondary field, which is
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several orders of magnitude smaller than the total field. In our case,
we chose the primary field model to be a uniform full-space air
model with magnetic point sources and receivers, which can be
easily calculated analytically. Because σp is the conductivity of
air, we have σ ¼ σp and σs ¼ 0 in the air layer.
The Fourier transform is defined with respect to y (i.e., the strike

direction of the survey) as

~Fðx; ky; zÞ ¼
Zþ∞

−∞

Fðx; y; zÞeikyydy; (10)

where ky is the wavenumber. A Fourier transformation of the pri-
mary field is carried out numerically, following the approach of
Streich et al. (2011). The governing equations of the 2D forward
response emerge by applying the Fourier transform to equations 8
and 9

~Esx ¼
1

k2y − ω2μzεx

�
iky

∂ ~Esy

∂x
− iωμz

∂ ~Hsy

∂z
− iωμzσsx ~Epx

�
;

(11)

~Esz ¼
1

k2y − ω2μxεz

�
iky

∂ ~Esy

∂z
þ iωμx

∂ ~Hsy

∂x
− iωμxσsz ~Epz

�
;

(12)

~Hsx ¼
1

k2y − ω2μxεz

�
iωεz

∂ ~Esy

∂z
þ iky

∂ ~Hsy

∂x
− ikyσsz ~Epz

�
;

(13)

~Hsz ¼
1

k2y − ω2μzεx

�
−iωεx

∂ ~Esy

∂x
þ iky

∂ ~Hsy

∂z
þ ikyσsx ~Epx

�
;

(14)

−iωεy ~Esyþ
∂
∂x

�
iωεx
czx

∂ ~Esy

∂x

�
þ ∂
∂z

�
iωεz
cxz

∂ ~Esy

∂z

�

−
∂
∂x

�
iky
czx

∂ ~Hsy

∂z

�
þ ∂
∂z

�
iky
cxz

∂ ~Hsy

∂x

�

¼−ðiωεpy−iωεyÞ ~Epyþ
∂
∂x

��
iωεpx
cpzx

−
iωεx
czx

�
∂ ~Epy

∂x

�

þ ∂
∂z

��
iωεpz
cpxz

−
iωεz
cxz

�
∂ ~Epy

∂z

�
−
∂
∂x

��
iky
cpzx

−
iky
czx

�
∂ ~Hpy

∂z

�

þ ∂
∂z

��
iky
cpxz

−
iky
cxz

�
∂ ~Hpy

∂x

�
; (15)

and

−iωμy ~Hsyþ
∂
∂x

�
iωμx
cxz

∂ ~Hsy

∂x

�
þ ∂
∂z

�
iωμz
czx

∂ ~Hsy

∂z

�

þ ∂
∂x

�
iky
cxz

∂ ~Esy

∂z

�
−
∂
∂z

�
iky
czx

∂ ~Esy

∂x

�

¼−ðiωμpy−iωμyÞ ~Hpyþ
∂
∂x

��
iωμpx
cpxz

−
iωμx
cxz

�
∂ ~Hpy

∂x

�

þ ∂
∂z

��
iωμpz
cpzx

−
iωμz
czx

�
∂ ~Hpy

∂z

�
þ ∂
∂x

��
iky
cpxz

−
iky
cxz

�
∂ ~Epy

∂z

�

−
∂
∂z

��
iky
cpzx

−
iky
czx

�
∂ ~Epy

∂x

�
; (16)

where cij ¼ k2y − ω2μiεj. Equations 11–14 only need to be evalu-
ated at the receiver positions, which in our application are in the air.
Thus, σsx, σsy, and σsz are always zero, so all primary field terms in
equations 11–14 can be ignored. Although the left sides of equa-
tions 15 and 16 are identical to the governing equations presented
in Mitsuhata (2000), the right sides are expressed by ~Epy and ~Hpy

instead of ~Epx, ~Epy, and ~Epz. However, a simple arithmetic refor-
mulation of the right side of equation 15 using equations 11–14 can
show that both forms are equivalent (not shown). Having the same
field components and derivatives on both sides of the equations al-
lows us to speed up the assembly of the linear equation system.
With the governing equations defined in equations 11–16, we use

the standard finite-element approach to define a set of local equa-
tions for each element. By combining all these using the Galerkin
method (Zienkiewicz et al., 1977) with second-order nodal elements
and Dirichlet boundary conditions, a global set of linear equations is
found for the secondary EM fields (see Appendix A for more de-
tails). From equations 15 and 16, a linear system of equations for the
secondary field is found:

A~x ¼ b; (17)

where A is the global symmetric stiffness matrix, ~x contains the
Fourier transformed secondary fields ~Esy and ~Hsy at the mesh no-
des, and b contains the source terms, where each column represents
one source component.
The procedure to solve the system is as follows:

• Assemble the matrix equation resulting from equation 17.
• Solve the linear system using a direct lower-upper (LU)-de-

composition solver and interpolate the field values at the
receiver positions using the same second-order shape func-
tion (which has already been used to assemble the finite-
element system) to find ~x, which contains the Fourier-trans-
formed secondary field components ~Esy and ~Hsy.

• Insert the solution into equations 11–14 to find the remaining
components of the Fourier transformed fields of ~Esx, ~Esz,
~Hsx, and ~Hsz.

• Interpolate the solution to the receiver positions.
• Apply the inverse Fourier transform to obtain the fields Esx,

Esy, Esz, Hsx Hsy, and Hsz at the receiver positions in the
frequency domain, which, when all combined, are referred
to as the forward response vector d.

