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Abstract— Modern transient electromagnetic (TEM) surveys,
either ground-based or airborne, may yield thousands of line
kilometers of data. Parts of these data, especially in areas with
dense infrastructure, are often disturbed by electromagnetic
couplings due to infrastructure, e.g., power cables and fences.
In most cases and in particular when working in a hydro-
geological context, such coupled data must be culled before
inversion. The process of identifying and culling coupled data
is a manual task, requiring specialists to examine and process
the data in detail. Manual data processing is subjective, difficult
to reproduce, and time-consuming. To automate the complex data
processing workflows, we propose an expert system based on a
deep convolutional auto-encoder to identify couplings in the data.
We configure the auto-encoder to learn an encoded representation
of TEM data in a latent space. A reconstruction part that decodes
the encoded representation is also trained, aiming to reconstruct
input data. If the data unaffected by electromagnetic couplings
are observed by the auto-encoder, the reconstructed output will
have low error to the input. However, when having couplings
in the data, the reconstruction error is elevated, indicating a
nongeologic anomaly. The size of the anomaly is based on the
relative error between the input data and the reconstructed
output normalized by the data standard deviation. We show
that the proposed approach displays high-quality data processing
within a fraction of a second for a ground-based and an airborne
system, which is either ready for inversion or requires minimal
further quality inspection.

Index Terms— Anomaly detection, convolutional neural net-
work, data processing, deep learning, expert system, subsurface
information, transient electromagnetics (TEM).

I. INTRODUCTION

RANSIENT electromagnetic (TEM) methods provide
detailed images of the subsurface by uncovering
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variations in the electrical properties of subsurface conduc-
tivity. Such methods have been used for a variety of appli-
cations, including aquifer characterization [1], infrastructure
planning [2], locating ground water extraction sites [3], and
mineral exploration [4].

Modern TEM surveys, ground-based [5] or airborne [6], [7],
[81, [9], yield large datasets that often contain thousands of line
kilometers of data. Parts of these data, especially in areas with
dense infrastructure, are often disturbed by electromagnetic
couplings from man-made infrastructure, e.g., pipes, fences,
power lines, telephone cables, and other underground cables.

The coupling phenomena arise when a TEM transmit-
ter induces currents in a man-made conductive infrastruc-
ture. The responding signal (the coupling response) from
the infrastructure is inherently synchronous with the Earth
response. The measured data are, therefore, a coherent sum
of the response from the Earth and the coupling response.
The amplitude of the coupling response strongly depends
on the size and shape of the man-made conductor, and the
distance between the transmitter and the conductor [10]. The
signature of couplings can appear as oscillatory (capacitive
coupling), or as a smoother exponential decay superposed
on to the Earth response (inductive couplings). The physics
behind the coupling effects have been discussed in detail in the
literature [10], [11], [12].

Couplings to infrastructure cause the data to be corrupted
to a degree that cannot be corrected [13]. Therefore, the TEM
data denoising approaches, such as [14] and [15], are not
feasible. In most cases and in particular when working with
hydro-geological models, a quasi-1-D geological layering is
to be determined by the data. If such coupled data or their
denoised counterpart are inverted, it creates spurious subsur-
face features, which heighten the risk of flawed geological
interpretations and incorrect conclusions. Therefore, couplings
in the data must be identified and culled prior to inversion.

Existing deep learning approaches for TEM data processing
[16], [17] use supervised learning where labels from manually
processed data from existing survey areas are used to train
deep learning methods. However, manually processed data
make the data-driven methods biased to local survey areas
and limited geological conditions, which is infeasible for
general deployment. Manually processed data also contain
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irregularities, e.g., in the form of subjective inconsistent human
labeling, which create additional complexities.

As of today, identification and culling of coupled data
is mainly a manual and very tedious task, which requires
specialists to examine the data in detail even though filters
have been designed to support the culling of coupled data [18].
The manual data processing is even more challenging in areas
with dense infrastructure where significant parts of the data
can be corrupted.

To automate the complex data processing workflows,
we present an alternative approach where identification of cou-
plings is considered an anomaly detection problem. We deploy
a deep convolutional auto-encoder-based expert system to
differentiate couplings from uncoupled data (data not affected
by couplings) in an automated manner. Since auto-encoders
are unsupervised learning methods, we take the advantage of
unlabeled data and make use of TEM data generated from a
huge ensemble of 1-D subsurface models. The auto-encoder
is configured and trained to learn an encoded representation
of synthetic TEM data in a latent space. A reconstruction
part is also trained that decodes the encoded data aiming to
reconstruct the input data. If uncoupled data are observed
by the auto-encoder, the reconstructed output will have low
error to the input. However, when dealing with couplings,
the reconstruction error will be elevated, which indicates an
anomaly in the input data. We investigate the performance
of the automated processing using our expert system on both
ground-based and airborne TEM data, and compare it against
the manual processing.

