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Abstract— Modern transient electromagnetic (TEM) surveys,1

either ground-based or airborne, may yield thousands of line2

kilometers of data. Parts of these data, especially in areas with3

dense infrastructure, are often disturbed by electromagnetic4

couplings due to infrastructure, e.g., power cables and fences.5

In most cases and in particular when working in a hydro-6

geological context, such coupled data must be culled before7

inversion. The process of identifying and culling coupled data8

is a manual task, requiring specialists to examine and process9

the data in detail. Manual data processing is subjective, difficult10

to reproduce, and time-consuming. To automate the complex data11

processing workflows, we propose an expert system based on a12

deep convolutional auto-encoder to identify couplings in the data.13

We configure the auto-encoder to learn an encoded representation14

of TEM data in a latent space. A reconstruction part that decodes15

the encoded representation is also trained, aiming to reconstruct16

input data. If the data unaffected by electromagnetic couplings17

are observed by the auto-encoder, the reconstructed output will18

have low error to the input. However, when having couplings19

in the data, the reconstruction error is elevated, indicating a20

nongeologic anomaly. The size of the anomaly is based on the21

relative error between the input data and the reconstructed22

output normalized by the data standard deviation. We show23

that the proposed approach displays high-quality data processing24

within a fraction of a second for a ground-based and an airborne25

system, which is either ready for inversion or requires minimal26

further quality inspection.27

Index Terms— Anomaly detection, convolutional neural net-28

work, data processing, deep learning, expert system, subsurface29

information, transient electromagnetics (TEM).30

I. INTRODUCTION31

TRANSIENT electromagnetic (TEM) methods provide32

detailed images of the subsurface by uncovering33
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variations in the electrical properties of subsurface conduc- 34

tivity. Such methods have been used for a variety of appli- 35

cations, including aquifer characterization [1], infrastructure 36

planning [2], locating ground water extraction sites [3], and 37

mineral exploration [4]. 38

Modern TEM surveys, ground-based [5] or airborne [6], [7], 39

[8], [9], yield large datasets that often contain thousands of line 40

kilometers of data. Parts of these data, especially in areas with 41

dense infrastructure, are often disturbed by electromagnetic 42

couplings from man-made infrastructure, e.g., pipes, fences, 43

power lines, telephone cables, and other underground cables. 44

The coupling phenomena arise when a TEM transmit- 45

ter induces currents in a man-made conductive infrastruc- 46

ture. The responding signal (the coupling response) from 47

the infrastructure is inherently synchronous with the Earth 48

response. The measured data are, therefore, a coherent sum 49

of the response from the Earth and the coupling response. 50

The amplitude of the coupling response strongly depends 51

on the size and shape of the man-made conductor, and the 52

distance between the transmitter and the conductor [10]. The 53

signature of couplings can appear as oscillatory (capacitive 54

coupling), or as a smoother exponential decay superposed 55

on to the Earth response (inductive couplings). The physics 56

behind the coupling effects have been discussed in detail in the 57

literature [10], [11], [12]. 58

Couplings to infrastructure cause the data to be corrupted 59

to a degree that cannot be corrected [13]. Therefore, the TEM 60

data denoising approaches, such as [14] and [15], are not 61

feasible. In most cases and in particular when working with 62

hydro-geological models, a quasi-1-D geological layering is 63

to be determined by the data. If such coupled data or their 64

denoised counterpart are inverted, it creates spurious subsur- 65

face features, which heighten the risk of flawed geological 66

interpretations and incorrect conclusions. Therefore, couplings 67

in the data must be identified and culled prior to inversion. 68

Existing deep learning approaches for TEM data processing 69

[16], [17] use supervised learning where labels from manually 70

processed data from existing survey areas are used to train 71

deep learning methods. However, manually processed data 72

make the data-driven methods biased to local survey areas 73

and limited geological conditions, which is infeasible for 74

general deployment. Manually processed data also contain 75
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Fig. 1. Abstract representation of the convolutional auto-encoder used in this study.