Given this procedure, the forward response can formally be writ-
ten as

2D hybrid HEM inversion E191
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d ¼ F−1ðℶð~xÞÞ; (18)

where F−1 is the inverse Fourier transform operator and ℶ is the
interpolating operator.
This inverse Fourier transform is done numerically by logarith-

mic spaced ky samples, which are splined together over the relevant
ky domain. Tests show that five wavenumbers per decade between
10−5 and 10 m−1 provide sufficiently accurate results. One impor-
tant point related to the inverse Fourier transform is that the air con-
ductivity needs to be larger than zero; otherwise, a singularity at
k2y ≈ ω2με is encountered (Mitsuhata, 2000). We found that setting
the air conductivity to σ ¼ 10−6 Sm−1 keeps the air sufficiently re-
sistive, while avoiding the singularity within a frequency range of
0.4–130 kHz. The interpolation to the receiver positions is carried
out using the shape functions of the finite elements.

Derivative calculation

The 2D derivatives of the forward response with regards to the
model parameters m can be written as

dd
dm

¼ dðF−1ðℶð~xÞÞÞ
dm

: (19)

For model parameters related to source/receiver altitude, the deriv-
atives are calculated by a standard finite-difference approach with
small perturbations, as done in the 1D case (Auken et al., 2014). For
model parameters related to subsurface resistivities ρ; the deriva-
tives are calculated as follows.
For inversion parameters related to resistivities, the Fourier trans-

form operator and the interpolation operator are independent of the
inversion parameter, so we can write

dd
dρ

¼ F−1
�
ℶ

�
d~x
dρ

��
: (20)

In two dimensions, the derivative of ~x is found through the adjoint-
state method (McGillivray and Oldenburg, 1990). Equation 17 is
differentiated with regard to the model parameters m:

dðA ~xÞ
dρ

¼ db
dρ

; (21)

which through the product rule gives the Jacobi elements:

d ~x
dρ

¼ A−1
�
db
dρ

−
dA
dρ

~x
�
: (22)

Because only the coefficients of the governing equations are de-
pended on the resistivity, dA∕dρ can be analytically calculated
and assembled. The term db∕dρ is zero because all sources are
in the air, and thus they are not affected by any of the inverted re-
sistivity cells. Because each inversion cell usually contains only a
small number of finite elements, dA∕dρ is extremely sparse and
dA∕dρ ~x can be calculated efficiently, and the result can still be con-
sidered sparse. To calculate A−1, however, would be far too expen-
sive. Instead, we use the fact that only the field derivatives at the
receiver position are of interest, and thus replacing A−1 with λT ,
where λT contains all rows of A−1 that correspond to those column
in d~x∕dρ, which are necessary to calculate the field values at the
receiver positions

d ~xrec
dρ

¼ λT
�
db
dρ

−
dA
dρ

~x
�
: (23)

Because A is symmetric, λ can be calculated by solving Al ¼ Irec,
with Irec being constructed from those columns of the identity ma-
trix necessary to calculate the field values at the receivers. Thus, the
same direct LU-decomposition used for the regular forward solu-
tions can be used here. The matrix multiplication in equation 21
then results in d~xrec∕dρ, which is a dense matrix, however, with
rather small dimensions, where the number of rows is equal to
the number of sources, and the number of columns is equal to
12 times the number of receivers (six nodes per finite element with
two field components each). The derivatives at the receiver posi-
tions are then calculated from d~x∕dρ using the second-order shape
function as interpolator, and the derivative of the forward response
are calculated by the interpolated derivatives given in equation 20.

Meshing

The 2D modeling is performed on a triangular finite-element
mesh, as shown in Figure 1b, whereas the inversion operates on

Figure 1. Inversion grid and forward mesh for a small section of an
HEM survey. Transmitters are indicated by a brown circle; receivers
are indicated by a blue circle. (a) The inversion grid. In the inversion
grid, the column width is determined by the sounding distance,
whereas the column depth reflects the thickness of the model layers.
(b) The resulting forward modeling finite-element mesh. Note how
the inversion grid is still present in the forward modeling mesh be-
cause this is used as the skeletal structure for building the finite-
element mesh.
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a regular grid, as seen in Figure 1a. The column spacing of the in-
version grid is determined by the sounding distance, the row spac-
ing by the model layers, and the layer thickness is chosen to be
logarithmically increasing, which reflects the decreasing sensitivity
of HEM systems with depth. Separating the meshes of forward cal-
culations and inversion has some clear computational benefits be-
cause the inversion grid is much coarser than the 2D forward mesh.
This decreases the size of the inversion problem, while maintaining
the accuracy of the forward modeling.
Interpolation between the inversion grid and the forward mesh is

avoided by using the inversion grid as a skeletal structure for the
forward mesh (Figure 1). By incorporating the inversion grid into
the forward mesh, it is guaranteed that each finite element is fully
residing in just one inversion cell, which aligns the forward model-
ing mesh nodes and edges with the inversion grid.
The mesh density for the forward mesh is adjusted according to

the key parameters, such as the frequency and the source/receiver
height. The highest mesh density is needed near the surface below
the sources, where the primary field is the strongest. Here, the mesh
density is selected as a function of the source height and, thus, of the
strength of the primary field. For very low altitudes of 1 m and be-
low, a maximum edge length of 0.2 m is required. For altitudes of
20 m and above, a 5 m edge length is sufficient. At deeper locations
and at larger horizontal offsets from the source, the mesh density
can be reduced without losing accuracy. The mesh density is inter-
polated between the surface/zero offset mesh density, defined by the
altitude, and a background mesh density of 50 m for larger depths
and offsets. This interpolation is done by a 2D Gaussian function,
with the 2D distance from the closest source/receiver as a parameter
and a frequency-dependent standard deviation. Standard deviations
in the z-direction are logarithmically interpolated between 200 at
10−2 and 20 m at 106 Hz. Tests showed, that the mesh density along
the surface could not be coarsened as quickly, so the standard
deviation in the x-direction is logarithmically interpolated between
800 at 10−2 and 80 m at 106 Hz. Additionally, the mesh density is
increased near the receivers, to calculate the spatial derivatives in
equations 11 and 12 accurately.
The mesh of the 2D forward model is appended with large absorb-

ing boundary domains that extend 10 km in each direction. Because
the mesh density is coarsening quickly in these boundary domains,
the computational overhead is not very high, but tests showed that
10 km boundary domains allow the field to attenuate enough, so that
the validity of the Dirichlet boundary conditions is assured.