The remainder of this article is organized as follows.
In Section II, we discuss the general methodology in detail.
In Sections III and IV, we elaborate the methodology applied
to a ground-based and an airborne system, respectively.
We also compare the data processing and inversion results of
the proposed automated approach with the standard manual
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workflows in Sections III and IV. We discuss the limitations
and future prospects of the proposed scheme in Section V and
give the conclusion remarks in Section VI.

II. GENERAL METHODOLOGY

Machine learning, especially deep learning methods,
are powerful tools having the capabilities to extract distinct
patterns from the data [19]. An auto-encoder is a special type
of deep learning method that employs an encoder—decoder
framework to learn efficient representation of unlabeled data
[20]. The encoder extracts representative features from the
input data, while the decoder reconstructs the input from the
encoded representation. The data are generally encoded at the
bottleneck layer, known as the latent space, which ensures
learning of useful features instead of merely copying input to
the output.

We use a convolutional auto-encoder where the net-
work layers are composed of multiple convolutional layers.
Convolutional layers have fewer learning parameters and lever-
age the idea of parameter sharing, sparse connectivity, and
equivariant representations to ensure effective encoding of
invariant features from the input data. By learning only the
representative features from the data, anomalous data lead to
high reconstruction error, which acts as an indicator for an
anomaly. An abstract representation of our convolutional auto-
encoder is shown in Fig. 1, while a detailed description of the
network is given in Section IIL

The convolutional layer can be defined as

M =7 | D x ®@w)+0] ()

jeJ

where h% | is the latent representation of k feature maps in
the layer L + 1, y is the activation function, and x,{ is the
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jth feature map of the output in layer L. w¥ and b% are the
kth filter weight and bias for the layer L, respectively, and
® is the 1-D convolution operation. If the feature map x; has
the size W, filter has size F, and bias has size B, the output
size of a convolutional layer will be (W x F + B) assuming
a stride of 1.

The convolutional layer is generally followed by an activa-
tion function y. A nonlinear y reveals nonlinear correlations
between the input features. In our case, we deploy the rectified
linear unit (ReLu) given by

0 0
y(x)={’ te @)

x, x>0.

Our choice of a ReLu activation function is made because
of its easy optimization advantages [21] and general purpose
applicability [22].

For the encoder side of the bottleneck framework, we use
the 1-D max-pooling layer following the convolutional and
ReLu layers to downsample the input data by taking the
maximum value over a window of a specified size. The pooling
layers reduce the number of connections to the subsequent
layer. The output shape of the pooling layer is given by

xs — P

hg = +1. 3

S

If x is the size of the input feature map, Ps is the pooling
size, and S is the size of stride, A is the output size of the
feature map.

To make a decoder from the latent space representation,
we deploy a 1-D upsampling layer that repeats the temporal
step P times and follows the convolutional layers. The weights
in the convolutional layers ensure that the decoder reproduces
the input data from the encoded representation.

We use the mean-squared error between the network input
and the reconstructed output from the encoded representation
as the loss function. To minimize the loss function for the
training dataset, the network parameters are optimized by the
Adam algorithm [23]. Additionally, an early stopping criterion
[24], [25] is applied that ensures the network training is
stopped when the loss function stops improving.

The input to the network is the observed TEM data dps
while the output dyn is the reconstruction of dyps from
the encoded representation by the auto-encoder. The idea is
that if uncoupled TEM data are observed by the network,
it will be able to reconstruct them with low error. However,
if coupled data are observed, the reconstruction error will be
elevated, which would indicate an anomaly in dps. In our case,
we define a confidence metric as in the following equation:

N

Clo) = %; [£G) < a] @
where
. 1, if true
[e@) < al= {O, otherwise )
and

_ (i) = don ()

g(l) Adobs (l)

(6)
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Fig. 2. Anomaly detection on synthetic data using the auto-encoder: (a) dops
with no couplings and the reconstructed output dxn shows low & for each
data point yielding in C(3) = 24/24 =1 and (b) dobs With synthetic anomaly
at ~200 us, and the corresponding dyn shows high ¢ indicating anomaly in
dobs and resulting a lower value of C(3) = 14/24 = 0.58.

The confidence metric (4) is based on the relative error &
between the input data ds and the reconstructed output dnn,
which is normalized by the data standard deviation Adps.
It counts the number of data points having relative error &
below a threshold a. The concept of (4) for an uncoupled
synthetic TEM signal and its perturbed version representing a
synthetic coupling is shown in Fig. 2.