irregularities, e.g., in the form of subjective inconsistent human76

labeling, which create additional complexities.77

As of today, identification and culling of coupled data78

is mainly a manual and very tedious task, which requires79

specialists to examine the data in detail even though filters80

have been designed to support the culling of coupled data [18].81

The manual data processing is even more challenging in areas82

with dense infrastructure where significant parts of the data83

can be corrupted.84

To automate the complex data processing workflows,85

we present an alternative approach where identification of cou-86

plings is considered an anomaly detection problem. We deploy87

a deep convolutional auto-encoder-based expert system to88

differentiate couplings from uncoupled data (data not affected89

by couplings) in an automated manner. Since auto-encoders90

are unsupervised learning methods, we take the advantage of91

unlabeled data and make use of TEM data generated from a92

huge ensemble of 1-D subsurface models. The auto-encoder93

is configured and trained to learn an encoded representation94

of synthetic TEM data in a latent space. A reconstruction95

part is also trained that decodes the encoded data aiming to96

reconstruct the input data. If uncoupled data are observed97

by the auto-encoder, the reconstructed output will have low98

error to the input. However, when dealing with couplings,99

the reconstruction error will be elevated, which indicates an100

anomaly in the input data. We investigate the performance101

of the automated processing using our expert system on both102

ground-based and airborne TEM data, and compare it against103

the manual processing.104

The remainder of this article is organized as follows.105

In Section II, we discuss the general methodology in detail.106

In Sections III and IV, we elaborate the methodology applied107

to a ground-based and an airborne system, respectively.108

We also compare the data processing and inversion results of109

the proposed automated approach with the standard manual110

workflows in Sections III and IV. We discuss the limitations 111

and future prospects of the proposed scheme in Section V and 112

give the conclusion remarks in Section VI. 113

II. GENERAL METHODOLOGY 114

Machine learning, especially deep learning methods, 115

are powerful tools having the capabilities to extract distinct 116

patterns from the data [19]. An auto-encoder is a special type 117

of deep learning method that employs an encoder–decoder 118

framework to learn efficient representation of unlabeled data 119

[20]. The encoder extracts representative features from the 120

input data, while the decoder reconstructs the input from the 121

encoded representation. The data are generally encoded at the 122

bottleneck layer, known as the latent space, which ensures 123

learning of useful features instead of merely copying input to 124

the output. 125

We use a convolutional auto-encoder where the net- 126

work layers are composed of multiple convolutional layers. 127

Convolutional layers have fewer learning parameters and lever- 128

age the idea of parameter sharing, sparse connectivity, and 129

equivariant representations to ensure effective encoding of 130

invariant features from the input data. By learning only the 131

representative features from the data, anomalous data lead to 132

high reconstruction error, which acts as an indicator for an 133

anomaly. An abstract representation of our convolutional auto- 134

encoder is shown in Fig. 1, while a detailed description of the 135

network is given in Section III. 136

The convolutional layer can be defined as 137

hk
L+1 = γ

⎛
⎝�

j∈J

x j
L ⊗ wk

L + bk
L

⎞
⎠ (1) 138

where hk
L+1 is the latent representation of k feature maps in 139

the layer L + 1, γ is the activation function, and x j
L is the 140
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j th feature map of the output in layer L. wk
L and bk