Sectioning

Even for relatively small surveys, it is computa-
tionally inefficient to create and store a sufficiently
fine finite-element mesh and do 2D calculations
on all soundings at once. Because of this, it is im-
perative to split large surveys into smaller sec-
tions. Sectioning or local meshing, as it is also
often called in the literature, can be accomplished
in several different ways. Our sectioning method
is somewhat similar to the method used in Yang
and Oldenburg (2012a). Their method involves a
global mesh, and a local mesh for each sounding.
Although the forward problem is handled on the
local meshes, the inversion is made by subsam-
pling the global mesh. In our case, the local

meshes contain multiple soundings. Because that is more efficient,
and it is used for the 2D forward and derivative calculations. In order
for these sections to retain the 2D information of the survey, they
need to overlap, as shown in Figure 2. Thus, each section L consists
of a core section l and one or two overlapping regions Δl. Continuity
between different sections is ensured by using sufficient overlap be-
tween different sections and by placing lateral constraints on all
soundings regardless of the section boundaries. The size of the over-
lap and sections will be addressed later.

Forward modeling validation

The 2D finite-element forward response was validated against the
1D code of Auken et al. (2014) for a range of frequencies relevant
for HEM (0.4–130 kHz) across different half-spaces with resistiv-
ities of 10, 100, and 1000 Ωm. A half-space comparison between
1D and 2D is shown in Figure 3. The mesh density is selected such
that the resulting responses deviate less than 5% from the 1D re-
sponses within the frequency range. The inaccuracy of the 1D re-
sponse is estimated to be between 0.1% and 0.3% and is
insignificant in this context. Note that the deviation between 1D
and 2D responses is not just a single number, but it is instead a range
because of variations in the mesh density between soundings near
the edge of the mesh and those near the center. The overall coarse-
ness surrounding a sounding near the center of a section is will be
slightly lower than the overall coarseness surrounding a sounding
near the edge of a section. This is reflected in Figure 3b, in which
the deviation from 1D is shown for a 300 m long section with
30 soundings equally spaced over the section. The flight height
of the system is 30 m and the half-space resistivity is set to
100 Ωm. Similar accuracies are obtained from half-space resistiv-
ities at 10 and 1000 Ωm, but for brevity, we only show one repre-
sentative example. In this case, the inaccuracy is generally less than
2%, while reaching as high as 5% for frequencies beyond the range
shown here.

Inversion algorithm

Our inversion technique uses linearized minimization, following
the Levenberg-Marquardt adaptive scheme (Menke, 1989). The fol-
lowing is a brief review of our inversion algorithm (for full details,
see Auken and Christiansen, 2004; Auken et al., 2014)
The minimized objective function is given as

q ¼ qobs þ qprior þ qreg; (24)

Figure 2. Sectioning of survey lines. Each section L, consists of a core section l, and
overlap regions Δl. Sections at the end of a survey line only have one overlap region,
whereas all other sections have two overlap regions. The dots on top of the ground sur-
face indicate the individual soundings.
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with qobs being the observed data (secondary field) misfit, qprior
being the prior constraint misfit, and qreg being the regularization
misfit. Smooth regularizations are used laterally and vertically.
To determine the misfit, we use a standard least-squares solution
(L2-norm). With this, the nth iterative update of the model vector
m is given as

mnþ1 ¼ mn þ ðĜT
n Ĉ

−1
n Ĝn þ λnIÞ−1 · ðĜT

n Ĉ
−1
n δd̂nÞ; (25)

where I is the identity matrix, λ is the damping parameter (Mar-
quardt, 1963), δd̂ is the extended perturbed data vector, Ĝ is the
extended Jacobian, and Ĉ is the extended covariance matrix, where
the extensions comes from the inclusion of prior information and
regularization:

δd̂ ¼
2
4 d − dobs
m −mprior

−Rm

3
5; (26)

Ĝ ¼
2
4G
P
R

3
5; (27)

Ĉ ¼
2
4Cobs 0 0

0 Cprior 0

0 0 Creg

3
5; (28)

where d is the forward response (see above), dobs is the observed
data, m is the model parameters, mprior is the a priori model param-
eters, R is the roughness matrix, which binds neighboring models/
model parameters together, G is the Jacobian (see above), P is a ma-
trix containing the a priori information, Cobs is the covariance of the
observed data,Cprior is the covariance of the a priori information, and
Creg is the covariance stemming from the roughness matrix.
Calculating the iterative model update as shown in equation 25, re-

quires solving a large linear system. In 1D, this system is sparse, but in
2D, the linear system is, in principle, dense. However, in practice, it can
be assumed to be sparse if only the part with the most sensitivity is
considered (this will be covered in more detail later). Nevertheless, the
2D linear system will always be considerably less sparse than the 1D
case. Solving large sparse linear systems is nontrivial, and the optimal
approach is dependent on the system being solved. Our current ap-
proach to solving the linear system in the 1D case is thoroughly de-
scribed in Kirkegaard and Auken (2015), and it starts with a reverse
Cuthill and McKee (1969) reordering algorithm, which is used on the
ordering of the initial soundings. This results in the matrix being cre-
ated in such a way that all vital nonzero elements lie relatively close to
the diagonal, while retaining the sounding structure in the matrix. The
actual matrix is solved in parallel using an iterative sparse solver, which
uses CG propagation (Hestenes and Stiefel, 1952; Saad, 2003), along
with a preconditioner, which depends on the dimensionality of the in-
version problem. For the 1D inversion problem, our method of choice
is a block-parallelized version of an incomplete LU factorization with a
dual-dropping strategy (Saad, 1994). However, due to the increased
bandwidth of the sparse matrix in the 2D case, consistent convergence
is not obtained when applying the LU decomposition as a precondi-
tioner. Direct solvers work well for small surveys (up to approximately
5000 soundings), but for larger surveys, direct solvers become ineffi-
cient due to memory consumption as well as factorization time. Neither
one scales linearly with the size of the survey. Instead, we have found
that applying the symmetric-Gauss-Seidel (SGS) preconditioner leads
to stable convergence when doing 2D inversions. Furthermore, if ap-
plied in cases in which the linear system is sufficiently diagonally dom-
inant, the SGS preconditioner is even more efficient than the
incomplete LU factorization, and this can lead to a significant speedup
in 1D inversions.