For the examples shown in Fig. 2, the threshold a is set
to 3 (indicated by red dashed line) and the number of data
points N being evaluated is 24. Additionally, we assume
Adops = 1. In Fig. 2(a), uncoupled synthetic TEM data dops
and its reconstructed output dnn are shown. The relative error
¢ for all the data points is below the threshold a. In this case,
C(3) = 24/24 = 1, yielding maximum confidence in the input
data to be uncoupled. In Fig. 2(b), the TEM data are perturbed
at the data point at ~200 us to represent a synthetic coupling.
The relative error ¢ at late times is elevated, which yields a
lower value of C(3) = 14/24 = 0.58, indicating an anomaly
in the data.

The methodology presented in this section provides the
basic framework. The specific methodology applied to the data
from a ground-based [5] and an airborne [6] TEM system is
discussed in detail in Sections III and IV, respectively.

III. APPLICATION TO A GROUND-BASED TEM SYSTEM

The ground-based towed TEM (tTEM) system [5] deliv-
ers images of the subsurface with depth, typically pene-
trating down to ~100-120 m, and is capable of mapping
100-150 hectares per day. The tTEM system is a dual-moment
system where the system records low moment (LM) and high
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Fig. 3. Examples of tTEM raw data stacks: (a) data with no couplings;

(b) coupled data; (c) data stack with random noise at late time data points
indicated by high error bars; and (d) data stack with coupling in HM data
from ~50 us onward.

moment (HM) data using two different current pulses. The
measurement error, i.e., data uncertainty A, is calculated for
each data point of a single raw stack by stacking several
transient decays.

Fig. 3 shows four raw stacks of LM and HM data where
the uncertainty A of each data point is represented by the
error bars. Fig. 3(a) shows uncoupled data having small error
bars, meaning a coherent signal. Couplings are also coherent
by nature and, therefore, result in data with small error bars.
It is observed in Fig. 3(b) until 300 us. In addition, the late
time data points in HM are usually affected by the random
background noise and, therefore, associated with larger errors
(especially see Fig. 3(c), HM gates after 200 us). As such,
the typical noise level in tTEM data is observed at around
1 nV/m?. We also show a raw stack in Fig. 3(d) where the
LM data are uncoupled, but couplings are observed in HM
data points from ~40 us onward.
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Fig. 4. Examples of resistivity structures generated by using von Kdrman

functions and the corresponding resistivity models when the TEM data of von
Kédrmén models are inverted.

Evident from Fig. 3, the LM data hold few additional
early data points compared to the HM for the tTEM system.
Additionally, the LM and HM transmitter turn off times differ
only by a few microseconds. Therefore, the effect of coupling
is most often present in both the LM and the HM data.
In the manual processing, for the abovementioned reasons,
both LM and HM data are culled if a coupling is observed
in HM data. For the automated processing, we only train one
network for the HM data processing, and similar to the manual
processing, we discard the LM data if a coupling is detected
in the HM data.

A. Training Dataset

The training dataset consists of forward responses of TEM
resolvable 1-D resistivity models ranging from 1 to 2000 -m.
The initial resistivity models are generated with 90 layers of
exponentially increasing thicknesses, where the resistivity of
each layer is chosen by using the broadband von Karman
covariance functions [26], [27] by varying resistivities, spatial
distances, correlation lengths, and amplitudes. The resistivity
models are chosen to have a top layer thickness of 1 m and a
depth to last layer boundary at 120 m, which is the absolute
maximum depth of investigation (DOI) of the tTEM system.
The TEM responses of these models are inverted by using
a standard least-squares inversion algorithm [28] to obtain
geophysically resolvable models. As such, complex resistivity
structures often produce TEM data that can be well-fit by
simpler resistivity models. Two such examples are shown in
Fig. 4 where the TEM response of the von Karman resistivity
structures is inverted to result in simpler resistivity models.

The process of generating the dataset of TEM resolvable
models is explained in detail by Asif et al. [29], [30], and the
dataset is publically available [30].

In total, one million forward responses are generated from
resolvable 1-D resistivity models, which are sampled at
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TABLE I
NETWORK CONFIGURATION

Layer Type # of Filters Filter Size Output Shape
Input - - (24,1)
Masking - - (24,1)
Convolution 32 3,1 (24,32)
ReLu - - (24,32)
Max Pooling - 2,1) (12,32)
Convolution 32 3,1 (12,32)
ReLu - - (12,32)
Max Pooling - 2,1) (6,32)
Convolution 32 3,1 (6,32)
ReLu - - (6,32)
Up Sampling - 2,1) (12,32)
Convolution 32 3,1 (12,32)
ReLu - - (12,32)
Up Sampling - 2,1) (24,32)
Convolution 1 3,1 (24,1)

27 exponentially increasing time instants from ~8 us to
~1 ms, similar to the HM time range of the tTEM system.

