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Abstract. Nitrate contamination of subsurface aquifers is an
ongoing environmental challenge due to nitrogen (N) leach-
ing from intensive N fertilization and management on agri-
cultural fields. The distribution and fate of nitrate in aquifers
are primarily governed by geological, hydrological and geo-
chemical conditions of the subsurface. Therefore, we pro-
pose a novel approach to modeling both geology and redox
architectures simultaneously in high-resolution 3D (25m x
25m x 2m) using multiple-point geostatistical (MPS) simu-
lation. Data consist of (1) mainly resistivities of the subsur-
face mapped with towed transient electromagnetic measure-
ments (tTEM), (2) lithologies from borehole observations,
(3) redox conditions from colors reported in borehole ob-
servations, and (4) chemistry analyses from water samples.
Based on the collected data and supplementary surface ge-
ology maps and digital elevation models, the simulation do-
main was subdivided into geological elements with similar
geological traits and depositional histories. The conceptual
understandings of the geological and redox architectures of
the study system were introduced to the simulation as train-
ing images for each geological element. On the basis of these
training images and conditioning data, independent realiza-
tions were jointly simulated of geology and redox inside each
geological element and stitched together into a larger model.
The joint simulation of geological and redox architectures,
which is one of the strengths of MPS compared to other geo-
statistical methods, ensures that the two architectures in gen-
eral show coherent patterns. Despite the inherent subjectiv-
ity of interpretations of the training images and geological
element boundaries, they enable an easy and intuitive incor-
poration of qualitative knowledge of geology and geochem-

istry in quantitative simulations of the subsurface architec-
tures. Altogether, we conclude that our approach effectively
simulates the consistent geological and redox architectures
of the subsurface that can be used for hydrological model-
ing with nitrogen (N) transport, which may lead to a better
understanding of N fate in the subsurface and to future more
targeted regulation of agriculture.

1 Introduction

The loss of reactive nitrogen (N) from agricultural soils re-
sults in adverse environmental and human health impacts
(Schullehner et al., 2018; Temkin et al., 2019), including
eutrophication of freshwater and marine ecosystems and
nitrate contamination of groundwater and drinking water
(Schullehner and Hansen, 2014). In Denmark, since the
1980s N regulations of intensive agriculture at national or
regional scales have succeeded in lowering the N impact on
the aquatic environment (Dalgaard et al., 2014; Hansen et al.,
2017). However, further actions are still required to improve
the state of the aquatic ecosystems to meet the requirements
of, e.g., the EU Water Framework Directive (European Com-
mission, 2018; Hansen et al., 2019; Kallis and Butler, 2001).
Moreover, this must be achieved in a cost-effective manner
for society and the agricultural industry. This creates a de-
mand for new knowledge and new solutions for more effi-
cient future N regulation of the agricultural sector both in
Denmark and in other countries with intensive agriculture.
The proposed direction is to introduce more targeted N regu-
lation depending on the site-specific conditions at field level.
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The targeted N regulations require detailed knowledge of the
subsurface hydrogeological and biogeochemical conditions
because nitrate, which is the dominant form of N in aquatic
environments, is transported predominantly with water flow
and undergoes reduction in reducing zones of the subsurface.
Thus, it has now become increasingly important to have de-
tailed knowledge of the subsurface geology and redox archi-
tectures.

In a simple case with only vertical infiltration, nitrate con-
centrations in aquifers decrease with an increasing depth
along three sequential redox zones (Kim et al., 2019; Wil-
son et al., 2018).

1. Oxic zone: nitrate concentrations are equal to the leach-
ing from the soil because of the oxic conditions prevent-
ing reduction.

2. N-reducing zone: nitrate decreases with increasing
depth due to ongoing reduction of nitrate.

3. Reduced zone: nitrate-free zone due to complete re-
duced redox conditions

The redox conditions of the subsurface have been widely
investigated using various approaches focusing on different
redox-sensitive chemical compounds in groundwater such as
nitrate, iron, sulfate, arsenic, uranium, and some organic con-
taminants. Modeling approaches have included (1) process-
based approaches (e.g., Abbaspour et al., 2007; A. L. Hansen
etal., 2014; B. Hansen, 2016; Lee et al., 2008), (2) geostatis-
tical methods (e.g., kriging; Ernstsen et al., 2008; Goovaerts
etal., 2005; Lin, 2008) and (3) machine learning (Close et al.,
2016; Koch et al., 2019; Nolan et al., 2015; Ransom et al.,
2017; Rosecrans et al., 2017; Tesoriero et al., 2015; Wil-
son et al., 2018). However, many of these approaches require
large sets of data of especially groundwater chemistry, and it
is costly and time-consuming to collect sufficient volumes of
data. Furthermore, ancillary data to spatially extrapolate the
water chemistry, for instance soil types, topography, land use,
and surface slopes, only provide information about the near-
surface conditions (i.e., topsoil layer); therefore, predicting
the redox conditions below the topsoil layer using these data
may be inadequate. Particularly under geologically heteroge-
neous settings such as glacial terrain, the redox architecture
can be complex (e.g., Hansen et al., 2021; Kim et al., 2019),
with many shifts in redox state with depth at the same lo-
cation. Upscaling of the point-scale measurements of redox
conditions into the 3D space would benefit from more de-
tailed spatial information of the subsurface geological archi-
tecture.

In Denmark, the uppermost 100 to 200 m of the subsur-
face generally consist of unconsolidated sediments reworked
or deposited by glacial processes, making the subsurface
architecture complex (Hgyer et al., 2015; Jgrgensen et al.,
2015). Through the National Groundwater Mapping Pro-
gram, Denmark is extensively covered with airborne electro-
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magnetic measurements (AEM) (Mgller et al., 2009; Thom-
sen et al., 2004), and together with borehole data, 3D geo-
logical mapping of Denmark has predominantly been carried
out as cognitive modeling (see, e.g., Hgyer et al., 2015). In
cognitive modeling, an experienced geologist combines all
available subsurface data (e.g., boreholes, electromagnetic
data, and seismic data) with preexisting geological back-
ground knowledge and performs interpretations through ei-
ther manual (e.g., Jgrgensen et al., 2013) or semi-automatic
approaches (e.g., Gulbrandsen et al., 2017; Jgrgensen et al.,
2015). Complex geological settings, however, pose a chal-
lenge for 3D modeling, and interpretations between geologi-
cal point data may lead to large uncertainties (Wellmann and
Caumon, 2018).

The subsurface information itself contains uncertainties
from sources that include measurement errors (Malinverno
and Briggs, 2004), errors from using approximate physics
(T. M. Hansen et al., 2014; Madsen and Hansen, 2018),
bias from interpolation methods (Wellmann and Caumon,
2018), and processing errors when handling geophysical data
(Claerbout and Abma, 1992; Madsen et al., 2018; Viezzoli
et al., 2013). Even geological knowledge cannot be con-
sidered uncertainty free (Bond, 2015; Lindsay et al., 2012;
Sandersen, 2008; Wellmann et al., 2018; Wilson et al., 2019)
and may rely on the training and experience of the interpreter
(Alcalde et al., 2017). These subjective biases are seen by
some as one of the weak points of cognitive geological mod-
eling (Bond, 2015; Wycisk et al., 2009) but are also argued
to not imply a lack of scientific rigor (Curtis, 2012). It is
difficult to fully incorporate the various uncertainties related
to the subsurface information into cognitive modeling and
even more difficult to propagate these uncertainties through
to subsequent analysis such as hydrological modeling.

In recent years, some studies have adopted geostatistical
simulation methods for geological mapping of the substra-
tum in order to quantify and possibly account for some of
these uncertainties. A few examples exist of multiple-point
geostatistical (MPS) simulation utilized for mapping 3D ge-
ology with AEM data (Barfod et al., 2018; X. L. He et al.,
2014; Hgyer et al., 2017; Jgrgensen et al., 2015; Vilhelm-
sen et al., 2019). However, AEM data provide structural in-
formation on the deeper subsurface (100200 m) at a coarser
resolution (Sgrensen and Auken, 2004) and hence may not be
adequate for providing structural information for simulations
of N transport at catchment level occurring mainly within the
upper 30 m. A newly developed towed transient electromag-
netic method (tTEM) (Auken et al., 2019) provides data at
much higher resolution but with a lower penetration depth
than AEM. tTEM is, therefore, ideal for high-resolution map-
ping when focusing on the uppermost 50 to 70 m of the sub-
surface. None of the previous studies has investigated the
geological and redox architecture simultaneously, although
these two are related and sometimes coevolved (Grenthe et
al., 1992; B. Hansen et al., 2016; Wilkin et al., 1996; Yan
et al., 2016).
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The development of redox zones in the subsurface is de-
pendent on several factors, including (1) infiltration of atmo-
spheric oxygen in geologic time; (2) anthropogenic leaching
of nitrate; (3) the amount and reactivity of geogenic-reducing
minerals such as pyrite or organic matter; and (4) the hy-
drogeological flow conditions. We propose a novel way to
combine the available information on hydrogeology and re-
dox conditions (boreholes, electromagnetic data, geological
maps and digital elevation maps) by estimating a quantified
uncertainty at unsampled locations in modeling using geo-
statistical simulation. We specifically use MPS to describe
the spatial uncertainty in our models through a series of real-
izations of the subsurface that describe a quantified posterior
distribution (Mariethoz and Caers, 2015). Using a bivariate
training image (TI) of both geology and redox, we jointly
simulate both redox and geology to ensure these will be con-
sistent in the realizations. T1s are created using expert knowl-
edge combined with the available data to directly incorporate
prior expert geological information. In addition to our pro-
posed efforts to combine redox and geology modeling, we
have also utilized data and geological knowledge to subdi-
vide the simulation volume into smaller volumes based on
different geological characteristics and the depositional en-
vironment. We refer to such smaller volumes as “geological
elements” (e.g., He et al., 2015; Hgyer et al., 2015). Individ-
ual TIs are created with cognitive voxel modeling for each
geological element such that they can be simulated indepen-
dently and subsequently stitched together. Geological inter-
pretation of the depositional environment and the age of the
sediments will help create an event chronology that supports
the independence of the individual geological elements.