Optimizing section sizes

Previously, we discussed the need for dividing large surveys into
smaller sections due to memory concerns. However, even if
memory had not been an issue, it still proves computationally ad-
vantageous to split a survey into smaller sections. The reason for
this is that for unstructured meshes, the computational time scales
quadratically with the number of elements as the number of ele-
ments becomes large. On the other hand, there is also a size-inde-
pendent initialization cost associated with each section that needs to
be considered. This cost comes from setting up the mesh padding,
establishing the equations, spawning the parallel thread pool, and
other similar tasks. Even more importantly, it also needs to be as-
sured that each section overlaps its neighboring section by a fixed
amount, to retain the 2D information from the survey.
Analysis of our parallel algorithm has led to the identification of an

optimal section size. One that is defined by the initial computational
cost is the quadratic computational scaling with section size, as well as
the overlap size. To find this optimal section size, performance tests for
the RESOLVE system (shown in Table 1) were conducted. The experi-

Figure 3. The 1D and 2D forward responses and deviations, on a
100 Ωm half-space at an instrument altitude of 30 m, as a function
of frequency. (a) An example of a 1D and 2D forward response for
just a single sounding. (b) The relative deviations between a 2D and
a 1D forward response. The deviation is expressed as a range be-
cause the accuracy of the 2D responses varies between soundings
near the edge and near the center due to mesh variations. The 2D
responses are from a 300 m section with 30 equally spaced sound-
ings. Deviations at all frequencies and all positions are less
than 2%.
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ments were performed over a sweep of section sizes, and the results for
forward and derivative computations can be seen in Figure 4a.
As seen in Figure 4a, the computational times present a global

minimum, different for forward and derivative calculations. The rea-
son why the derivative calculation favors smaller section sizes over
the forward calculation is due to the heavier computational burden
associated with derivative calculations. This increased computational
burden makes the initialization cost less significant and thus naturally
shifts the optimal section size for derivative calculation toward
smaller sizes. With the results presented in Figure 4a, the optimal
section size as a function of the overlap is determined, as shown
in Figure 4b. The optimal section size is determined by using the
data in Figure 4a. By subtracting two times, the desired overlap from
the section sizes given in Figure 4a, and interpolating the remaining
positive core section sizes, an estimate of the computational time for a
given section size with a given overlap region can be determined (not
shown). To find the optimal section size, the section sizes that fall
within 5% of the fastest time for a given overlap are used and shown
in Figure 4b. Note that, once again, the optimal section sizes are dif-
ferent for forward and derivative calculations. One caveat to this is
that the results in Figure 4b change depending on the 2D finite-
element mesh density, which changes slightly between different sur-
veys and systems. Therefore, Figure 4b should not be considered the
absolute truth, but it should rather serve as a guide for picking a sen-
sible section size based on overlap size.

2D Jacobian and sensitivity analysis

As mentioned earlier, the structure of the 2D Jacobian is a dense ma-
trix. However, due to the decay in sensitivity as a function of distance, a
threshold can be defined, where anything that falls below this threshold
is assumed negligible. Thus, in practice, our Jacobian matrix can still be
considered sparse even in 2D, even though it has considerably wider
nonzero bands around the diagonal than in the 1D case. Our 2D Jacobian
matrix resulting from the inversion grid is shown in equations 29 and 30.
Where equation 29 shows our 2D Jacobian in block form, where each
column/row refers to a single sounding. Note that the 1D Jacobian struc-
ture is identical to the one for the 2D Jacobian, but in the 1D case, all the
off-diagonal blocks shown in equation 29 would be zero. Equation 30
shows the structure of a single Jacobian block element, which contains
several elements equal to the number of perturbable model parameters
for this particular model (altitude and resistivities) times the number of
data points for the corresponding sounding:

G ¼

0
BBBBBBBBBBBBB@

. .
. ..

. ..
. ..

. ..
. ..

. . ..

· · · ∂Di−2
∂Mi−2

∂Di−2
∂Mi−1

0 0 0 · · ·

· · · ∂Di−1
∂Mi−2

∂Di−1
∂Mi−1

∂Di−1
∂Mi

0 0 · · ·

· · · 0 ∂Di
∂Mi−1

∂Di
∂Mi

∂Di
∂Miþ1

0 · · ·

· · · 0 0
∂Diþ1

∂Mi

∂Diþ1

∂Miþ1

∂Diþ1

∂Miþ2
· · ·

· · · 0 0 0
∂Diþ2

∂Miþ1

∂Diþ2

∂Miþ2
· · ·

. .. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCA

:

(29)

This illustrates our 2D Jacobian in block-matrix form, where the number
of off-diagonal bands is equal to the number of surrounding soundings
above the sensitivity threshold (here, only the nearest neighbor is above

the threshold). Each entry in the Jacobian block matrix is a dense matrix
block, which is given as

∂Dj

∂Mk
¼

0
BBBBBBBBBB@

∂dj;1
∂mk;1

∂dj;1
∂mk;2

∂dj;1
∂mk;3

· · · ∂dj;1
∂mk;Nmk

∂dj;2
∂mk;1

∂dj;2
∂mk;2

∂dj;2
∂mk;3

· · · ∂dj;2
∂mk;Nmk

∂dj;3
∂mk;1

∂dj;3
∂mk;2

∂dj;3
∂mk;3

· · · ∂dj;3
∂mk;Nmk

· · · · · · · · · . .
.