B. Network Configuration

We only want to investigate couplings and not random
background noise, which result in higher A. Therefore, the
data points after the time when A exceeds A, are masked
at the input of the network to evaluate noise-free data. This is
achieved by adding a masking layer where a mask value, set
to zero, is used to skip data points for all succeeding layers.

The shape of the input layer corresponds to the first 24 data
points of tTEM raw stack. We have not used all the data
points, as the pooling layer requires the input data to return
an integer representation when downsampled by the pool size
P;. We downsample the input features twice by a factor of
P; = 2 for an encoded representation of the input data. The
encoded representation is decoded to the original dimension
by an upsampling layer with the same step size used for
downsampling. The detailed network configuration is shown
in Table I.

To mimic the masking feature in the training dataset,
a random data point is picked for each training sample from
a uniform distribution, which is used to mask subsequent data
points. Once the network is trained, it can be used for the
evaluation of field data. The training loss of the network is
shown in Fig. 5, where an epoch refers to one complete pass
of the training dataset through the algorithm. The training takes
a total of 13 121 epochs, and each epoch consumes ~6 s of
processing time on a NVIDIA GeForce RTX 2080 Ti GPU.

C. Expert System Algorithm

Given the trained network AE at T time instants, raw
data stack RD(x, y) for x data points at ¢ time instants and
y number of raw stacks, data standard deviation RDy (x, y), and
a window size W, Algorithm 1 results in the output flags(x, y).
The flags(x, y) gives a binary decision for each data point of
the raw stack. In simple words, RD and RD, are averaged
over a window of W = 7 stacks to smooth out short-term
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fluctuations. To exclude the data points where the random
noise overpowers the TEM signal, we find the first data point
G 5 that exceeds A = 20% to identify noise-free data, and
assigned with a masking value to subsequent data points.

Algorithm 1 Algorithm for Field Data Evaluation for
Couplings
Input: RD, RDp, W, AE, &, fuax, Amax
Output: flags
Initialization:
1. for i I to x-W step | do

AD(:,1)= MovingMean[RD(:,i)] with W

ADp (:,1)= MovingMean[RDy (:,1)] with W

Find first gate Gy, in ADj (:,1) where ADp > Apax
ADpask (Gar:end, i)= 0

Ing(:,1)= Interpolate (AD,,sx) for T

OPap(:,1)= AE[Izg(:,1)1

OP(:,1i)= Interpolate[OP,z(:,1i)] for t

Calculate Cj(a) for AD(:,i) and OP(:,1i)

end for
2. for j = 1 to x-(2W) step 1 do
Cavg (J) = MovingMean[Cs] with 2w
if Cavg(3) > fuax then
flags(:, j) =1
else if C,yg(j) > 0.80XxfL.x then
flags(e <1, j) =1
else
flags(:, j) =0
end if
3. return flags

Since the time instants # at which the field data are recorded
might differ for different surveys due to the TEM system cal-
ibration [31], the masked data points are linearly interpolated
for the time instants 7' at which our network is trained on.
The interpolated data points become the input to the AE. The
output from AE is interpolated back to ¢, which is used to
calculate the confidence value C using (4).

To highlight longer term trends, the confidence values C are
averaged over a window size 2W. The smoothened confidence
values Cyy, are used for a fuzzy decision-making process
where all the data points of a raw stack are marked as coupled
if Cyyg has a low value. The data points of raw stacks with high
value of Cyy, are marked as uncoupled. However, for moderate
Cave values, only the data points having & below 1 are marked
as uncoupled. In our case, a = 2.5 and S = 0.99, which
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Fig. 6. Comparison of manual and automated data processing in the Aars
survey area (showing ~5 km x ~4.4 km area).

describe the rigorousness of the automated processing. The
parameters W, Apax, @, and S are discussed in detail
in Section V.

D. Field Data Results

To show the performance of the proposed methodology,
we apply it to a tTEM dataset acquired in northern Denmark,
close to the town of Aars. The dataset was collected in
2019 covering an area of ~23 km? with 456 line kilometers
of data (Fig. 6). The nominal line spacing is 25 m, and the
driving speed is ~10-15 km/h. The couplings from raw data
stacks were culled manually by an expert geophysicist using
Aarhus Workbench [32]. The data culled by the geophysicist
account for 22% of total raw stacks.

Fig. 6 shows the comparison of the proposed approach with
the manual processing. The blue and gray points in Fig. 6 rep-
resent the data marked as coupled and uncoupled, respectively,
by both processing schemes. The data locations at which the
processing schemes disagree are indicated with orange and
yellow points. The proposed approach keeps slightly more data
stacks as compared to the manual processing and accounts for
~1% of total stacks. In general, there is a 96% agreement
between the two processing schemes.