The aim of this paper is to demonstrate and review the
proposed methodology of jointly simulating and determin-
ing the distribution of redox and geology using MPS. This
is, to our knowledge, the first study of simultaneous mod-
eling of geology and redox architectures in a geostatistical
high-resolution 3D model. The novelty of this paper is hence
the presentation of the complete practical framework and
steps needed to apply MPS for redox and geology model-
ing. These steps include quantifying spatial variability in TIs,
quantifying conditional information and accounting for ma-
jor geological depositional events via geological elements.
This may be fundamental to better understanding N retention
within the subsurface and important for future more targeted
N regulation and management of agriculture for protection
of vulnerable surface waters and groundwater, thus provid-
ing stakeholders with a powerful tool based on integrated ex-
pert knowledge and quantified estimates of structural uncer-
tainty through probabilistic predictions of the complex inter-
play between redox and geological architecture.
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2 The study area

The study area is a small Danish agricultural first-order hy-
drological catchment to Horndrup Bek called LOOP3 with
an area of approximately 550 ha. The area is located at the
Jutland peninsula in Denmark, with a coastal temperate cli-
mate (Fig. 1). The dominant soil types are classified as sand—
mixed clay (70 %) and clay sand (24 %). Forest accounts for
18 % of the catchment area, the rest being used for agricul-
tural purposes except for a limited area taken up by buildings
and roads. The catchment has been part of the Danish Na-
tional Environmental Monitoring Program since 1989 aiming
at evaluating the effect of the Danish N regulation of agricul-
ture on the aquatic environment (Hansen et al., 2019). During
the last almost 30 years, the N concentrations in soil water,
drainage, shallow groundwater and streams have been mea-
sured regularly at several stations in the agricultural fields
(Blicher-Mathiesen et al., 2019). Therefore, the site is ideal
for testing new subsurface mapping techniques of geological
and redox architectures.

The study area is located in a hilly glaciated landscape in
the eastern part of Jutland just east of the highest point in
Denmark (Fig. 1). The highest elevations reach 170 m above
sea level (ma.s.l.) in the southwestern part and slope down
to around 40 ma.s.l. in the northeast (Fig. 1a). To the north
of the study area, a system of open tunnel valleys forms a
low-lying area with several lakes. The catchment is domi-
nated by glacial till deposits from the latest glaciation, and
the orientation of the hills generally shows former ice push
directions from the northeast. In the lowest parts of the ter-
rain, occurrences of meltwater sand are also found. Occur-
rences of postglacial freshwater deposits can be found lo-
cally in smaller topographical lows (Jakobsen and Tougaard,
2020). Several buried valleys have been mapped outside the
study area (Sandersen and Jgrgensen, 2016; Buried Valleys,
2020; Sandersen et al. 2009; Fig. 1). The buried valleys were
formed as elongated tunnel valleys underneath the ice sheets:
they are generally between 1 and 2km wide, and some of
them have depths of more than 100 m (Jgrgensen and Sander-
sen, 2006; Sandersen and Jgrgensen, 2017). These valleys are
generally filled with younger Quaternary sediments. In this
region, the valleys mostly have two preferred orientations,
one around WNW-ESE/NW-SE and the other around SW-
NE/WSW-ENE (Fig. 1), with the first mentioned clearly vis-
ible in the present-day topography.

3 Materials

Some data are specifically gathered for this study (tTEM
and new boreholes; see Fig. 1), while other existing data
are freely available through the Danish borehole database
“Jupiter” (Hansen and Pjetursson, 2011) and the Danish geo-
physical database for onshore data “GERDA” (Mgller et al.,
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unmapped

——— Buried valley

Elevation (m) (a) Structural data
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(c) Surface geology

— SkyTEM | Postglacial sand

— {TEM Postglacial clay

— Surface ERT mm Postglacial gytta

o Boreholes mm Postglacial peat
—  Tlarea 1 Meltwater sand (Young)

i B Glaciolacustrine clay
(b) Geochemical data mm Meltwater gravel

e Water chemistry (Existing) == Meltwater sand (OId)
Sediment color (Existing) Meltwater clay

y Water and sediment Il Gravelly till
(this study) B Sandy till
Buried valley I Clayey till mm Lake

Figure 1. The study area and available data, where (a) displays a digital terrain model, geophysical data and outlined TI areas, (b) an
orthophoto (from Geodatastyrelsen, ortophoto forar, WMS Service, March 2021) and geochemical data, and (c) a surface geology map (1 m
below surface, Jakobsen and Tougaard, 2020). Insets with a map of Denmark and regional view of the study site with mapped buried valleys

(Buried Valleys, 2020).

2009). All available data are shown in Fig. 1 along with the
terrain and outline of the study area.

3.1 Geological and topographical data

The digital elevation map presented in Fig. la is available
from Styrelsen for Dataforsyning og Effektivisering (2016).
The elevation map is resampled on a 25m x 25m grid such
that adjustment with interpreted surfaces is seamless. The ge-
ological surface map (Fig. 1c) of the surficial cover of Den-
mark is compiled from small pristine sediment samples col-
lected at ca. 1 m depth using a so-called spear auger. The
mapping geologists interpret the origin and type of the sed-
iment in the field and classify a sediment type following
the current terminology described by Jakobsen and Tougaard
(2020). Samples are taken with a distance of 100-200 m to
map the transitions between the different sediment types. Af-
terwards the surface geology symbols are transferred to a
master map, contoured and color-coded, resulting in a ge-
ological map sheet on a scale of 1: 25000 with a resolution
of £100 m (Fig. 1c, GEUS, 2020).

Borehole lithological information (Fig. 1a) is gathered
from the Jupiter database to which lithological sample de-

Hydrol. Earth Syst. Sci., 25, 2759-2787, 2021

scriptions have been reported since 1912. The borehole litho-
logical samples are described and interpreted by geologists
following standards outlined by Gravesen and Fredericia
(1984), including interpretation of depositional environment
and chronostratigraphy and thereby resulting in sediment
types similar to those used in the geological mapping.

In our study site, a total of 18 specific sediment types are
found in borehole descriptions and on the geological sur-
face map combined. To lower the number of variables in
the geostatistical modeling and potentially later on in hy-
drological simulations, the sediment types are grouped into
five categories focusing on their hydrological properties and
depositional environment (Table 1). For instance, the two
till groups have vastly different hydrological properties be-
cause of the overall grain size difference between clay tills
and sand/gravelly tills. The partly organic postglacial sedi-
ments may show variable hydrological properties. However,
they are hugely important in terms of redox potential because
of organic content; therefore, they are categorized into one

group.
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Table 1. Lithology groups in the study area used in the geostatisti-
cal simulation. The sediment-type abbreviations in the right column
represent the Danish sediment characterization standards.

Lithology groups — study area

no. Group name Sediment type

1 Clay till ML, (L)

2 Meltwater sand/gravel DS, DS-DG, DG, G, S, TS, (O)
3 Meltwater clay/silt DL, DI, DV, (FL)

4 Sandy till MS, MG

5 Postglacial (partly org.)  FP, FT, FS

3.2 Geophysical data

The tTEM (ground-based) and SkyTEM (airborne) are tran-
sient electromagnetic systems used for mapping subsur-
face resistivity variations (Auken et al., 2019; Auken and
Sgrensen, 2004). The SkyTEM system carries the instru-
ment, transmitter loop and receiver coil in a sling load un-
der a helicopter and is designed to map resistivity to several
hundred meters in depth. The tTEM system applies the tran-
sient electromagnetic method in an offset-loop configuration
which for the present study is configured using a 2m by 4 m
transmitter loop and a receiver coil at a distance of 9 m, towed
by an all-terrain vehicle (Auken et al., 2019). The tTEM sys-
tem is designed to resolve resistivity from 2-3 m depth to
ca. 70 m depth. Processing and inversion of tTEM data fol-
low in general the scheme for SkyTEM, described by Auken
et al. (2009). The inversion of the data is based on local 1D
forward responses and spatial constraints between the model
parameter forming a pseudo 3D model space (Auken et al.,
2015; Viezzoli et al., 2008).

The tTEM dataset was collected in 2018. Although the
coverage is rather patchy (< 50% of the model area in
Fig. 1a), it provides valuable information on the geological
setting. The final tTEM information used in the geostatistical
modeling is the pseudo 3D model space moved to the closest
grid node. Together with borehole lithological logs, tTEM
represents the basis for modeling the geology. A few deep
boreholes are used for the correlation between resistivities
and lithologies.

Although located outside the study area, the SkyTEM data
(Fig. 1a) add valuable information on the geological connec-
tions to neighboring areas. A small survey of surface elec-
trical resistivity tomography (ERT) (e.g., Loke et al., 2013)
gathered from the GERDA database supplements the tTEM
survey in the northern part of the study area.

3.3 Geochemical data
Redox conditions can be defined both by sediment colors and
concentrations of redox-sensitive elements such as dissolved

oxygen, nitrate, iron, and sulfate in water (Ernstsen and von
Platen, 2014; B. Hansen et al., 2016, 2021; Kim et al.,
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2019) and the sediment fraction of ferrous iron (Fe}:IA) of
the formic-acid-extractable Fe (FegA + Fe{%) (Hansen et al.,
2021). In this study, the sediment color was the primary indi-
cator for defining redox conditions, and the water chemistry
was used to supplement the sediment color interpretations.
The sediment colors may be the result of the cumulative ef-
fects of the redox structure evolution since the deglaciation,
while the water chemistry may display a snapshot of the
short-term redox chemistry, which may be temporally vari-
able. Therefore, we postulate that the redox conditions inter-
preted from the sediment colors may be more coherent with
the geological structure than that of the water chemistry. In
addition, the sediment colors provide 1D profile information
of the redox conditions, and more data points are available
compared to water chemistry which provide point-scale in-
formation. The sediment color and water chemistry data were
extracted from the Jupiter database and the nine new bore-
holes that were drilled in this study (Fig. 1b).