· · ·
∂dj;Ndj

∂mk;1

∂dj;Ndj

∂mk;1

∂dj;Ndj

∂mk;1
· · ·

∂dj;Ndj

∂mk;Nmk

1
CCCCCCCCCCA
; (30)

Table 1. Acquisition parameters mimicking a RESOLVE
system used in our computational cost analysis simulation.
The flight altitude is 30 m, and the uncertainty on the data
is 5%.

Coil # Orientation Frequency (kHz) Separation (m)

1 Z 0.395 7.9

2 Z 1.822 7.9

3 X 5.4 9.06

4 Z 8.199 7.9

5 Z 38.76 7.9

6 Z 128.76 7.9

Figure 4. (a) Time required for an iteration of forward and deriva-
tive calculations for the RESOLVE system presented in Table 1 us-
ing a 10 m sounding separation, as a function of section size. For
small section sizes, the initialization cost becomes dominant and
visible as a sharp increase in iteration time per meter, whereas
for large section sizes, the quadratic scaling of the finite elements
becomes dominant, and it is visible as a linear rise in iteration time
per meter (it appears linear in the figure because time is normalized
with section size; hence, time is given in seconds per meter). The
range bars indicate the variability in computational time between
various repetitions, and indicate one standard deviation. (b) Optimal
section sizes as a function of the overlap, where the range bars re-
present section sizes that are within 5% of the optimal compute
time.
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where j and k represent the individual sounding indices, and Dj con-
tainsNdj forward responses associated with the jth sounding.WhileMk

contains Nmk model parameters associated with sounding k.
Accurately determining the resulting sensitivity range is impor-

tant, not just when building the Jacobian, but also when optimizing
section size. This is due to the obvious connection between the sen-
sitivity threshold distance and the required overlap distance be-
tween adjacent sections. To determine the sensitivity threshold,
we llow the convention of Liu and Becker (1990) and define a sig-
nificant sensitivity range as the distance at which 90% of the full
sensitivity is contained. Following this approach, a sensitivity
analysis was performed for the coils shown in Table 1, for altitudes
ranging between 20 and 50 m. Figure 5a demonstrates the cumu-
lated sensitivity as a function of distance for a 0.4 kHz signal origi-
nating at an altitude of 30 m, whereas Figure 5b and 5c shows the
correlation between depth and footprint size for a 0.4 kHz signal
and a 1.8 kHz signal. Based on the sensitivity analysis as well
as performance concerns, we decide to use an overlap of 150 m.

Although this is less than the footprint size for the real part of
the 0.4 kHz signal, more than 75% of the sensitivity for a
100 Ωm half-space is retained, and if considering total sensitivity
over all frequencies, then, the total loss of sensitivity is approxi-
mately 7%, which we deem an acceptable loss. Based on Figure 4b,
we use a section size of 750 m for forward calculations and 550 m
for derivative calculations.

1D/2D Hybrid inversion scheme

The conceptual idea behind the hybrid inversion scheme is to use
computationally inexpensive approximate forward and derivative
computations in the first inversion steps, where accuracy is of little
importance. As the iterations start to converge, one can then gradu-
ally switch to higher accuracy computations that are more expen-
sive. Within such a scheme, the overall computational time can be
greatly reduced without sacrificing the quality of the final model.
Such a scheme can be constructed in several ways: Christiansen
et al. (2015) create a hybrid scheme using increasingly accurate
1D modeling responses, and a similar approach could be envisioned
in 2D by using a coarse mesh in the early iterations and a more
refined mesh in the later stages, as is done by Haber et al.
(2007a). However, we believe that our hybrid scheme is computa-
tionally superior to such a scheme because 1D modeling is so com-
putationally inexpensive compared with 2D modeling, and the
number of full 2D iterations used in our scheme is quite low as will
be demonstrated later. Our hybrid scheme is a three-stage scheme
with

1) 1D forward and derivative calculations
2) 2D forward, 1D derivative calculations
3) 2D forward and 2D derivative calculations.

Each stage is executed with a fixed number of iterations. By run-
ning the hybrid scheme over a large number of synthetic models, we
have empirically found that the optimal number of iterations is four
in the first stage and eight in the second stage. The third stage runs
until the algorithm converges.
The inversion is said to have converged if the relative misfit

change is less than 1% between two iteration steps. If convergence
is reached in stage 1 or 2, then the inversion is advanced to the next
stage and the process continues.

RESULTS AND DISCUSSION

Synthetic model

The 2D hybrid inversion algorithm is demonstrated on two syn-
thetic models. A system resembling the RESOLVE system with the
parameters shown in Table 1 is modeled. In both examples, the in-
version is started from a 100 Ωm half-space with a model discre-
tization of 20 layers, where the thickness of each layer increases
logarithmically from 3 to 10 m. Horizontal smoothing constraints
are used with a covariance factor of 1.6 and vertical smoothing with
a factor of 3.0. There are 51 equidistant soundings distributed more
than a 500 m long line. All data have a uniform 5% uncertainty.
Figure 6 shows the results of an inversion of a conductive lens.