A visual inspection of a continuous ~60-s data stream and
the comparison of processing are shown in Fig. 7, where all
data points at one time instant yield a TEM curve similar
to Fig. 3. We clearly observe couplings in the data centered
at time instant 28 s in Fig. 7(a). This coupling pattern
was identified by the manual operator and has been culled
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Fig. 7. Comparison of the manual and automated processing, where the
orange region is marked as coupled—the data correspond to ~300 m distance:
(a) field data stream; (b) manual processing; (c) automated processing; and
(d) confidence metric for automated processing (highlighted area represents
moderate values where fuzzy decision-making is performed).

[marked with orange in Fig. 7(b)]. The coupling was also
detected by our proposed values obtained by (4), as in
Fig. 7(d). As our approach flags each data point, the couplings
are detected in an oblique manner.

A visual analysis of two more ~30-s data streams is shown
in Fig. 8(a)-(h) where the manual and automated processing
disagrees. Fig. 8(a) shows the raw data stack with some
signatures of capacitive couplings; however, it is not detected
in the manual processing [see Fig. 8(b)]. The automated
processing result and the corresponding confidence values are
shown in Fig. 8(c) and (d), respectively. The coupling signature
is relatively clear from ~70 us and onward as shown in the
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Fig. 8. Manual and automated data processing, where the schemes disagree.
The orange region is marked as coupled: (a) and (e) field data streams;
(b) and (f) manual processing; (c) and (g) automated processing; and
(d) and (h) confidence metric for automated processing.

raw stack at the time instant ~14 s in Fig. 9(a). The proposed
strategy, however, keeps the data points until ~40 us (marked
in green), which is before the coupling effect is observed.

On the other hand, Fig. 8(e) shows a data stream near a
road. In such a scenario, some infrastructures, e.g., a buried
power line, are excited by the tTEM transmitter, which shows
signatures similar to strong inductive couplings [11]. The
manual operator has removed all data in the vicinity of the
road, as shown in Fig. 8(f). The automated approach cannot
distinguish this type of coupling from uncoupled data, as the
impact of this coupling appears as an enhanced signal level,
which could easily be interpreted as a geological change in
the signal (see Fig. 9(b) up until 70 us where the raw stack
at time instant ~13 s is shown).
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Fig. 9. Single raw data stack and network output for the vertical dashed

lines (color coded by title) in data streams of Fig. 8: (a) raw data stack at
time instant ~14 s in Fig. 8(a) and (b) raw data stack at time instant ~13 s
in Fig. 8(b).

To compare the inversion results, we invert both datasets
with the 1-D spatially constrained inversion algorithm [33]
using AarhusInv [28]. We apply the commonly used settings
with a 30-layer smooth model discretization with the starting
layer boundary at 1 m and the last layer boundary at 120 m.

Both datasets are inverted with the same regularization
strength, i.e., same vertical and horizontal roughness con-
straints. The constraints are set loosely so that the inverted
models are mainly data-driven. Additionally, the data points
exceeding 10% data uncertainty are excluded. Furthermore, the
raw data stacks having less than seven usable data points after
data processing are omitted. This decision is primarily based
on the signal level and data quality of the survey. However,
it is not the focus of this study, and the inversion settings
remain the same for both processing schemes for one-to-one
comparison. The manually processed data take 13 iterations to
converge and result in a data misfit of 0.65. On the other hand,
the automated processed data converge in 12 iterations and
have a lower data misfit of 0.60. The data misfit ¢, also known
as data residual, is calculated as a least-squares difference
between the observed data d.,s and modeled data F(m) in
a logarithmic space normalized with the data uncertainties
Ad,ys, and is given in the following equation. Hence, a data
residual of one corresponds to a fit to within one standard
deviation of the data uncertainty

p(m) = ((logm(dobs) - 10g1o(F(m)))2> E. o

log,o(1 4+ Adops)?

The inversion results for two profiles marked in Fig. 10(a)
are shown along with the data misfit in Fig. 10(b) and (d) for
the manual processing. The inversion results for the automated
processing are shown in Fig. 10(c) and (e), and the data
residual of most of the inverted models for both processing
schemes is below one, which means that the modeled data
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fit the observed data within the error bars. As expected, the
resistivity models for both cross sections of the profiles in
Fig. 10 are very similar in terms of the resistivity structure
and DOI [34]. A minor difference is observed just before
the gap in the resistivity section in profile 2 at coordinate
~480 m [see Fig. 10(d) and (e)]. The difference is caused
by minor dissimilarities in the data culling of the couplings
for the two processing schemes, causing gaps in the model
section. The automated strategy keeps some early time data
points, which results in a smaller gap, but with a shallower
DOI for the models supported by early time data points. The
manual processing is more conservative, and the operator has
removed the raw data stacks completely, resulting in a slightly
larger gap.