Based on the sediment colors, oxic conditions are defined
by red, orange, yellow and combinations of these colors.
Gray, olive and blue colors represent reduced conditions.
Mixed colors between oxic and reduced colors (e.g., yellow-
ish gray) are defined as N-reducing conditions. Within the
catchment boundary, the sediment color data were available
at 14 boreholes in the Jupiter database and for the 9 new bore-
holes. Based on water chemistry, oxic is defined by dissolved
oxygen greater than 1 mgL~!, N-reducing is dissolved oxy-
gen less than 1 mgL~! and nitrate greater than 1 mgL~!,
and both dissolved oxygen and nitrate below 1 mgL~! and
iron greater than 0.2mgL~! are reduced (Hansen et al.,
2021). Based on sediment chemistry, the fraction of FeIFIA
over FegA + Fegé is close to O in oxic conditions and close
to 1 fraction in reduced conditions (Hansen et al., 2021). The
values in between are interpreted as N-reducing conditions
(Hansen et al., 2021). The water and sediment chemistry data
were available at 22 and 9 locations, respectively (13 in the
Jupiter database and 9 in this study; see Fig. 1b).

4 Methods
4.1 MPS modeling

In this paper, we adopt a MPS simulation approach for quan-
tifying the spatial uncertainty of the subsurface. Geostatisti-
cal simulation generally provides a way of quantifying the
spatial uncertainty through different possible realizations of
the subsurface architecture. These realizations are generated
using stochastic modeling that accounts for the spatial depen-
dency between the model parameters. We choose MPS simu-
lation over, e.g., a two-point geostatistical approach because
it is generally more capable of producing realizations with
geological realism in terms of correlation and coherency of
geological features (Journel and Zhang, 2006; Madsen et al.,
2021; Mariethoz and Caers, 2015). Effectively reproducing
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coherent layers is key for successful subsequent hydrological
modeling. The expected subsurface variability is portrayed
in one or more TIs. MPS simulation is then able to utilize
these TIs to generate different realizations of the portrayed
subsurface through a stochastic sampling process. In total,
these realizations, stemming from the MPS algorithm plus
TI, together represent the quantified prior information of the
system. In our case, the intuitive aspect of a TI, as opposed
to a mathematical prior, is helpful for collaboration between
mapping experts and geostatisticians.

Many MPS algorithms exist today (Gravey and Mari-
ethoz, 2020; Guardiano and Srivastava, 1993; T. M. Hansen
et al., 2016; Hoffimann et al., 2017; Mariethoz et al., 2010;
Straubhaar et al., 2011; Strebelle, 2002; Tahmasebi et al.,
2012). In the current study we use direct sampling (Mari-
ethoz et al., 2010) as implemented in the DeeSse software
package (Straubhaar, 2019). The main reason is its ability to
utilize a bivariate training image that allows for joint simula-
tion of geology and redox.

Simulations can be forced to match observational data,
creating conditional realizations (Chilés and Delfiner, 2012;
Journel and Huijbregts, 1978). Additional data not portrayed
in the TI enter the simulation setup as either hard or soft data.
Hard data correspond to information not allowed to change
between different realizations and are placed directly in the
simulation grid. Information from some boreholes can often
be considered hard data because it is fixed in space and can
have a relatively high resolution and accuracy. Hard data, in
most cases, offer the first conditioning nodes and patterns to
be matched during simulation, depending of course on the
number of conditional points used. Consequently, hard data
usually play a significant role in lowering the entropy of the
final simulations. If data are not reliable enough (too uncer-
tain) to be deemed hard data, they can instead be treated as
uncertain information (soft data), quantified through proba-
bility distributions. In DeeSse, soft data probabilities are han-
dled by introducing a penalty proportional to the soft data
probabilities, such that it becomes difficult to find a match
for a given lithology group or redox condition if the proba-
bility is low and conversely easier if the probability is high
(Mariethoz et al., 2015).

4.2 Ensemble statistics

We introduce the mode and entropy as summary statistics for
the ensemble of possible models of the subsurface. For a dis-
crete probability distribution, the mode represents the most
probable category in each voxel. The entropy, H, of a dis-
crete probability distribution with K outcomes is explicitly
calculated as (Shannon, 1948)

H == logk (p()p(k). 0

where p(k) is the probability of the kth outcome. In our
case, the entropy is calculated in each voxel where p(k) is
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the number of times a certain category appears in the real-
izations divided by the number of realizations. The entropy
reveals insights into the variability and hence the certainty
of a specific outcome of each voxel. For H = 0 we have full
certainty (maximum information content) of the voxel cate-
gory and conversely for H = 1 (Hansen, 2021). The mode
and entropy are hence comparable to the mean and variance
in Gaussian statistics.

5 Modeling setup

In the following, we present the methodology progressing
through the modeling workflow of the study area. The work-
flow consists of three phases: (1) preparing input data, (2)
data analysis and setup including delineation of geological
elements, construction of training images, preparing hard and
soft data as well as setting up the simulation grid, and (3) run-
ning the MPS algorithm. A schematic overview of the work-
flow is seen in Fig. 2. The following sections primarily de-
scribe phase 2.

5.1 Simulation grid

The simulation grid is discretized with a voxel resolution of
25m x 25 m x 2m. The digital elevation model constitutes the
top of the simulation grid, whereas both the bottom boundary
and the internal subdivision into subvolumes are delineated
by the geological elements (see below for details). The result-
ing simulation grid is shown in Fig. 3b, and the total number
of voxels in the simulation grid is listed in Table 2.

5.2 Geological elements

The modeling domain is split into geological elements in or-
der to subdivide the subsurface into separated volumes based
on sediment heterogeneity and geological event chronology.
In this way, smaller volumes with different lithologies and
structures can be treated separately in the geostatistical simu-
lations. The geologist interprets and delineates the geological
elements of the subsurface using the geological, geophysical
and topographical input data. Three distinct geological el-
ements are identified in the study area; see Fig. 3a: (1) an
upper Quaternary succession of sediments with an erosional
boundary to the pre-Quaternary sediments below, (2) a large,
deeply eroded, buried tunnel valley and (3) pre-Quaternary
Paleogene clays defining the bottom of the groundwater sys-
tem. The simulation grid is chosen to include only Geological
Elements 1 and 2 (see Fig. 3b). The third geological element,
the Paleogene clay, constitutes a thick non-penetrable layer,
and as its top defines the lower hydrological boundary of the
area, geostatistical simulation has not been performed on this
geological element. We find it reasonable to do so because
the Paleogene clays are homogeneous and very thick. This
type of clay is generally found to be a good electrical conduc-
tor in Denmark, and because the TEM method is sensitive to

https://doi.org/10.5194/hess-25-2759-2021
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Figure 2. Schematic overview of the proposed workflow from input data (left) through data analysis and simulation setup (middle) and

geostatistical simulation (right).

Table 2. Summary of the number of voxels for simulation grid and TIs. The relative sizes of the TIs are calculated as the ratio between the

number of voxels in the TI and the number of grid voxels.

Number of voxels

Number of voxels in TI ~ Relative size of TI

Quaternary sequence (Element 1) 143 698 voxels
Buried valley (Element 2) 57015 voxels
Total 200713 voxels

54258 voxels 37.76 %
12 449 voxels 21.83%
66 707 voxels 33.24 %

good conductors, the depth to the top of the layer can be de-
termined with low uncertainty (e.g., Danielsen et al., 2003).
Delineation of the Paleogene clay surface from the tTEM
data is therefore straightforward as long as it can be found
within the depth of investigation of the tTEM method (Vest
Christiansen and Auken, 2012). Furthermore, in the study of
Barfod et al. (2018), Paleogene clays were given a discrete
value in the MPS simulation but showed only little variabil-
ity in the spatial extent.

We assume independence between the two uppermost ge-
ological elements because they appear to represent differ-
ent geological events. The buried valley to the north is ap-
parently incised into both the Quaternary sequence and the
pre-Quaternary clay below, and the infill is clearly differ-
ent compared to the Quaternary sediments to the south. The
buried valley (Geological Element 2) has a more complex in-
fill, with individual layers of limited extent compared to the
Quaternary layers of Geological Element 1, which show less
complexity and more pronounced stratification more or less
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undeformed by the glaciations. The geological events that
formed each element are therefore considered different, al-
though they contain the same lithology groups, and this justi-
fies the assumption of independence from a geological point
of view. The buried valley to the north takes up roughly a
quarter of all voxels, whereas the Quaternary sequence occu-
pies the main part of the simulation grid (Table 2).