L are the141

kth filter weight and bias for the layer L, respectively, and142

⊗ is the 1-D convolution operation. If the feature map x j
L has143

the size W , filter has size F , and bias has size B , the output144

size of a convolutional layer will be (W × F + B) assuming145

a stride of 1.146

The convolutional layer is generally followed by an activa-147

tion function γ . A nonlinear γ reveals nonlinear correlations148

between the input features. In our case, we deploy the rectified149

linear unit (ReLu) given by150

γ (x) =
�

0, x < 0

x, x ≥ 0.
(2)151

Our choice of a ReLu activation function is made because152

of its easy optimization advantages [21] and general purpose153

applicability [22].154

For the encoder side of the bottleneck framework, we use155

the 1-D max-pooling layer following the convolutional and156

ReLu layers to downsample the input data by taking the157

maximum value over a window of a specified size. The pooling158

layers reduce the number of connections to the subsequent159

layer. The output shape of the pooling layer is given by160

hs = xs − Ps

Ss
+ 1. (3)161

If xs is the size of the input feature map, Ps is the pooling162

size, and Ss is the size of stride, hs is the output size of the163

feature map.164

To make a decoder from the latent space representation,165

we deploy a 1-D upsampling layer that repeats the temporal166

step Ps times and follows the convolutional layers. The weights167

in the convolutional layers ensure that the decoder reproduces168

the input data from the encoded representation.169

We use the mean-squared error between the network input170

and the reconstructed output from the encoded representation171

as the loss function. To minimize the loss function for the172

training dataset, the network parameters are optimized by the173

Adam algorithm [23]. Additionally, an early stopping criterion174

[24], [25] is applied that ensures the network training is175

stopped when the loss function stops improving.176

The input to the network is the observed TEM data dobs177

while the output dNN is the reconstruction of dobs from178

the encoded representation by the auto-encoder. The idea is179

that if uncoupled TEM data are observed by the network,180

it will be able to reconstruct them with low error. However,181

if coupled data are observed, the reconstruction error will be182

elevated, which would indicate an anomaly in dobs. In our case,183

we define a confidence metric as in the following equation:184

C(α) = 1

N

N�
i=1

[β(i) < α] (4)185

where186

[β(i) < α] =
�

1, if true

0, otherwise
(5)187

and188

β(i) = |dNN(i) − dobs(i)|
�dobs(i)

. (6)189

Fig. 2. Anomaly detection on synthetic data using the auto-encoder: (a) dobs
with no couplings and the reconstructed output dNN shows low β for each
data point yielding in C(3) = 24/24 = 1 and (b) dobs with synthetic anomaly
at ∼200 μs, and the corresponding dNN shows high β indicating anomaly in
dobs and resulting a lower value of C(3) = 14/24 = 0.58.

The confidence metric (4) is based on the relative error β 190

between the input data dobs and the reconstructed output dNN, 191

which is normalized by the data standard deviation �dobs. 192

It counts the number of data points having relative error β 193

below a threshold α. The concept of (4) for an uncoupled 194

synthetic TEM signal and its perturbed version representing a 195

synthetic coupling is shown in Fig. 2. 196

For the examples shown in Fig. 2, the threshold α is set 197

to 3 (indicated by red dashed line) and the number of data 198

points N being evaluated is 24. Additionally, we assume 199

�dobs = 1. In Fig. 2(a), uncoupled synthetic TEM data dobs 200

and its reconstructed output dNN are shown. The relative error 201

β for all the data points is below the threshold α. In this case, 202

C(3) = 24/24 = 1, yielding maximum confidence in the input 203

data to be uncoupled. In Fig. 2(b), the TEM data are perturbed 204

at the data point at ∼200 μs to represent a synthetic coupling. 205

The relative error β at late times is elevated, which yields a 206

lower value of C(3) = 14/24 = 0.58, indicating an anomaly 207

in the data. 208

The methodology presented in this section provides the 209

basic framework. The specific methodology applied to the data 210

from a ground-based [5] and an airborne [6] TEM system is 211

discussed in detail in Sections III and IV, respectively. 212

III. APPLICATION TO A GROUND-BASED TEM SYSTEM 213

The ground-based towed TEM (tTEM) system [5] deliv- 214

ers images of the subsurface with depth, typically pene- 215

trating down to ∼100–120 m, and is capable of mapping 216

100–150 hectares per day. The tTEM system is a dual-moment 217

system where the system records low moment (LM) and high 218
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Fig. 3. Examples of tTEM raw data stacks: (a) data with no couplings;
(b) coupled data; (c) data stack with random noise at late time data points
indicated by high error bars; and (d) data stack with coupling in HM data
from ∼50 μs onward.

moment (HM) data using two different current pulses. The219

measurement error, i.e., data uncertainty �, is calculated for220

each data point of a single raw stack by stacking several221

transient decays.222

Fig. 3 shows four raw stacks of LM and HM data where223

the uncertainty � of each data point is represented by the224

error bars. Fig. 3(a) shows uncoupled data having small error225

bars, meaning a coherent signal. Couplings are also coherent226

by nature and, therefore, result in data with small error bars.227

It is observed in Fig. 3(b) until 300 μs. In addition, the late228

time data points in HM are usually affected by the random229

background noise and, therefore, associated with larger errors230

(especially see Fig. 3(c), HM gates after 200 μs). As such,231

the typical noise level in tTEM data is observed at around232

1 nV/m2. We also show a raw stack in Fig. 3(d) where the233

LM data are uncoupled, but couplings are observed in HM234

data points from ∼40 μs onward.235

Fig. 4. Examples of resistivity structures generated by using von Kármán
functions and the corresponding resistivity models when the TEM data of von
Kármán models are inverted.