We also observe some differences in the resistivity section at
profile coordinate ~1500 m in profile 2 [Fig. 10(d) and (e)].
The automated processing has kept some data here that were
discarded in the manual processing. Since the data are kept
in automated processing, a small anomaly in the resistivity
section is observed. The anomaly could indicate an inductive
coupling in the data not identified by the automated process-
ing, as it can represent a geological change, like the example in
Fig. 8(e). In this particular case, a residential facility is nearby,
and the anomaly is most likely caused by an underground
utility connection. However, there is no visual evidence of
the cause of this coupling. This fits well with the experience
that in many cases, the source of coupling cannot be visually
identified, and may only be evident from the data.

In a geological context, the resistivity models in
profiles 1 and 2 in Fig. 10 represent a two-layered structure,
where the top resistive layer indicates a quaternary meltwater
sand underlain by a low resistive prequaternary clay layer.
A dipping thin clay layer is interbedded in the top sandy layer,
as seen in profile 2.

IV. APPLICATION TO AN AIRBORNE SYSTEM

To apply the proposed methodology on an airborne
TEM dataset, we use data from the SkyTEM system [6].

SkyTEM data (uncoupled)

—f— Low moment data
—f— High moment data

105 SkyTEM data (partially coupled)

—— Low moment data
—f— High moment data

T 1w0°®
<
S
g
2 10°°
10710
10711
10712
10 100 1000 10000 10 100 1000 10000
Time (ps) Time (ps)
() (b)
Fig. 11. Examples of SkyTEM raw data stacks: (a) data with no couplings

and (b) data stack with couplings at late time data points in LM (50 us
onward) and in HM from 100 us onward. Larger error bars are due to the
random background noise.

The SkyTEM system typically images the subsurface down
to 300—400 m. Similar to the tTEM, the SkyTEM system uses
a dual-moment measurement acquisition scheme. However,
in the SkyTEM case, the LM and HM waveforms are signifi-
cantly different, and the LM and HM data span quite different
time intervals, as shown in Fig. 11. The larger differences in
the LM and HM data often result in couplings being observed
in one of the moments only. Therefore, we need to train one
network for the LM data and another one for the HM data.

A. Training Dataset

The process of generating the training dataset for the air-
borne system is similar to the approach given in Section III-A.
For the resistivity models to be compatible with the SkyTEM
system, we consider a top layer thickness of 4 m and a depth
to last layer boundary at 500 m. In total, we generate one
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Fig. 12.  Comparison of manual and automated data processing (18 km x 23 km area): (a) processing comparison for LM data and (b) HM data processing
results.

million forward responses, sampled between 10 and 350 us
for LM and 127 us and 13 ms for HM, which is the typical
time range of data from the SkyTEM system. Additionally,
the flight altitude is uniformly chosen between 10 and 120 m
for each model.

B. Network Configuration

The network configuration for the processing of HM data of
the airborne system is kept the same as for the ground-based
tTEM system, whereas the configuration for LM processing is
slightly different due to fewer data points of LM data.

The shape of the input layer for the LM data processing
corresponds to 16 data points of LM. The input shape is chosen
to result in an integer representation during downsampling for
the bottleneck of the network. The rest of the configuration
remains the same.

The training loss of the LM and HM networks follows a
similar trend as in Fig. 5. The LM network training takes a
total of 14 699 epochs, and each epoch consumes ~3.5 s of
processing time while the HM network training takes a total
of 21 824 epochs and consumes ~6 s of processing time per
epoch. The LM network training takes less time as compared
to the HM network due to a lower number of data points at
the input which reduces the total weights of the LM network.

C. Field Data Results

We use the same algorithm as presented in Section III-C
to show the performance for the airborne system. Due to
the sensitivity of the LM data to flight altitude, we choose
Pmax = 0.86. We apply both networks for LM and HM data
processing to a subset of the SkyTEM dataset acquired in
Heretaunga Plains, located in the southern North Island of
New Zealand. The Heretaunga SkyTEM survey was done in
2020 and holds ~2600 line kilometers of data. In the manual
processing, the culled LM data account for ~28%, and the
culled HM data account for ~20% of total HM stacks.

Fig. 12(a) and (b) shows the comparison of performance
for LM and HM airborne data, respectively. Similar to the
tTEM processing results, automated data processing generally
shows good agreement with manual processing and agrees
for 84% for LM and 94% for HM data. The automated
processing keeps ~12% more LM data and ~10% more
HM data.