5.3 Training images

The TIs providing information about the geology and redox
conditions within the geological elements are designed in a
sequential workflow (Fig. 4a and b). At first, two geology
TIs are generated, one within each of the two geological el-
ements. The first step is to appoint a smaller part of the sim-
ulation area for detailed geological characterization and in-
terpretation using a voxel modeling approach; see Fig. 4a.
The lithological population of the voxels is based on the
conceptual understanding of the geological event chronol-
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Figure 3. (a) Conceptual drawing of the SW/NE profile through the study area. (b) Simulation grid showing the two main geological elements

used for the geostatistical simulation.

ogy, glacial processes forming the area, and an interpretation
combining borehole information, digital elevation maps, sur-
face geology maps and the spatially distributed geophysics
using regional geological understanding. The criteria for TI
area selection in this specific study were dense data cov-
erage of geophysics and especially the availability of bore-
holes that penetrate the entire modeling domain with good-
quality lithological descriptions. For despite having a better
geophysical data coverage in the southernmost part of study
area according to Fig. la, the TI in the Quaternary element
is chosen based on sufficient geophysical data coverage and
having the two main boreholes within its borders. The TI sec-
tion needs also to represent the expected variability in geol-
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ogy, in both vertical and horizontal extents, which is another
selection criterion. In reality, it is not possible to capture the
total variability and heterogeneity in the TI, due to its finite
size, but the important features must be represented. In TI1,
smooth glaciotectonic deformation of the Quaternary units
due to ice push from the northeast is modeled. Likewise,
smaller incised buried valleys in the Eocene clay with mostly
sandy infill are included based on the tTEM spatial data cov-
erage; see Fig. 3a. TI2 represents the sedimentary infill in a
large buried valley (geological element 2), where more re-
gional information from nearby buried valleys of the same
generation was also taken into account (see Fig. 1b). This in-
formation combined with the tTEM data coverage, two bore-
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Figure 4. (a) Geology TIs overprinted on the simulation grid. (b)
Redox TIs overprinted on the simulation grid. (¢) Zones in TIs used
for resistivity—lithology relationship inference.

holes within the valley north of the study area, and the sur-
face geology maps has been the basis for the voxel modeling
of TI2. The complexity in the infill of the buried valley is
represented by individual layers of limited extent as seen in
Fig. 3a.
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The geological training images are then translated into re-
dox TIs by upscaling the redox interpretations of the sedi-
ment colors and water chemistry as described in Sect. 3.3
(Figs. 4b and 5). The sediment color data were first dis-
cretized into a 1 m interval, and then the redox condition for
each interval was assigned according to the sediment color.
The interpreted data were summed up separately for sand and
clay for each TI area to produce depth profiles of redox con-
ditions (Fig. 5a, d, g and j). For the Quaternary sequence and
buried valley TIs, 13 and 7 boreholes are available with sed-
iment color descriptions (Fig. 5b, e, h and k), respectively,
and 5 and 3 boreholes are available with water and sediment
chemistry (Fig. 5¢, f, i and 1), respectively.

The redox interpretation revealed that in the Quaternary
sequence, oxic conditions are much deeper in sand (at least
20m; Fig. 5a and c) than in clay (4-6m; Fig. 5d and f).
We postulated that the Quaternary sequence is the geolog-
ical window type of redox architecture proposed by Kim
et al. (2019): the sandy units exposed to the surface act as
“geological windows”, which allow transportation of oxi-
dants (i.e., oxygen and nitrate) via gas and water into the
deeper subsurface, resulting in development of a deep oxic
zone below a reduced clay layer. In the Quaternary sequence
area, all the boreholes for the water and sediment chem-
istry were collected in these geological windows, which are
predominantly in oxic conditions, confirming our interpreta-
tions. In the buried valley, the oxic layer was relatively shal-
low compared to that of the Quaternary sequence. This shal-
lower oxic layer may be attributed to a shallower and tempo-
rally invariant groundwater table in this area compared with
the Quaternary sequence. A secondary oxic layer below the
first oxic layer is not expected, due to the clay-dominant con-
ditions of the surface geology (mainly clay till; Fig. 1c) and
subsurface structure. We concluded that in the buried valley,
oxidants are delivered either vertically via water infiltration
or gas diffusion or the top oxic layer (4—6 m below the land
surface) from the Quaternary sequence, resulting in the pla-
nar type of redox architecture (Kim et al., 2019).

Based on these interpretations, we assigned each lithology
group with a probability of belonging to each of the three re-
dox conditions at the surface (Table 3); 80 % of the meltwater
sand in the geological windows (sand units connected to the
surface) of TI1 was assigned to be oxic down to 20 m, and
the rest was equally distributed between N-reducing and re-
duced conditions, respectively, to allow variability in simula-
tions. These N-reducing and reduced conditions were mainly
located at lower elevations because of the higher possibility
of water-saturated conditions. For the connected sand, with
increasing depth, the fraction of oxic voxels was assumed to
be reduced by 10 % compared to that of the overlying layer
for the 20-30 m interval and by 20 % for depth below 30 m.
The sand voxels that are not connected to the land surface
were assumed to be reduced. The N-reducing conditions are
always located at the boundary of oxic conditions in the pro-
files; the fraction was limited to 10 % of the total sandy vox-
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Figure 5. Profiles of redox conditions for sand and clay for each TI area based on geochemical observations. The redox interpretations
based on the sediment colors are done separately for sand (a) and clay (d) of the Quaternary sequence TI and of the buried valley TI (g
and j, respectively), and the number of boreholes used in the interpretations are shown in (b), (e), (h), and (k), respectively. The number of
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interpretations based on water and sediment chemistry of sand and clay of the Quaternary sequence and buried valley TIs are shown in (c),

(®), (i), and (1), respectively.

els of each layer in the TIs. The rest was assigned to reduced
conditions. For clay till and meltwater clay of TI1, 60 %,
20 %, and 20 % of the first-layer voxels (Table 3) were at-
tributed to oxic, N-reducing, and reduced conditions in the
order of elevation (lower elevation = reduced condition) due
to proximity to streams. With increasing depth, the fractions
of N-reducing and reduced conditions were assumed to be

Hydrol. Earth Syst. Sci., 25, 2759-2787, 2021

increased by 10 % and 20 %, respectively, up to 6 m below
the land surface. Below 6 m, clay was always reduced.

For meltwater sand and sandy till of TI2, 80 %, 10 %, and
10 % of the top layer (Table 3) were attributed to oxic, N-
reducing, and reduced conditions in the order of elevation.
Below the first layer, the fractions of the oxic and N-reducing
voxels then were assumed to be decreased by 70 % and 50 %,
respectively, and the rest was assigned to reduced conditions.
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Table 3. The probabilities for redox conditions (oxic, N-reducing
and reduced) based on geochemical observations in Fig. 5 for the
top (surface) layer of the training images. The probabilities for each
lithology group sum to one.

Lithology group Oxic  N-reducing Reduced
Clay till 0.6 0.2 0.2
Meltwater sand/gravel 0.8 0.1 0.1
Meltwater clay/silt 0.6 0.2 0.2
Sandy till 0.8 0.1 0.1
Postglacial 0.05 0.05 0.9

Clay till and meltwater clay of the buried valley TI, 60 %,
20 %, and 20 % of the top layer (Table 3) were attributed to
oxic, N-reducing, and reduced conditions in the order of el-
evation. The fractions of oxic and N-reducing voxels were
assumed to be lowered by 60 % and 20 %, respectively, com-
pared to those of the overlying layer with increasing depth.
The rest was assigned reduced conditions.

Postglacial sediments, which are freshwater deposits often
rich in organic material (Jakobsen and Tougaard, 2020), were
assigned almost exclusively with reducing conditions (90 %
probability). Like the sandy and clayey sediments, we dis-
tributed the remaining 10 % probability equally among the
other two redox conditions to allow for some variability.

The described sequential workflow of geology and redox
TI construction ensures consistency between the two train-
ing images in the joint simulation of the two variables. Ap-
proximately one-fourth of 1 reaches outside of the study area,
whereas the whole of TI2 is located within. We intentionally
do this to ease the construction of TI1 as the surrounding area
to the west shows similar geological variability to the Qua-
ternary sequence and therefore provides helpful information
during the creation of TI1. Additionally, this information is
independent and allows more possible matching configura-
tions in the TI during simulation. TI1 is about one-third of the
size of the Quaternary sequence element, and that of TI2 is
one-fifth of the buried valley element (Table 2). The TIs used
in this study have different statistical properties depending on
the location; i.e., they are non-stationary. For instance, visu-
ally it is easy to confirm that the probability of finding an oxic
redox condition in the lower part of the TI is much different
than in the top. A non-stationary TI is not unacceptable but
can have some unwanted effects when combined with MPS
algorithms expecting a stationary TI and will be discussed
later.

5.4 Conditioning data
5.4.1 Hard data
The geological surface map and the borehole data (both

lithology and redox) were treated as hard data in the simu-
lation grid and are shown in Fig. 6.
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The sediment types that were grouped into lithologies (Ta-
ble 3) were placed at the top voxel in the simulation grid,
corresponding to the surface. We do not explicitly use the
entire geological map as hard data. The borders between the
lithology polygons of the surface geology map were origi-
nally delineated based on sediment samples, geomorphology,
and topography (Jakobsen and Tougaard, 2020). In general,
it means that the closer you are to the center of a polygon,
the more certain you are of the correct lithology. Conversely,
the boundaries between polygons represent the least certain
parts of the map. A buffer zone is therefore adapted between
the polygons to express the uncertainty of the geological sur-
face map. The buffer zone is simply created by checking all
neighboring voxels for each voxel in the surface map. If the
current voxel shares a value with all surrounding voxels, it
is likely situated safely within a polygon and is kept as hard
data. Conversely, if one of the neighboring voxels provides
a mismatch, the current voxel is likely close to a polygon
boundary and is not included as hard data. Alternatively, a
negative buffer around each polygon could be adopted.

The redox conditions are grouped into the three main re-
dox categories: oxic, N-reducing, and reduced. The wells in-
dicate that the area is dominated by reduced conditions. Oxic
conditions are mainly present in the upper meters of the sim-
ulation domain, and only one well displays the reverse trend
with an oxic part below reduced conditions due to heteroge-
nous geology.

5.4.2 Soft data

We use the geological surface map (Fig. 1c) as a soft data in-
dicator of lithology in the buffer zone. Geological complex-
ity is one of the main drivers of uncertainty in geological
mapping along with the amount, quality and spatial distri-
bution of data (Keefer, 2007). Accessibility is an important
factor to consider in terms of both amount and spatial distri-
bution of data (Keaton and Degraff, 1996). In Denmark, how-
ever, neither terrain nor private property poses a major issue
when mapping surface geology. On the level of investigation,
the geology in the study area is relatively simple, alleviating
some of the uncertainty due to complexity. The main source
of uncertainty in the surface geology maps comes from in-
terpretations of sediment types from the small samples and
the final shape and size of polygons. We generally consider
the surface geology to be very certain data and thus provide
all values with 0.7 probability of being true. The last 0.3
probability is split equally between the four other lithologies,
which reflect the uncertainty level of misinterpretations. Re-
gardless, because much of the geological surface map is used
directly as hard data, the quantified uncertainty only affects
the buffer zone as outlined earlier. For the redox domain, we
translate the geological surface map to soft redox data using
the probabilities provided in Table 3.