Evident from Fig. 3, the LM data hold few additional 236

early data points compared to the HM for the tTEM system. 237

Additionally, the LM and HM transmitter turn off times differ 238

only by a few microseconds. Therefore, the effect of coupling 239

is most often present in both the LM and the HM data. 240

In the manual processing, for the abovementioned reasons, 241

both LM and HM data are culled if a coupling is observed 242

in HM data. For the automated processing, we only train one 243

network for the HM data processing, and similar to the manual 244

processing, we discard the LM data if a coupling is detected 245

in the HM data. 246

A. Training Dataset 247

The training dataset consists of forward responses of TEM 248

resolvable 1-D resistivity models ranging from 1 to 2000 �·m. 249

The initial resistivity models are generated with 90 layers of 250

exponentially increasing thicknesses, where the resistivity of 251

each layer is chosen by using the broadband von Kármán 252

covariance functions [26], [27] by varying resistivities, spatial 253

distances, correlation lengths, and amplitudes. The resistivity 254

models are chosen to have a top layer thickness of 1 m and a 255

depth to last layer boundary at 120 m, which is the absolute 256

maximum depth of investigation (DOI) of the tTEM system. 257

The TEM responses of these models are inverted by using 258

a standard least-squares inversion algorithm [28] to obtain 259

geophysically resolvable models. As such, complex resistivity 260

structures often produce TEM data that can be well-fit by 261

simpler resistivity models. Two such examples are shown in 262

Fig. 4 where the TEM response of the von Kármán resistivity 263

structures is inverted to result in simpler resistivity models. 264

The process of generating the dataset of TEM resolvable 265

models is explained in detail by Asif et al. [29], [30], and the 266

dataset is publically available [30]. 267

In total, one million forward responses are generated from 268

resolvable 1-D resistivity models, which are sampled at 269
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TABLE I

NETWORK CONFIGURATION

27 exponentially increasing time instants from ∼8 μs to270

∼1 ms, similar to the HM time range of the tTEM system.271

B. Network Configuration272

We only want to investigate couplings and not random273

background noise, which result in higher �. Therefore, the274

data points after the time when � exceeds �max are masked275

at the input of the network to evaluate noise-free data. This is276

achieved by adding a masking layer where a mask value, set277

to zero, is used to skip data points for all succeeding layers.278

The shape of the input layer corresponds to the first 24 data279

points of tTEM raw stack. We have not used all the data280

points, as the pooling layer requires the input data to return281

an integer representation when downsampled by the pool size282

Ps. We downsample the input features twice by a factor of283

Ps = 2 for an encoded representation of the input data. The284

encoded representation is decoded to the original dimension285

by an upsampling layer with the same step size used for286

downsampling. The detailed network configuration is shown287

in Table I.288

To mimic the masking feature in the training dataset,289

a random data point is picked for each training sample from290

a uniform distribution, which is used to mask subsequent data291

points. Once the network is trained, it can be used for the292

evaluation of field data. The training loss of the network is293

shown in Fig. 5, where an epoch refers to one complete pass294

of the training dataset through the algorithm. The training takes295

a total of 13 121 epochs, and each epoch consumes ∼6 s of296

processing time on a NVIDIA GeForce RTX 2080 Ti GPU.297

C. Expert System Algorithm298

Given the trained network AE at T time instants, raw299

data stack RD(x, y) for x data points at t time instants and300

y number of raw stacks, data standard deviation RD�(x, y), and301

a window size W , Algorithm 1 results in the output flags(x, y).302

The flags(x, y) gives a binary decision for each data point of303

the raw stack. In simple words, RD and RD� are averaged304

over a window of W = 7 stacks to smooth out short-term305

Fig. 5. Network training loss per epoch.

fluctuations. To exclude the data points where the random 306

noise overpowers the TEM signal, we find the first data point 307

G� that exceeds �max = 20% to identify noise-free data, and 308

assigned with a masking value to subsequent data points. 309

Algorithm 1 Algorithm for Field Data Evaluation for
Couplings
Input: RD, RD�, W, AE, α, βmax, �max

Output: flags
Initialization:

1. for i = 1 to x-W step 1 do
AD(:,i)= MovingMean[RD(:,i)] with W
AD�(:,i)= MovingMean[RD�(:,i)] with W
Find first gate G� in AD�(:,i) where AD� > �max