We show an approximately three-minute long data
stream with LM data and corresponding flight altitude in
Fig. 13(a) and (b). It is evident that a higher altitude generally
results in lower signal level and a lower flight altitude results
in a higher signal level. There is an obvious coupling between
the time interval 30 and 60 s in the LM data [Fig. 13(b)], which
is removed in the manual processing (marked in orange),
as observed in Fig. 13(c). Additionally, some outlier data
points, e.g., at times ~150 and ~160 s, have also been
removed in the manual processing by the filters designed
to assist data processing [18]. The result of the automated
processing is shown in Fig. 13(d) based on the confidence met-
ric given in Fig. 13(e). The proposed automated strategy results
in lower confidence values for anomalous data and effectively
identifies couplings between the time interval 30 and 60 s.
However, it also removes some data stacks and data points at
the outliers, e.g., at time ~160 s.

For an inspection of HM data, we show a data stream
and the corresponding flight altitude in the second column
of Fig. 13. There are two obvious areas centered at ~75
and ~110 s where the HM data [Fig. 13(g)] are affected
by couplings. The coupled HM data are removed by the
manual operator (marked in orange) shown in Fig. 13(h). The
automated approach also removes these anomalies effectively,
observed in Fig. 13(i) based on the confidence values given in
Fig. 13(j). It is evident from Fig. 13(j) that the coupled data
result in lower confidence values.

To compare the inversion results for the automated and
manually processed data, the airborne data are inverted using
the same framework described in Section III. In this case,
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the models are discretized from 4 to 500 m in depth, and
data points exceeding 20% data uncertainty are excluded.
Additionally, the raw data stacks having less than seven usable
LM or HM data points after data processing were omitted
prior to the inversion. The manually processed data take
16 iterations to converge and result in a total data misfit
of 0.65. On the other hand, the automated processed data
converge in 13 iterations with the same misfit.

The data processing results for another data stream are
shown in Fig. 14(a) and (b), and the inversion results for the
corresponding processed data are shown in Fig. 14(c) and (d),
respectively. In general, there is a good agreement between

the inversion results for both processing schemes. However,
the proposed automated strategy keeps more early time data
points at several instances, which results in more subsurface
information with shallow DOIL.

In a geological context, the top ~100 m in the central
part of the section is the unconsolidated sediments followed
by the basement. The unconsolidated sediments consist of a
~5-m top resistive sand layer followed by a ~10-m conductive
clay layer and a ~90-m-thick high-resistive gravel layer. The
basement reaches the surface in the southwest part while the
boundary to the basement is unclear in the northeast part due
to limited DOI.
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Fig. 14.  Comparison of manual and automated processing for LM and HM airborne data, and the corresponding inversion results. The profile is shown in
the map: (a) processing by manual operator; (b) automated processing; (c) inversion results for the corresponding manual data processing; and (d) inversion

results for the corresponding automated data processing.

It should be noted that the raw data stacks in Fig. 14 are
plotted over time (x-axis) while the resistivity models are
shown on a distance x-axis. Due to variation in flight speed,
some misalignments are observed between the data stacks
and corresponding inversion results. As such, gaps in the
resistivity section corresponding to the culled data stacks are
not perfectly aligned.

V. DISCUSSION

The inversion on the data processed by the proposed auto-
mated strategy takes fewer iterations to converge as compared
to the manually processed data due to the improved handling
of the couplings, especially in the ambiguous zones. As such,
the footprint of the TEM system widens with depth; therefore,
the signature of couplings generally appears in late time data
points first and in early time data points afterward as the
system approaches to the coupling source. On the contrary,
when the system moves away from the coupling source, the

coupling effect fades in early time data points first and in late
time data points afterward. These ambiguous zones are dealt
with appropriately due the fuzzy decision-making workflow
where each data point is flagged as coupled or uncoupled for
moderate values of Cyy, (see Figs. 7 and 13). This is normally
not done in manual processing, as it would make a tedious
task even more challenging and time-consuming.

Our automated approach is unaffected by different proper-
ties of the man-made conductors, e.g., dimension and buried
depth, that influence the amplitude of the coupling response.
As long as the observed data cannot be represented by 1-D
model parameters, the reconstruction error from the network
is elevated, which indicates coupling in the data.

However, there are occurrences during a TEM survey when
a coupling response mimics a geological response. If such
data can be represented by 1-D model parameters, the auto-
encoder reconstructs the data with low error and the data will
not be discarded. In these scenarios, the artifacts may be seen
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in the inverted data, which are also observed at ~1500 m in
Fig. 10(e). In scenarios where an anomalous-like geological
pattern appears in the data close to any infrastructure, the
data are conservatively culled by the manual operator to avoid
any misrepresentation. Therefore, we see no anomaly in the
inverted data processed manually [see Fig. 10(d)]. One could
make use of remote sensing data, e.g., satellite maps, to locate
infrastructure and remove data in its near vicinity.