The tTEM 3D resistivities in the simulation grid contain
87 547 voxels covering 43.5 % of the simulation grid (Fig. 7).
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Figure 6. (a) The geology surface map along with the geology wells
placed on the simulation grid as hard data. (b) The redox wells on
the simulation grid as hard data.

The tTEM 3D resistivity grid is converted into soft data
probabilities of geology. This requires a known lithology—
resistivity relationship, which here is established in two parts.

Firstly, because the geological TIs are based on interpreta-
tions of resistivity data in combination with geological infor-
mation, many voxels in the TIs have a corresponding resistiv-
ity value in the resistivity grid (Fig. 7). Local histograms for
the study area are built for each lithological group by collect-
ing all the resistivity values in the two geology TIs. We di-
vide the TIs into three zones to account for some of the non-
stationarity with depth that affects this relationship (Fig. 4c).
The upper 4 m make up zone 1 and are the only place where
we expect postglacial sediments and sandy till. Because both
of these lithology classes contain so few counts in the TIs,
they would otherwise be underrepresented in a relationship
covering the entire TI. Zone 2 covers the bulk part of the
TIs from 4 m below the surface and down to zone 3 covering
the last 10 m of the TIs. Zone 3 contains very low resistivi-
ties from the underlying conductive Paleogene clay that are
“smeared” into the resistivities of the above-lying material

Hydrol. Earth Syst. Sci., 25, 2759-2787, 2021

R. B. Madsen et al.: 3D multiple-point geostatistical simulation of joint subsurface redox

due to averaging during inversion (dark blue colors in Fig. 7).
This smearing effect happens at large contrasts in the sub-
surface resistivity and generally increases with depth as the
resolution of the data decreases (Vignoli et al., 2015). This
affects the inference of the lithology-resistivity relationship
by lowering the overall resistivity of meltwater sand/gravel
that mainly constitutes the lower parts of the study area. By
separating the last 10 m in a disconnected zone from the bulk
zone, we minimize the effect of these low resistivities on the
overall lithology—resistivity relationship in zone 2. The final
pooled histograms for the two TIs are shown in Fig. 8a—c
for each of the respective zones. For all zones, relatively low
resistivities are attributed to clay-rich deposits, whereas rela-
tively high resistivities are attributed to sandy lithologies, al-
though meltwater sand/gravel accounts for many of the lower
resistivity counts in the zone 3 relationship due to the smear-
ing effect. Generally, the resistivity of clay till is so high that
it corresponds to much of the meltwater sand/gravel resis-
tivities. Meltwater clay/silt is the most distinctive lithology
group tending towards rather low resistivity values. The his-
tograms confirm the common issue of lithologies overlap-
ping in the resistivity domain (Barfod et al., 2016; Scham-
per et al., 2014). The histogram with the best separation is
seen in zone 2, which indicates the importance of detaching
the low-resistive meltwater sand in zone 3. The sandy till in
zone 1 is associated with some of the highest resistivity val-
ues found in the TI area, whereas the postglacial sediments
cover a large spectrum within the most ambiguous resistivity
values. For each bin in a histogram, we summarize the size
of each lithology group and stack them. If we then normalize
with the total number of counts within that resistivity bin, we
get a cumulative distribution of the lithologies (Fig. 8d—f).
Secondly, because there are very few counts for the low
and high resistivities, here defined as < 0.5 % of the total
counts for each zone, we let an a priori established relation-
ship govern these values. We assume that low resistivities
are associated with clay till and meltwater clay/silt, whereas
high resistivities are associated with sandy till and meltwa-
ter sand/gravel. This is based on our general understanding
of the lithology—resistivity relationship in the area and sup-
ported by Barfod et al. (2016) and Schamper et al. (2014).
The proportions between, e.g., the two low-resistive lithol-
ogy groups are found by retrieving the proportion between
clay till and meltwater clay/silt in the respective zone of the
TIs (Fig. 4). For instance, there is no meltwater clay/silt in
zone 1 of the TIs, and hence we expect that low resistivities
will only be attributed to clay till (Fig. 8d), while meltwa-
ter clay/silt covers approximately 25 % among the two low-
resistive lithology groups in zone 2 (Fig. 8e). To smooth the
transition between the relationship inferred from the TIs and
the a priori distribution, we weight the adjacent 10 bins be-
tween the two relationships. The weights are distributed lin-
early such that below the cut-off of 0.5 % only the a priori
relationship is used and 10 bins from there the relationship
relies solely on the inferred relationships from Fig. 8a—c.

https://doi.org/10.5194/hess-25-2759-2021



R. B. Madsen et al.: 3D multiple-point geostatistical simulation of joint subsurface redox 2771

Resistivity [Qm]

|
1 2 3 5

75 10 13 18 30 50 75 100 150 200

Elevation
),\‘Norfh

300 Vertical exaggeration: 6.4x

Figure 7. 3D resistivity grid from the tTEM model results in a grid equal to the simulation grid.

Regardless, the effect of the a priori relationship is minus-
cule, as in all zones approximately 95 % of all resistivities in
the simulation grid are supported solely or at least partially
by the inferred relationship. The remaining 5 % is supported
solely by the a priori established relationship as seen in the
total distribution of all resistivities in the simulation grid in
Fig. 8g—i.

Figure 9 presents the final soft data probabilities for each
of the k lithology classes pioi(k). In zones 2 and 3 (Fig. 9f)
the inferred lithology—resistivity relationships from Fig. 8e
and f are used to convert the resistivity grid from Fig. 7 to
soft data probabilities pirem (k). At the surface the soft data
probabilities from the surface geology psg(k) are combined
with probabilities from the resistivity data to obtain the final
soft data probabilities po(k):

Dsg (k) perem (k)
K psg (k) perem (k)

for each of the K = 5 lithologies. The stronger colors at the
surface represent the overall certainty level of 0.7 from the
surface geology discussed previously. The tTEM data are
largely more ambiguous in guiding the soft data probabili-
ties as evident from the resistivity—lithology relationship in
Fig. 8 and are mostly within the color range of yellow and
red in Fig. 9a—c. The dominance of the clay till and meltwa-

Prot(k) = 2
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ter sand/gravel (Fig. 9a and b) in the study area is apparent
in the soft data probabilities when compared to, e.g., melt-
water clay/silt, which is expected primarily in areas of lower
resistivities. We do not expect much meltwater clay/silt at the
boundary of the modeling domain as portrayed in the train-
ing images. The inferred relationship in zone 3 helps guide
meltwater sand/silt to lower resistivities but may not affect
the results more than the general uncertainty in the bound-
ary estimate, which depends largely on the tTEM resolution.
Due to the low count of sandy till and postglacial sediments
(Fig. 9d—e) in the TIs, the probability for these lithology
classes is considerably lower than the three main classes of
the study area.

Based on these soft data probabilities, a mode and entropy
are calculated and shown in Fig. 10. The entropy is generally
low at the surface, where the soft information from the sur-
face geological map is present. Similarly, the mode is dom-
inated by the soft information from the surface geological
map. Due to the overlapping relationship in the resistivity
domain (Fig. 8), the soft data based on the tTEM data are
not as informative at the surface and do not help to lower
the entropy much further. In general the entropy of the tTEM
data ranges between 0.8 (yellow color in Fig. 10b) and 0.3
(red color). In areas of particularly high resistivity the en-
tropy drops even lower (black color), implying that the tTEM
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Figure 8. Resistivity—lithology relationships illustrated as (a—c) histograms of resistivity for each lithological group based on the training
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groups for each bin and a priori relationship for rare resistivities and (g—i) distribution of resistivity values in the corresponding zone in the
simulation grid (Fig. 9f) overprinted with the lithology-resistivity relationship established in (d-f).

data provide high certainty on the lithology group. The over-
all pattern in the mode model (Fig. 10a) reveals a slight ten-
dency to form coherent layers, especially seen in the buried
valley. However, in many places the mode of the soft data
is also rather patchy and changes between small clusters of
either meltwater sand or clay till. These clusters simultane-
ously show high entropy (Fig. 10b), which implies a wide
distribution of possible outcomes. Thus, these patchy struc-
tures can be consistent with information of more coherent
layers.

If a single lithology group has a soft data probability
greater than or equal to 0.5, a small fraction of these soft data
is converted into hard data. This makes sure that soft data are
not underrepresented in MPS simulations, which is a recur-
ring problem in MPS (e.g., Hansen et al., 2018). The conver-
sion rates based on the soft data probabilities are shown in
Table 4.

5.5 Parameterization of the simulation algorithm
In direct sampling, the nodes in the simulation grid are vis-
ited sequentially. The training image is consulted at each it-

eration to find a suitable candidate at each visited node based
on already simulated (conditional) nodes. To specify how

Hydrol. Earth Syst. Sci., 25, 2759-2787, 2021

this procedure is performed, several fundamental parameters
need to be set in direct sampling (Mariethoz et al., 2010).

— The number of conditional data to consider when
searching the TI, which influences the variability. Here,
a maximum of 20 neighboring nodes are used, prevent-
ing verbose copying from the TIs happening too often.

— The distance measure determining how well the can-
didate values match the conditional nodes in the sim-
ulation grid. Because both geology and redox are cat-
egorical variables, we use the number of mismatching
nodes as a distance measure with a tolerance of 10 %
mismatch. For 20 neighboring nodes, we hence allow 2
conditional nodes to differ between the TI and the sim-
ulation grid to accept the currently proposed value.