ADmask(G�:end, i)= 0
IAE(:,i)= Interpolate(ADmask) for T
OPAE(:,i)= AE[IAE(:,i)]
OP(:,i)= Interpolate[OPAE(:,i)] for t
Calculate Ci(α) for AD(:,i) and OP(:,i)

end for
2. for j = 1 to x-(2W) step 1 do

Cavg(j) = MovingMean[Cj] with 2W
if Cavg(j) > βmax then

flags(:, j) = 1
else if Cavg(j) ≥ 0.80×βmax then

flags(β ≤ 1, j) = 1
else

flags(:, j) = 0
end if

3. return flags

Since the time instants t at which the field data are recorded 310

might differ for different surveys due to the TEM system cal- 311

ibration [31], the masked data points are linearly interpolated 312

for the time instants T at which our network is trained on. 313

The interpolated data points become the input to the AE. The 314

output from AE is interpolated back to t , which is used to 315

calculate the confidence value C using (4). 316

To highlight longer term trends, the confidence values C are 317

averaged over a window size 2W. The smoothened confidence 318

values Cavg are used for a fuzzy decision-making process 319

where all the data points of a raw stack are marked as coupled 320

if Cavg has a low value. The data points of raw stacks with high 321

value of Cavg are marked as uncoupled. However, for moderate 322

Cavg values, only the data points having β below 1 are marked 323

as uncoupled. In our case, α = 2.5 and βmax = 0.99, which 324
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Fig. 6. Comparison of manual and automated data processing in the Aars
survey area (showing ∼5 km × ∼4.4 km area).

describe the rigorousness of the automated processing. The325

parameters W , �max, α, and βmax are discussed in detail326

in Section V.327

D. Field Data Results328

To show the performance of the proposed methodology,329

we apply it to a tTEM dataset acquired in northern Denmark,330

close to the town of Aars. The dataset was collected in331

2019 covering an area of ∼23 km2 with 456 line kilometers332

of data (Fig. 6). The nominal line spacing is 25 m, and the333

driving speed is ∼10–15 km/h. The couplings from raw data334

stacks were culled manually by an expert geophysicist using335

Aarhus Workbench [32]. The data culled by the geophysicist336

account for 22% of total raw stacks.337

Fig. 6 shows the comparison of the proposed approach with338

the manual processing. The blue and gray points in Fig. 6 rep-339

resent the data marked as coupled and uncoupled, respectively,340

by both processing schemes. The data locations at which the341

processing schemes disagree are indicated with orange and342

yellow points. The proposed approach keeps slightly more data343

stacks as compared to the manual processing and accounts for344

∼1% of total stacks. In general, there is a 96% agreement345

between the two processing schemes.346

A visual inspection of a continuous ∼60-s data stream and347

the comparison of processing are shown in Fig. 7, where all348

data points at one time instant yield a TEM curve similar349

to Fig. 3. We clearly observe couplings in the data centered350

at time instant 28 s in Fig. 7(a). This coupling pattern351

was identified by the manual operator and has been culled352

Fig. 7. Comparison of the manual and automated processing, where the
orange region is marked as coupled—the data correspond to ∼300 m distance:
(a) field data stream; (b) manual processing; (c) automated processing; and
(d) confidence metric for automated processing (highlighted area represents
moderate values where fuzzy decision-making is performed).

[marked with orange in Fig. 7(b)]. The coupling was also 353

detected by our proposed values obtained by (4), as in 354

Fig. 7(d). As our approach flags each data point, the couplings 355

are detected in an oblique manner. 356

A visual analysis of two more ∼30-s data streams is shown 357

in Fig. 8(a)–(h) where the manual and automated processing 358

disagrees. Fig. 8(a) shows the raw data stack with some 359

signatures of capacitive couplings; however, it is not detected 360

in the manual processing [see Fig. 8(b)]. The automated 361

processing result and the corresponding confidence values are 362

shown in Fig. 8(c) and (d), respectively. The coupling signature 363

is relatively clear from ∼70 μs and onward as shown in the 364
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Fig. 8. Manual and automated data processing, where the schemes disagree.
The orange region is marked as coupled: (a) and (e) field data streams;
(b) and (f) manual processing; (c) and (g) automated processing; and
(d) and (h) confidence metric for automated processing.