If there are 2-D or 3-D effects in the data that cannot be
represented by any 1-D resistivity model, a low confidence
value may be obtained for such data, which consequently
might be identified as an anomaly by our expert system.
However, the data with 2-D or 3-D effects also require a
different modeling framework. A future expansion of the data
space incorporating data with 2-D or 3-D effects may enable
its identification. To generate a 2-D or 3-D resistivity database,
one would generate the initial von Kdrman models as 2-D
sections or 3-D volumes and use a 2-D or 3-D forward and
inversion process, which of course would be much more
computationally expensive compared to the 1-D case.

It is important for the proposed approach to have reliable
data uncertainty estimates. For the SkyTEM and tTEM data
used in the examples, the uncertainties for the data points for
the raw stacks are estimated based on the standard deviation
from the raw transients [5]. For moving TEM systems, e.g.,
the airborne SkyTEM and ground-based tTEM, it is important
to have a relatively short raw stacking window to obtain good
uncertainty estimates and to prevent the coupling signatures to
be smeared, which would make the detection of the coupling
more difficult. Further stacking of the TEM data can be
applied after the automated data processing scheme to suppress
the random background noise. Obtaining the raw data stacks
and the corresponding data uncertainties is not trivial and
may not be available for some TEM systems on the normal
user/client level. In that case, the thresholds o and fpax
may be empirically adjusted to obtain adequate processing
results.

The automated processing involves several parameters, i.e.,
0, Pmax> W, and Apax. The thresholds o and S give an
intuition about the leniency or strictness in the automated data
processing. The window size W is used to smooth out short-
term fluctuations in the raw data stacks. A larger value of W
would smear the effect of couplings in the data. Additionally,
A max 1dentifies noise-free data and a smaller value means more
certainty in the data. However, a higher value of Ay, may
include some data points that are affected by the background
noise. In that case, the values of ¢ for such data points will
still be low due to their higher data uncertainty and they will
be classified as uncoupled. These parameters are not very
sensitive and can be adjusted in different ways to obtain similar
data processing results.

Extensive testing on the data of several survey areas reveals
that the same set of thresholds results in the best performance
compared to the manual processing by searching for the best
parameters by a grid-search method. This scenario may not
be true if the signal levels are drastically low, e.g., in a very
resistive case. In that case, the thresholds can be adjusted
appropriately.
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The proposed approach is fast and takes only 0.3 ms
per raw data stack on an Intel Xeon Gold 6132 CPU at
2.60 GHz. Therefore, it can be incorporated directly in the
TEM systems for real-time data processing. Our strategy is
largely insensitive to the system transfer functions, e.g., system
waveforms and low-pass filters in the receiver system, unless
significant changes are made. The proposed method can easily
be extended for other TEM systems by retraining on forward
responses for those systems.

A small filter size in the convolutional layers ensures faster
network training by reducing the computational complex-
ity [35], and an odd number filter size symmetrically divides
the previous layer data around the output. The chosen number
of filters in the convolutional layers results in the best tradeoff
between inference time and data reconstruction accuracy, and
increasing the number of filters does not substantially increase
the reconstruction accuracy.

The dimensionality of the latent space should ensure that
only the useful features are learned instead of merely copying
the input to the output. Our trained networks cannot recon-
struct the data affected by couplings, which indicates that only
the useful features are learned at the bottleneck. However,
the dimensionality of the latent space can be reduced at the
expense of increased reconstruction error.

We have only compared the automated processing against
the manual processing. To the best of authors’ knowledge,
there are no other automated methods that would operate
without training on a subset of the data from the specific
survey area.

Our methodology is designed in a hydro-geological context.
If the infrastructure that induces coupling response in the data
is considered as exploration targets, a different strategy may
be required where similar coupling patterns are identified.
However, it is beyond the scope of this work and can be
considered as future work.

VI. CONCLUSION

We have presented an automated approach to identify and
cull couplings to infrastructure in ground-based and airborne
TEM data. Due to the unsupervised learning strategy, our
method is flexible to various survey areas and diverse geo-
logical conditions. The benefits of an automated and fast data
processing approach are higher for electromagnetic surveys
in areas with dense infrastructure where a major part of
the data can be affected to couplings, and the manual data
processing would be even slower. Our method is a significant
step forward toward completely automated processing and
inversion workflows to enable TEM methods to deliver the
subsurface information in a time-efficient and cost-effective
manner without the need for highly skilled specialists.
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