— The maximum number of iterations allowed us to find
a suitable match within the TI. Because the TIs in the
current study are of a reasonable size, we allow a scan
of the entire TI to find a suitable match. This alleviates
some of the problems with the non-stationarity men-
tioned earlier. If a match is still impossible to obtain,
the candidate providing the lowest misfit is retrieved
and “flagged”. During post-processing the flagged cells
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Table 4. Conversion rates for soft data in the conditional realization.
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Soft data probability for 0.5t00.6 0.6t00.7 0.7t008 08t009 09to1l
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Figure 10. (a) Mode and (b) entropy for soft data from Fig. 9. Low
entropy (certainty) is marked with black color, while white colors
represent high entropy (uncertainty).

are simulated again using the same simulation setup and
TIs. Because the larger structures are placed during the
initial simulation, the flagged cells in postprocessing
have a higher probability of finding a matching event
in the training image, which minimizes the appearance
of simulation artifacts.

— The path at which the simulation grid nodes are visited
needs to be selected. We choose a random path as is of-
ten used in MPS. When combined with conditional hard
data, the random path preferentially first visits nodes
that are in the vicinity of hard data. This is achieved
by calculating distances to hard data and then randomly
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drawing nodes according to these distances to create the
visitation path (Straubhaar, 2019). This ensures that es-
pecially hard data from the surface have a higher impact
on the final realizations.

As pointed out by Tahmasebi (2018), a quantitative evalua-
tion of the performance of MPS is still unresolved, and the ef-
fect of the simulation algorithm parameterization remains an
area of active research (Juda et al., 2020). To ensure that the
combination of TI and MPS algorithm produces the sought-
after spatial variability, we simulate 10 independent realiza-
tions without including the conditioning data, i.e., two real-
izations from the prior model. We adopt the heuristic strategy
of Hgyer et al. (2017), making sure that the realizations from
the prior model are in accordance with and represent our ex-
pectations of both redox and geology. Two unconditional re-
alizations from the prior model are shown in Fig. 11. The spa-
tial variability and patterns seen in the TIs (Fig. 4) are gener-
ally represented for both redox and geology. As expected in
the TI and conceptual model for geology, the prior realiza-
tions show primarily horizontal stratification. In the buried
valley infill, the extent of geological layers and redox struc-
tures is more limited than in the Quaternary sequence, which
is also in accordance with our conceptual understanding. In
the Quaternary sequence, the geological layer order is cor-
rect, with clay till predominantly found near terrain, while
meltwater deposits are the main constituent of the deeper
parts. Both sandy till (black) and postglacial sediments (blue)
only occur near the surface in accordance with the TIs, much
more infrequently than portrayed.

For redox, the layer order from the TT is likewise preserved
in the unconditional realizations such that oxic conditions
are found primarily at the surface with increasing N-reducing
and reduced conditions at lower depths. The prior model also
captures the possibility of secondary redox zones from geo-
logical windows that are portrayed in TI1. N-reducing con-
ditions are found adjacent to oxic conditions at the surface
and not in the bottom of the simulation domain in the un-
conditional realizations. The overall redox conditions can be
visualized by plotting the accumulative probability for redox
conditions as a function of depth, constructed by summa-
rizing over both realizations, which hence provides the 1D
marginal distribution in all voxels. This marginal distribution
is accumulated with depth as shown in Fig. 12. Fewer oxic
and N-reducing conditions (orange and green) are simulated
in the prior model at the surface and do not stretch as far
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down as portrayed in the TIs (Fig. 12a), which can also be
visually confirmed by comparing Figs. 4b and 11b and f.

Due to the strict vertical layer ordering in the TI, the non-
stationary characteristics are preserved in the unconditional
realizations despite the expectation of a stationary training
image in MPS. We suspect that the full scan of the train-
ing image helps to provide the necessary configurations to
enable a more non-stationary output in the prior realization.
However, the MPS algorithm cannot fully capture all the non-
stationarity of the T1Is as there is a tendency to simulate fewer
oxic conditions at the surface along with sandy till and post-
glacial sediments being underrepresented. Furthermore, the
size of the TIs may hinder the reproduction of large-scale
connected structures such as the oxic conditions at the sur-
face (de Vries et al., 2009). This tendency is hence beyond
immediate remediation by changing any of the fundamental
parameters in direct sampling but can instead be guided by
the incorporation of conditioning data in the posterior model
(Barfod et al., 2018). In summary, we conclude that the cur-
rent parameterization of the direct sampling algorithm pro-
vides the spatial variability that fits our understanding of the
system, albeit with some slight caveats. With the current sim-
ulation setup, flagging occurs for approximately 8 % of the
cells during initial simulation and 4 % after post-processing.
We emphasize that the unconditional realizations represent
the prior information of the system, not the TIs nor the exact
parameters chosen in the DeeSse algorithm.

6 Modeling results

In this section, we present the modeling results from the set
of posterior realizations of both geology and redox where
the information from the prior model is conditioned to the
data. We condition the simulation to the hard and soft data
presented in Sect. 5.4.

Figure 13 shows two conditioned realizations from the
posterior model. The impact of introducing the conditioning
data is immediately seen at the surface of the geology sim-
ulations (Fig. 13a and e), which is guided to a large degree
by the information from the surface geology map. The ar-
chitecture stays relatively fixed between the realizations, and
variability is predominantly small scale. Given the high num-
ber of conditioning data, this is not unexpected. The main
part of the Quaternary sequence element is covered by an
approximately 8—10 m (sometimes reaching more than 20 m)
thick clay till, followed by meltwater deposits. These melt-
water deposits exhibit a shorter correlation length than in the
prior model as seen in Fig. 13g. The lateral extent of layers
in the buried valley is less than in the Quaternary sequence
but not as significant as in the prior model. In general, the
amount of meltwater clay/silt in the posterior model is lower
than in the prior model, and the realizations consist mostly of
either clay till or meltwater sand/gravel. This change is due
to information from the geology soft data which is heavily
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dominated by clay till and meltwater sand/gravel (Fig. 9). In
fact, in zones of high resistivity, the soft data are the domi-
nant constraint on the realizations with meltwater sand/gravel
causing low variability between the two realizations as seen
in, e.g., Fig. 13a and e. Just northwest of the high resistive
zone in the buried valley is an area with more ambiguous
resistivities which leads to greater variability and more de-
pendency on the prior model. The bottom of the simulation
domain is mainly made up of meltwater sand/gravel, which
is likely information stemming from the prior model.

Due to the joint simulation of geology and redox in the cur-
rent setup, the overall redox architecture in the realizations
is coherent with the geology as outlined in the TI. For ex-
ample, postglacial sediments are attributed to reducing con-
ditions, and meltwater sand/gravel is likely oxic at the sur-
face. This consistency explains the predominantly oxic con-
ditions at the surface seen in the sandy part of the buried
valley (Fig. 13b and f). In the Quaternary sequence, the
clay till at the surface shows both oxic and reduced condi-
tions as indicated in the TIs (Fig. 13d). Oxic conditions are
clearly more present at the surface of the posterior model
than in the prior realizations. The oxic conditions are dis-
tributed in the low-gradient parts of the simulation domain,
whereas reduced conditions are found along depressions in
the landscape such as valleys and streams (Fig. 13b), which
is in good accordance with our geochemical understanding
of the system. The entire posterior redox probability profile
in Fig. 12c¢ also resembles the TI profile better than the prior
model. Because there are no soft data aiding the occurrence
of N-reducing conditions in the posterior model, it inherits
the capacity of simulating N-reducing conditions from the
prior model and is simulated less than in the TI profile from
Fig. 12. Thus, N-reducing conditions are also simulated ad-
jacently to oxic conditions as in the prior model. The overall
redox architecture is in place with planar-type redox condi-
tions in the buried valley and geological window-type condi-
tions in the Quaternary sequence (Fig. 13d). However, sole
voxels of oxic conditions in the deeper parts of the realiza-
tions appear as unwanted simulation artifacts (Fig. 13h). Be-
cause these artifacts happen infrequently, are tiny and are sur-
rounded by reduced conditions, we argue that for N-retention
simulations these artifacts may be negligible.

In total, we simulate 100 realizations like those presented
in Fig. 13, which together are used to represent the full pos-
terior model. To summarize the posterior model, we present
ensemble statistics (from Sect. 4.2) in Fig. 14. The entropy
of geology (Fig. 14c) at the surface is 0 at most locations due
to the hard data provided from the surface geology map. The
more uninformed parts of the surface (lighter colors) corre-
spond to the buffer zone in the surface geology map. The en-
tropy is usually around 0.2-0.3, indicating that most realiza-
tions of the posterior model provide the same outcome in the
buffer zone. In a few places along the buffer zone, an entropy
level of 0.8 is reached, indicating that these voxels have a
near-uniform distribution among several different categories
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to the one shown in the mode model. This confirms the qual-
itative results from inspecting the individual realizations that
the effect of introducing prior information and hard data in-
creases the information content (lowers entropy) of the final
models drastically compared to the soft data only (Fig. 10).
For the lower part of the simulation domain, the posterior
model shows higher entropy than at the surface. This means
that the mode found in this region is usually more uncertain.
In some areas of high resistivity, we also see very low en-
tropy at depth, where the soft data provide the main architec-
tural input and the posterior mode model resembles the soft
data mode. The effects of introducing the prior information
for the architecture are clearly seen in the coherent structures
produced in the posterior mode, in contrast to the patchiness
of the mode in Fig. 10a.

The redox mode does not display some of the minor sim-
ulation artifacts seen in the individual realizations, because
these are averaged out over many realizations. Instead, we
do see remnants of the converted oxic soft data at the surface
of the mode model (Fig. 14b) with zero entropy (Fig. 14d).
This is clearly a side-effect of the soft data conversion, since
these sole oxic voxels are not in accordance with the overall
pattern of reduced conditions along the streamlines and val-
leys. The redox mode shows few N-reducing conditions, in
accordance with the redox depth profiles shown in Fig. 12c,
demonstrating the inclination to simulate either oxic or re-
duced conditions in the posterior model.