Figure 6a illustrates the true model, which consists of a 50 Ωm lens
in a 500 Ωm half-space, Figure 6b shows a 1D inversion, Figure 6c
shows a hybrid inversion, and Figure 6d shows a full 2D inversion.
The 1D inversion mostly manages to recover the conductive lens at

Figure 5. Sensitivity analysis for a frequency-domain system at an
altitude of 30 m. (a) Cumulated sensitivity as a function of distance
for a 0.4 kHz signal, on a 100 Ωm half-space at a depth of 50–60 m,
with the horizontal dashed line indicating the footprint size at a 90%
threshold. The two circles indicate the distances where the 0.4 kHz
signal reaches the threshold for the real and imaginary response. (b,
c) Correlation between footprint size and depth for a 0.4 kHz signal
and a 1.8 kHz signal, on a 30, 100, and 300 Ωm half-space. In (b),
the two circles from (a) are also plotted.
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the correct depth, but strong pant legs are produced. The 1D inver-
sion is shown with a 1D and 2D residual curve. Both residual curves
use the model arrived at through the 1D inversion, but the 1D
residual evaluates the 1D forward responses, whereas the 2D
residual is relative to 2D forward responses. Variations between
the two residuals can therefore be regarded as an indicator of areas
where 1D modeling is insufficient. The hybrid and the full 2D in-
version reproduce the lens as good as can be expected from an AEM
measurement, without any pant-legs effect and with a good deter-
mination of the lens boundaries and a misfit well less than 1, which
in our synthetic model without noise is a good thing. The speedup
gained by using the hybrid inversion was 2.7x compared with the
2D inversion, and it will be discussed in detail in the “Performance”
subsection.
Figure 7 shows the results of an inversion of a sharp horizontal

conductivity contrast. Figure 7a illustrates the true model, where the
left side is 10 Ωm and the right side is 200 Ωm; Figure 7b shows a
1D inversion; Figure 7c shows a hybrid inversion; and Figure 7d
shows a full 2D inversion. In this case, the 1D inversion creates
a rather wide region around the conductivity contrast where the con-
ductivities are smeared and there are clearly visible pant legs. Once
again, the 1D and 2D residuals are shown. The full 2D inversion
demonstrates a better determination of the vertical boundary, and
although smearing is still observed, the affected region is signifi-
cantly smaller. The hybrid model again converges to a model that
is significantly better than the 1D model, as noticed by the size of
the smearing region as well as the residual, which is only slightly
higher than for the 2D inversions. The differences between the 2D
and the hybrid model are likely a result of the 1D
model doing a poor job of accurately modeling
the sharp conductivity contrast, combined with
model equivalences, as evidenced the similarity
of the hybrid/2D residual. The speedup gained
by using the hybrid inversion was 6.6x compared
with the 2D inversion, and will be discussed in
detail in the “Performance” subsection.

Field example

As a final test, the 2D algorithm is used on a
field example collected by a RESOLVE system
owned by the German Bundesanstalt für Geowis-
senschaften und Rohstoffe (BGR). The field data
were collected on a small island named Lan-
geoog, where the target is a mapping of the fresh-
water/saltwater boundary (Siemon et al., 2015).
Langeoog comprises three geologic features: The
base is formed from glaciofluvial sediments from
the Pleistocene age. These sediments contain
Lauenburg clay, which lies at a depth of 15–
35 m below sea level, with a typical thickness
of a few meters. Overlaying the Pleistocene layer
is a Holocene marine deposit consisting of pri-
marily silt, which lies at 10–20 m depth below
sea level. The top layer consists of dunes and
beach sand. For more information about the geol-
ogy of Langeoog, see Costabel et al. (2017).
The field data profile is 1400 m long and con-

sists of 144 soundings. Inversion results are
shown in Figure 8. Figure 9a shows a 1D inver-

sion, Figure 9b shows a hybrid inversion, and Figure 9c shows a 2D
inversion. Overall, the three different inversions show very consis-
tent results, although there are notable differences in the top layers
of the soundings at a distance of approximately 1 km. Although the
models deviate in this area, the data residuals for the 2D and hybrid
code are only negligibly lower than for the 1D inversion. Upon a
closer look at the fit of each individual transmitter frequency, it is
revealed that there is excellent correspondence between the mea-
sured data and the modeled response for all coils except coil 3. Coil
3 is off by several standard deviations in the high residual area at a
distance of 1 km. Figure 9 shows an example of this for sounding
112, which is marked in Figure 8 by a vertical red line. The speedup
gained by using the hybrid inversion was 6x compared with the 2D
inversion, and this will be discussed in detail in the “Performance”
subsection.

Parallelization and scalability

Since the introduction of commodity multicore CPUs in 2005,
parallelization has become increasingly important. Although com-
putational speed continues to grow exponentially, it has become a
nontrivial issue to fully harness this power. Algorithms often have to
be specifically tailored to enable optimal parallelization, and with
the shift away from uniform memory access (UMA) systems and
toward nonuniform memory access (NUMA) system architecture,
this becomes an even harder problem. The architectures are illus-
trated in Figure 10. The consequences of having a NUMA system
are that data placement becomes paramount. If data are not placed in

Figure 6. Inversion results for a synthetic conductive lens. (a) True model, which con-
sists of a 50 Ωm lens in a 500 Ωm half-space. (b) 1D inversion, where the blue line is the
1D data residual and the red line is the 2D data residual. (c) Hybrid inversion, where the
number of iterations are given in each hybrid stage separately. (d) 2D inversion. For all
inversions, the number of iterations until convergence is written inside the residual box.
Note that the data residuals are normalized by the standard deviation.
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the local memory associated with the processor
working on it, it will need to be accessed over the
interconnect by the processor. Not only does this
add significant latency, but the interconnect also
has limited bandwidth and becomes saturated
much before the direct channels to local memory.
For this reason, good scaling on the NUMA sys-
tem is harder to achieve in general than on UMA
systems, and if it is not done carefully, it can ac-
tually lead to decreased performance, unlike for
UMA systems (Dong et al., 2010).
The 2D FEM problem can be parallelized in