Overall, the entropy of redox shows a reverse pattern to
that of geology. The redox entropy is highest near the sur-
face and decreases with increasing depth (Fig. 14d). One
could at first expect the highest redox uncertainty at deeper
depth because the density of the hard data is much higher
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near the surface and, for the deeper part of the architecture,
the geochemical data are rarely available. However, the en-
tropy sharply decreases in the reduced zone beneath a certain
depth. This pattern instead fits well with the conceptual un-
derstanding of the redox structure evolution: oxic conditions
are developed as oxidants (e.g., oxygen and nitrate) infiltrate
from the root zone to the subsurface, where reduced layers
are present. Therefore, a redox front propagates downward
and, under homogeneous conditions with vertical flow of wa-
ter, it would be unlikely to develop oxic conditions below
the redox front, while the spatial heterogeneity of the geo-
logical settings of the near-surface environments at various
scales (pore scale to landscape) has been well documented
(e.g., Baveye et al., 2018; Groffman et al., 2009; Sexstone
et al., 1985), implying highly heterogeneous redox condi-
tions at the shallower depth. The sharp decrease in entropy
of the buried valley takes place due to the planar redox-type
domain in the buried valley, whereas the possibilities of ge-
ological windows in the Quaternary sequence make the high
entropy section develop further down. Some of the voxels at
the surface of the Quaternary sequence element depart from
the overall pattern by having a very low entropy. This trend
is likely aided by the soft data, giving high probabilities of
oxic conditions at the surface. The high entropy at the sur-
face is likely also aided by the soft data. At the surface and
down to about 10-20 m of the buried valley, we generally do
not know much about the redox conditions, as indicated by
the white yellowish colors in Fig. 14. The more evenly dis-
tributed redox soft data probabilities (Table 3) could explain
some of this high entropy.

7 Discussion

To our knowledge, examples of simulating redox conditions
with sediment-texture distributions using multiple-point geo-
statistical methods have not been shown before. This study
sets out with the aim of proposing and reviewing a method-
ology for modeling both redox architecture and geology si-
multaneously in high-resolution 3D using MPS.

7.1 Simulation artifacts

The spatial variability of the TIs is represented in the prior
realizations, and conditioning data guide our expectations of
the system to a posterior model. In some cases, due to the
limited size of the TI, inconsistencies between conditioning
data and the prior model exist. In some cases, these incon-
sistencies lead to simulation artifacts in the realizations but
are rare since they are largely corrected during MPS post-
processing. For the posterior model realizations, flagging is
decreased to only about 5 %—6 % after post-processing while
happening 19 %—22 % of the time during the initial run of the
algorithm. Some simulation artifacts also occur in the prior
model itself and therefore cannot alone be attributed to in-
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consistencies between the prior model and the conditioning
data, which is underlined by the decrease in flagging that
also happens during post-processing of the prior model re-
alizations. These inconsistencies are associated with a lack
of matching events in the TI. To remedy such simulation ar-
tifacts, one either needs larger TIs to allow more spatial vari-
ability or artificially enhance the variability by lowering the
number of conditional data to consider when searching for a
match in the MPS algorithm. In the latter case, this will hap-
pen at the cost of reproduction of the actual spatial variabil-
ity portrayed in the TI. We argue that, in the current nitrate
simulation at the catchment scale, these artifacts do not af-
fect the overall architecture (Fig. 14) and redox trends with
depth (Fig. 12). It is also expected to have negligible impact
on hydrological modeling as the overall architecture allows
groundwater flow to pass by such artifacts. Nevertheless, fu-
ture studies are required to reduce artifacts of this kind or, at
least, downplay their significance. One solution could be to
allow rotation during simulation that could offer more con-
figurations during simulation. However, testing with a setup
allowing 360° rotation in the horizontal plane did not enable
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a substantial improvement of this issue. The flexibility of the
current methodology also allows the inclusion of soft data
probability maps through Eq. (2), indicating spatial restric-
tions on certain lithologies or redox conditions, which could
potentially remedy some of the deeper-lying artifacts.

7.2 The role of soft data

The random path has a tendency to underestimate soft data
and provide less resolution in the results compared to other
path types (Hansen et al., 2018). In the current study the
amount of soft data coverage was high (more than 43.5 %
of the simulation grid). To utilize the abundant soft data, we
randomly converted a fraction of the soft data into hard data
to compensate for the underestimation from the path. This
helped transfer more weight towards the soft data during sim-
ulation, with the caveat of introducing converted soft data in
unwanted positions, such as oxic in an overall reduced envi-
ronment. This problem is however mostly encountered in the
redox mode (Fig. 14b) and does seemingly not pose as big of
a problem for the individual realizations in Fig. 13b and f. By
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further processing the realizations by removing any sole vox-
els that differ from the neighboring voxels, this problem can
be removed entirely but at the risk of removing actual sole
voxels. One could also randomly select a new set at each iter-
ation, although this is not directly implemented in the DeeSse
software and still would not make sure that soft data in gen-
eral are handled correctly. For instance, the current remedi-
ation only handles lithology groups with probability > 50 %
and thereby cannot help improving the information content
for any categories with probability < 50 %. This affects, e.g.,
N-reducing conditions at the surface where soft data prob-
abilities are substantially lower (Table 3). Thus, N-reducing
conditions are bound to be underrepresented since they are
not converted from soft data, which is the tendency shown in
the posterior redox profile compared with the TI (Fig. 12).
Despite the clear advantages of converting some soft data
to provide more emphasis on them, the current simulation
results could most likely be improved by better incorporat-
ing the soft data information in general. However, neither a
preferential path that visits voxels with soft data informa-
tion before other voxels nor the use of non-collocated soft
data is currently implemented in most state-of-the-art MPS
algorithms. The problem of how to best incorporate soft data
information hence reaches beyond the current study. We en-
courage this to remain an active area of research to make
MPS relevant for practitioners without the need for too much
ad hoc remediation.

7.3 Resistivity—lithology relationship

The established resistivity—lithology relationship allows us to
map the prior probabilities of each lithological group based
on the tTEM in the simulation area. Utilizing tTEM as soft
data information ensures that it does not have too much influ-
ence over the final results. Here, the relationship is inferred
from the resistivity grid and training images. When simulat-
ing, the general mismatch between the training image pat-
terns (based on interpreted geology) and the tTEM data is
thus minimized. Methods exist for establishing a relation-
ship between resistivity and clay content (Christiansen et al.,
2014; Foged et al., 2014). Unfortunately, this is not directly
applicable for the lithological groups used here as they are
not defined on the basis of the clay content. Alternatively,
this relationship could be inferred using boreholes near the
study site. Similarly to the approach in this study, inferring
the resistivity—lithology relationship from boreholes is typi-
cally based on deriving probabilities from histograms (Bar-
fod et al., 2016; Gunnink and Siemon, 2015; X. He et al.,
2014). In accordance with the present results, these stud-
ies also show a significant overlap between different litholo-
gies, and as such using nearby boreholes for inferring the
resistivity—lithology relationship would mainly minimize the
reuse of data and avoid subjectivity carried over from the TIs.
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7.4 Geological modeling subjectivity and data reuse

The inclusion of geological mapping experts in the creation
of TIs introduces modeling subjectivity. Thus, the final re-
alizations could include unverifiable modeling choices fol-
lowing the interpretation procedure in cognitive modeling.
Through experiments with geological interpretation of the
uncertainty in boreholes, Randle et al. (2019) argued that ex-
pert elicitations do not result in accurate predictions of inter-
pretation error. Schaaf and Bond (2019) propose the quan-
tification of interpretation uncertainty for inclusion in geo-
statistical simulation, while efforts have been made to make
TI generators (Pyrcz et al., 2008) and data-driven TIs with-
out the need for expert knowledge (Vilhelmsen et al., 2019).
However, our approach of process-based TI generation from
expert elicitation is a common approach in MPS applications
(Mariethoz and Caers, 2015). A possible explanation for this
is the benefit of bringing in prior expert knowledge, which is
otherwise difficult to quantify. This ensures that results are
in accordance with as much information as possible (Curtis,
2012; Tarantola, 2005) and realizations are not in clear con-
flict with geological concepts (Jessell et al., 2010; Wellmann
and Caumon, 2018).

Despite the potential subjectivity in the geological model-
ing of the study area, these modeling choices are primarily
guided by data. The tTEM data collected in this study have,
e.g., contributed to a good correlation between the terrain and
the subsurface architectures in the geological interpretations.
These observations fit well with the current knowledge of the
latest geological events in the area, thus providing good pos-
sibilities of making robust geological correlations between
the geological and geophysical data.

It might be difficult to quantify the effect of the apparent
loss in degrees of freedom that follows from using the same
data for establishing the prior information and as condition
data during simulation. In the current study, the problem of
reusing data for outlining geological elements is most likely
not critical as only large-scale structural information is partly
interpreted from the resistivity data, such as the top of the
Paleogene clay layer. The degrees of freedom loss for reusing
the resistivity information in the TIs and as conditioning data
in simulation is undoubtedly larger. Although the small size
of the TIs may pose a problem for reproducing the intended
variability, in this instance it acts to limit the effect of reusing
data. This issue persists for approximately 33 % of the total
voxels (Table 2).

7.5 Training images and geological elements

If possible, the TI should provide all possible dimensions and
shapes of the geological features in the subsurface (Strebelle,
2012). However, sizes of the TIs in the current setup are rela-
tively small compared to the simulation grid and hence do not
contain that many configurations. In general, the smaller the
TI, the fewer possible structures can be represented (Mari-
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ethoz and Caers, 2015). We consider two remedying factors.
Firstly, the simplicity of the TI. In the study area, we expect a
geology with continuous clay and sand units partly restrained
by incised valley structures in the Paleogene clays as seen in
Fig. 3. Even though the TI is small and simple, it conveys the
general pattern to be expected in geological features through-
out the simulation domain. The simplicity should alleviate
some of this issue, although in an area with more expected
heterogeneity, a more diverse and larger TI would be needed.
Secondly, if the geological variability provided in the TI is
not sufficient, algorithmically induced variability measures
such as scaling and rotation of features is possible with di-
rect simulation (Mariethoz et al., 2010).

The non-stationarity of both sets of TIs is evident. This
is a common problem when designing training images di-
rectly based on and mimicking geology, which is inherently
non-stationary. This might pose a problem, as only a cer-
tain number of the configurations in the TIs will produce a
match during the direct simulation. Consequently, we might
risk reproducing larger parts of the TI in the realizations.
Such verbose copying is partially remedied by the addition
of conditioning data and choosing a smaller search radius
as argued in Vilhelmsen et al. (2019). However, a smaller
search radius comes at the price of not reproducing the fea-
tures in the TI and adding variability more related to algo-
rithmic choices than geological variability. Luckily, plenty
of conditioning data are available for the simulations to rem-
edy some of the shortcomings of the training images. As ar-
gued in de Vries et al. (2009), subdividing the TIs and sim-
ulation domain into different areas is another possibility for
handling non-stationarity. To some degree, the geological el-
ements represent such a subdivision of the entire modeling
domain in the study area.

In the current study, we considered the boundaries be-
tween the geological elements fixed. In reality, there is some
interpretation uncertainty related to these boundaries, espe-
cially in data-scarce areas. Future studies may be able to
quantify this uncertainty. If this uncertainty is sufficiently
large such that it affects the simulation results significantly,
we put forward the idea of re-simulating boundaries between
geological elements as part of the simulation.

Because TIs are attributed to a specific geological element,
these TIs may be reused in other simulation studies with
comparable geological elements, and we therefore strongly
recommend building a TI library. This approach would alle-
viate the most fundamental of the issues in the current setups.
Information between TI and data becomes independent when
using a generalized TI. Specifically, the reuse of data (in con-
structing the TT and implicitly when inferring the resistivity—
lithology relationship) is eradicated. For a smaller geological
element, the TIs developed in the study area may also repre-
sent a proportionally larger portion of the expected variabil-
ity. An additional bonus would be a reduction in labor/time
since TIs are pre-existing or maybe only need slight alter-
ation.

https://doi.org/10.5194/hess-25-2759-2021

Conceptual TIs or those based on data from another study
area would most likely be preferable from a geostatistical
point of view as it would ensure independence of informa-
tion. However, in the case of a TI based on nearby data, the
TI should be close enough to the study area such that the
depositional and redox setting are comparable. Furthermore,
the study of Barfod et al. (2018) suggests that TIs become
secondary given a high amount of conditioning data. In fu-
ture studies and if a similar approach of TI creation within
the simulation domain is chosen, we recommend collabora-
tive efforts between geologists and geochemists in securing
the best possible location for representative TIs. We also sug-
gest that the level of detail in the TI should be case-specific,
involving a trade-off between the time to construct the TI, the
level of support in the available data, the background knowl-
edge, limitations due to size and how well the features can be
reproduced with the chosen parameterization.

7.6 Computationally attractive stochastic simulations

In the current setup, simulations are computationally feasi-
ble. One hundred realizations of both elements are gener-
ated in less than 2.5 h on a high-end personal laptop (Intel(R)
Core(TM) i7-8850H CPU @ 2.60 GHz, 6 cores (12 threads)
with 10 threads allocated to DeeSse. The average simulation
time for a single realization is hence just over 80s. Several
factors contribute to this: (1) the relatively small TIs making
the number of possible combinations limited, (2) the restric-
tion on a maximum of 20 conditioning points and (3) the
subdivision of the simulation grid into geological elements.
Some of the abovementioned factors are algorithm tuning pa-
rameters, while others are added bonuses of understanding
the geology in question (e.g., the ability to break the prob-
lem up into smaller bits and choose an acceptable level of
simplicity in the models). In this case, bringing expert field
knowledge to the modeling setup is advantageous.

7.7 Multi-purpose modeling results through
uncertainties

The proposed workflow allows incorporation of quantified
uncertainties into the input data and structural uncertainties
in the subsurface models. This is a major advantage over,
e.g., static models. We specifically dealt with prior uncer-
tainty in the geological and redox conditions as portrayed in
the TIs and geological map and resistivity data (soft data).
Other sources of error (e.g., modeling and measurement er-
rors) in the input data can also be explored, as MPS offers a
flexible setup for treating data with uncertainties. Addition-
ally, it is clearly shown in the comparison between mode and
entropy of posterior and soft data that MPS adds additional
valuable information through the TIs that enable geologically
viable architecture, especially in cases where soft data are
too weak to provide significant support. The quantitative de-
scription of uncertainties as portrayed by the final ensemble
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of realizations also has many useful properties for additional
analysis. For instance, the ability to produce redox profiles as
in Fig. 12 is trivial once the simulation is completed. These
redox profiles make comparisons with previous studies pos-
sible while offering many other possibilities for summary
statistics and quantifying uncertainty. This flexibility in the
final analysis is one of the main benefits of applying geosta-
tistical mapping of redox conditions (and geology). With the
current methodology, depth profiles can also be calculated
for specific sets of x and y coordinates to investigate some of
the spatial variation in redox. Another example would be to
investigate the distribution of redox conditions in the geolog-
ical groups, which allows assessment of new hypotheses on
the coupling between geology and redox. It may also reveal
insights into the spatial dependencies of such couplings and
showcase potential geological windows for oxic conditions
at depth. Entropy gives insight into the nature of information
content, and therefore it would be an active tool in finding
the best spot for further investigation, i.e., showing where
information is lacking. For instance, in the case of redox, en-
tropy might be suited to assisting a focused field campaign in
retrieving more information of redox in the buried valley el-
ement. In the current case, the Quaternary sequence in many
places showed a lack of information in the first 10-20 m that
is typically critical to model.

From the study area, it seems that it is possible to create a
computationally feasible joint stochastic 3D high-resolution
model of redox and geology with the current setup. How-
ever, these findings cannot be extrapolated directly to other
study areas. Future research includes testing the method in
other catchment areas to assess the robustness and general
applicability. Many improvements, besides fine-tuning algo-
rithm parameters, also exist. We, e.g., expect improvements
and minor changes to the overall setup, as different study ar-
eas will contain site-specific challenges that should be ad-
dressed. As mentioned, one of the current issues that need to
be addressed is how best to quantify and integrate soft data.
Besides the resistivity—lithology relationship, we also recog-
nize the need for an extensive study on the quantification of
uncertainty in geological maps such as the geological surface
map presented here, but it is beyond the scope of the current
study.

8 Conclusions

This study sets out to model both redox architecture and ge-
ology simultaneously in high-resolution 3D due to the de-
pendency of the evolution of the subsurface redox conditions
on the hydrogeological pathways. This is achieved using a
bivariate MPS simulation. MPS modeling with a bivariate T1
of geology and redox presents some important features com-
pared to previous mapping studies: (1) MPS effectively pro-
duces geology and redox following expectations and (2) TIs
provide an intuitive and easy collaboration across different
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fields of expertise. Valuable expert information, otherwise
difficult to quantify, is seamlessly integrated within MPS.
This ensures in our case that there is a correspondence be-
tween geology and redox conditions, which is one of the key
strengths of the proposed methodology. Although challenges
in the current approach exist, we conclude that the proposed
methodology offers improvements to existing methods for
mapping geology and redox by producing consistent real-
izations of both variables. The flexibility of the geostatisti-
cal results as represented by the ensemble of realizations al-
lows comparisons with traditional mapping techniques. We
interpret and model individual sedimentary layers into co-
herent volumes (“geological elements™) that greatly help to
guide our simulation results and reduce computation costs.
This new mapping technique should aid our understanding
of the uncertainties and limitations of our knowledge and
data. High-resolution 3D understanding of both redox and
geological architecture will likely improve predictions of N
retention and water pathways in the subsurface. The general-
izability of these results is subject to certain limitations as the
proposed workflow is only tested on a single study site. This
study lays the groundwork for future research into coupled
understanding of geology and redox using MPS. Despite its
exploratory nature, this study offers valuable insights into the
feasibility of joint geostatistical modeling of redox and geol-
ogy. Several questions remain to be answered regarding inter-
dependence between different sets of quantified information
and integration of soft data. The geological and redox archi-
tecture simulations might be incorporated into hydrological
modeling with N transport to be used for N-retention map-
ping of the subsurface important for future more targeted N
regulation of agriculture.

Code and data availability. All  files needed for running
the MPS simulation software are available through Mad-
sen (2021). The files can be run through the DeeSse software
(https://www.ephesia-consult.com/portfolio/deesse/, Ephesia
consult, 2021). The geophysical datasets (excluding the tTEM
survey) are publicly available through the Gerda database
(https://eng.geus.dk/products-services-facilities/data-and-maps/
national-geophysical-database-gerda GERDA, GEUS, 2021),
while the borehole information is publicly available through the
Jupiter database (https://eng.geus.dk/products-services-facilities/
data-and-maps/national-well-database- jupiter Jupiter,
GEUS, 2021). The surface geology map can be retrieved
freely from the Maps of Denmark service of GEUS
(https://eng.geus.dk/products-services-facilities/data-and-maps/
maps-of-denmark/pricelist, Maps of Denmark, GEUS, 2021).
The elevation model of Denmark is provided by the Danish
Agency for Data Supply and Efficiency and is publicly available
(https://kortforsyningen.dk/indhold/english, SDFE, 2021). Due to
the project policy of Mapfield, the tTEM survey data are not yet
publicly available but will be at a later stage after the end of the
project released to the Gerda database.
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