several ways, but to get the best possible scalabil-
ity for large surveys, we chose to put our paral-
lelization across the sections. In other words,
multiple sections are computed in parallel. This
requires more memory than putting the paralle-
lization over the wavenumbers; however, with
the sectioning used, the memory requirement
during the 2D modeling is less than the 1 GB
per thread used (not shown), and thus the total
memory requirement is inconsequential on
modern hardware. Although parallelization over
the sections requires more memory than other ap-
proaches, it also gives the best scalability for
large surveys because there is practically no in-
tercommunication between the different threads.
Section parallelization provides good large-scale
scaling, but it does not provide much benefit for
small-scale problems. To remedy this, an addi-
tional parallelization over the frequencies of each
section was implemented using OpenMP’s col-
lapse directive. By parallelizing over the section-
ing and frequency, good scaling can be achieved
for surveys of all sizes. Figure 11 shows the par-
allel scalability of the code. It can be seen that the
scaling is almost linear for low numbers of
threads, whereas linear scalability is lost for
higher numbers of threads due to memory band-
width limitations.
Another key concept when doing paralleliza-

tion is affinity. That is how the parallel threads
are bound to the various cores in the system.
If thread affinity is not used, it can severely affect
performance, especially on NUMA systems.
Without affinity, the calculations of a thread
are never confined to a single core, but they
are rather executed in small portions executed
on random cores of the system. This can have
dramatic consequences because memory locality
cannot be assured and data kept in cache are con-
stantly lost. Figure 11 demonstrates two different
affinity schemes that are commonly used: com-
pact affinity and scattered affinity. When using
compact affinity, thread spawning tends to clus-
ter together on a NUMA node until all processors
on the NUMA are engaged, whereas scattered
affinity tends to spread out the thread spawning
across all NUMA nodes. The two different

Figure 7. Inversion results for a horizontal conductivity contrast. (a) The true model:
The left side has a resistivity of 10 Ωm, whereas the right side has a resistivity of
200 Ωm. (b) The result from a 1D inversion, where the blue line is the 1D data residual,
and the red line is the 2D data residual. (c) The result from a hybrid inversion. (d) The
result from a 2D inversion. The number of iterations until convergence is written inside
the residual box. Note that the data residuals are normalized by the standard deviation.

Figure 8. Inversion results from a survey in northern Germany (Siemon et al., 2015).
(a) A 1D inversion, where the blue line is the 1D data residual and the red line is the 2D
data residual. (b) A hybrid inversion, where the number of iterations are provided for
each separate stage. (c) A 2D inversion. The number of iterations until convergence is
written inside the residual box. The vertical red line at the top of the figures approx-
imately 1.1 km is sounding 112, which is shown in Figure 9. Note that the data residuals
are normalized by the standard deviation.
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affinity modes can have significantly different performance depend-
ing on the problem to which they are used. Because of the low level
of intercommunication between the parallel threads, a practically
identical scaling for the two affinities can be seen in Figure 11.
As a final comment to scaling, it should be mentioned that due to

the way we do sectioning and inversion, our code has linear scaling
in compute time as a function of survey size (not shown here).

Performance

Our 2D code is capable of inverting surveys of virtually any size,
due to the scalability introduced by sectioning. Thus far, the
code has been successfully tested on a 100 line km survey with
10,000 soundings. For such a survey, the code performs a full
2D forward and derivative calculation in approximately 5 h on a
NUMA system with two Intel Xeon E5-2650 v3 CPUs, each with
10 cores.
The total inversion time for the 100 line km survey can be seen in

Table 2. The hybrid and 2D inversion reach comparable misfits, but
the hybrid scheme does so 2.3 times faster than the 2D inversion.

Although the performance numbers presented are representative, it
should be mentioned that the number of iterations needed to reach
convergence can vary quite heavily between different surveys. Ob-
viously, this also makes inversion times vary quite heavily. Roughly
speaking, a pure 2D inversion can usually be done in approximately
10−20 iterations, whereas a hybrid inversion requires 14–20 itera-
tions. Note that the number of iterations and hence inversion time
depend heavily on the stopping criteria, which we have chosen to be
a relative misfit change of less than 1%.
In the examples shown previously, the speedup gained from

using the hybrid scheme was 2.7x for the synthetic conductive lens,
6.6x for the horizontal conductivity contrast, 6x for the small field
example, and 2.3x for a 100 line km. These are all very significant
speedups, and they are generally generated without notably wors-
ening the resulting model. The reason why the speedups vary
largely depends on the number of iterations spent in stage 3 of
the hybrid scheme: If only a few iterations are spent, then the
speedup is high in general, whereas if more than a few iterations are
spent in stage 3, the speedup will generally be in the low end.

Figure 9. Example of a 2D sounding curve for the inversion results
shown in Figure 8c. The sounding curve is marked in Figure 8 by a
vertical red line at the top of the figures, approximately 1.1 km dis-
tance. The coil # configuration can be found in Table 1.

Figure 10. UMA and NUMA system architectures. P represents
physical cores, whereas M represents memory. (a) An UMA sys-
tem; here, there is only one memory bank, and all the cores have
the same bandwidth connection to the memory. (b) A two-node
NUMA system, which essentially consists of two connected UMA
systems. Thus, each NUMA node has several cores attached to a
memory bank, and the different memory banks are then connected
together by a relatively small bandwidth.

Figure 11. Parallel scaling of the code. The data are generated on a
NUMA system with two Intel Xeon E5-2650 v3 CPUs, each with
10 cores. The threads are bound to specific logical processors, fol-
lowing either a compact affinity approach or a scattering affinity
approach.

Table 2. Runtime and iteration number for an inversion of a
100 line km survey conducted with the RESOLVE system.
For the hybrid system, the iteration numbers and runtimes
are given for each of the three stages.

100 line km

Iterations Runtime (h)

1D 15 0.1 h

Hybrid 4 + 8 + 5 36 s + 4.9 h + 26.0 h = 31 h

2D 15 71 h
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CONCLUSION

We have presented an algorithm for hybrid 2D frequency domain
forward modeling and inversions. The 2D forward and derivative cal-
culations are done on a triangular finite-element mesh using section-
ing, whereas inversions are done on a regular grid. The finite-element
mesh is created with the inversion grid as the foundation, which
makes interpolation between the meshes significantly easier. By us-
ing sectioning and a regular grid for inversion, the code is able to
handle large-scale inversions, which are otherwise often problematic
for higher dimensional inversion codes. We have demonstrated how
section sizes should be chosen to optimize computational times, and
we have shown how forward and derivative calculations are optimally
performed using different section sizes. Our parallelization goal was
to achieve maximum speed; hence, the code is parallelized over the
frequencies and the sections. This gives the code high efficiency for
large and small surveys, as well as excellent scaling properties even
on nonuniform memory architectures. Although the focus was on
computational speed, the memory consumption is less than 1 GB per
thread, and thus memory consumption for this algorithm was deemed
inconsequential. Furthermore, we presented a hybrid 1D/2D scheme,
which boosts the computational speed of 2D inversions by approx-
imately 2 − 6x, without significantly reducing the accuracy. The con-
cept of combining lower and higher dimensional algorithms in a
hybrid scheme to significantly increase computational speed is a
largely unused optimization within the scientific community. We
have demonstrated our algorithm with two successful synthetic ex-
amples and a field example.
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APPENDIX A

DERIVING THE SYSTEM OF LINEAR EQUATIONS

To recast the governing equations 15 and 16 into a system of
linear equations, the finite-element method is used. In this regard,
we substitute ~Esy and ~Hsy by interpolated fields combined with sec-
ond-order shape functions:

~Esyðx; zÞ ¼
Xn
i¼1

Niðx; zÞ ~Esy;i;

~Hsyðx; zÞ ¼
Xn
i¼1

Niðx; zÞ ~Hsy;i;

(A-1)

where n is the number of nodes attached to one element. Replacing
~Esy and ~Hsy in this way leads to an approximation of the Maxwell
equations, which bear a residual. We use the weighted residual pro-
cedure to minimize the residual averaged over the area of each grid
cell. Because our procedure applies to equations 15 and 16 in the
same way, we will only focus on equation 15. The weighting func-
tion for the residual is the same as the interpolation function, i.e.,
Niðx; zÞ, and integration of both sides of the equation and applying
the rule for integration by parts combined with Gauss’ theorem
leads us to

−iωεy
Z
Ω
NTNdΩ ~Esyþ

iωεx
czx

�I
Γ
NT∂N

∂x
dΓþ

Z
Ω

∂N
∂x

T∂N
∂x

dΩ
�
~Esy

þiω
εz
cxz

�I
Γ
NT∂N

∂z
dΓþ

Z
Ω

∂N
∂z

T∂N
∂z

dΩ
�
~Esy

−
iky
czx

�I
Γ
NT∂N

∂x
dΓþ

Z
Ω

∂N
∂x

T∂N
∂z

dΩ
�
~Hsy

þiky
cxz

�I
Γ
NT∂N

∂x
dΓþ

Z
Ω

∂N
∂z

T∂N
∂x

dΩ
�
~Hsy

¼−ðiωεpy−iωεyÞ
Z
Ω
NTNdΩ ~Epy

þ
�
iωεpx
cpzx

−
iωεx
czx

��I
Γ
NT∂N

∂x
dΓþ

Z
Ω

∂N
∂x

T∂N
∂x

dΩ
�
~Epy

þ
�
iωεpz
cpxz

−
iωεz
cxz

��I
Γ
NT∂N

∂z
dΓþ

Z
Ω

∂N
∂z

T∂N
∂z

dΩ
�
~Epy

−
�
iky
cpzx

−
iky
czx

��I
Γ
NT∂N

∂x
dΓþ

Z
Ω

∂N
∂x

T∂N
∂z

dΩ
�
~Hpy

þ
�
iky
cpxz

−
iky
cxz

��I
Γ
NT∂N

∂x
dΓþ

Z
Ω

∂N
∂z

T∂N
∂x

dΩ
�
~Hpy; (A-2)

where Ω is the area of the respective element and Γ is the element’s
boundary. Within the model domain, the integrals of connected el-
ements cancel each other out, and at the model-domain boundary,
we assume Dirichlet boundary conditions, i.e., ~Esy ¼ ~Hsy ¼ 0;
hence, the boundary integrals can be ignored. This finally results
in the following system of linear equations:

− iωεy

Z
Ω
NTNdΩ ~Esy þ

iωεx
czx

Z
Ω

∂N
∂x

T ∂N
∂x

dΩ ~Esy

þ iωεz

Z
Ω

∂N
∂z

T ∂N
∂z

dΩ ~Esy −
iky
czx

Z
Ω

∂N
∂x

T ∂N
∂z

dΩ ~Hsy

þ iky
cxz

Z
Ω

∂N
∂z

T ∂N
∂x

dΩ ~Hsy

¼ −ðiωεpy − iωεyÞ
Z
Ω
NTNdΩ ~Epy

þ
�
iωεpx
cpzx

−
iωεx
czx

�Z
Ω

∂N
∂x

T ∂N
∂x

dΩ ~Epy

þ
�
iωεpz
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−
iωεz
cxz

�Z
Ω

∂N
∂z

T ∂N
∂z
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−
�
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−
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�Z
Ω
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T ∂N
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þ
�
iky
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−
iky
cxz

�Z
Ω

∂N
∂z

T ∂N
∂x

dΩ ~Hpy: (A-3)

By creating and combining this system of equations and its
counterpart resulting from equation 16, the desired linear system
of equations is found:

A~x ¼ b; (A-4)
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where A is the global symmetric stiffness matrix, ~x contains the
Fourier transformed EM fields, and b contains the source terms.
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