raw stack at the time instant ∼14 s in Fig. 9(a). The proposed365

strategy, however, keeps the data points until ∼40 μs (marked366

in green), which is before the coupling effect is observed.367

On the other hand, Fig. 8(e) shows a data stream near a368

road. In such a scenario, some infrastructures, e.g., a buried369

power line, are excited by the tTEM transmitter, which shows370

signatures similar to strong inductive couplings [11]. The371

manual operator has removed all data in the vicinity of the372

road, as shown in Fig. 8(f). The automated approach cannot373

distinguish this type of coupling from uncoupled data, as the374

impact of this coupling appears as an enhanced signal level,375

which could easily be interpreted as a geological change in376

the signal (see Fig. 9(b) up until 70 μs where the raw stack377

at time instant ∼13 s is shown).378

Fig. 9. Single raw data stack and network output for the vertical dashed
lines (color coded by title) in data streams of Fig. 8: (a) raw data stack at
time instant ∼14 s in Fig. 8(a) and (b) raw data stack at time instant ∼13 s
in Fig. 8(b).

To compare the inversion results, we invert both datasets 379

with the 1-D spatially constrained inversion algorithm [33] 380

using AarhusInv [28]. We apply the commonly used settings 381

with a 30-layer smooth model discretization with the starting 382

layer boundary at 1 m and the last layer boundary at 120 m. 383

Both datasets are inverted with the same regularization 384

strength, i.e., same vertical and horizontal roughness con- 385

straints. The constraints are set loosely so that the inverted 386

models are mainly data-driven. Additionally, the data points 387

exceeding 10% data uncertainty are excluded. Furthermore, the 388

raw data stacks having less than seven usable data points after 389

data processing are omitted. This decision is primarily based 390

on the signal level and data quality of the survey. However, 391

it is not the focus of this study, and the inversion settings 392

remain the same for both processing schemes for one-to-one 393

comparison. The manually processed data take 13 iterations to 394

converge and result in a data misfit of 0.65. On the other hand, 395

the automated processed data converge in 12 iterations and 396

have a lower data misfit of 0.60. The data misfit ϕ, also known 397

as data residual, is calculated as a least-squares difference 398

between the observed data dobs and modeled data F(m) in 399

a logarithmic space normalized with the data uncertainties 400

�dobs, and is given in the following equation. Hence, a data 401

residual of one corresponds to a fit to within one standard 402

deviation of the data uncertainty 403

ϕ(m) =
�	

log10(dobs) − log10(F(m))

2

log10(1 + �dobs)
2

� 1
2

. (7) 404

The inversion results for two profiles marked in Fig. 10(a) 405

are shown along with the data misfit in Fig. 10(b) and (d) for 406

the manual processing. The inversion results for the automated 407

processing are shown in Fig. 10(c) and (e), and the data 408

residual of most of the inverted models for both processing 409

schemes is below one, which means that the modeled data 410
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Fig. 10. Comparison of inversion for manual and automated data processing: (a) profiles; (b) and (d) inversion results for manual processing for profile 1
and profile 2, respectively; and (c) and (e) inversion results for automated processing for the corresponding profiles.

fit the observed data within the error bars. As expected, the411

resistivity models for both cross sections of the profiles in412

Fig. 10 are very similar in terms of the resistivity structure413

and DOI [34]. A minor difference is observed just before414

the gap in the resistivity section in profile 2 at coordinate415

∼480 m [see Fig. 10(d) and (e)]. The difference is caused416

by minor dissimilarities in the data culling of the couplings417

for the two processing schemes, causing gaps in the model418

section. The automated strategy keeps some early time data419

points, which results in a smaller gap, but with a shallower420

DOI for the models supported by early time data points. The421

manual processing is more conservative, and the operator has422

removed the raw data stacks completely, resulting in a slightly423

larger gap.424

We also observe some differences in the resistivity section at425

profile coordinate ∼1500 m in profile 2 [Fig. 10(d) and (e)].426

The automated processing has kept some data here that were427

discarded in the manual processing. Since the data are kept428

in automated processing, a small anomaly in the resistivity429

section is observed. The anomaly could indicate an inductive430

coupling in the data not identified by the automated process-431

ing, as it can represent a geological change, like the example in432

Fig. 8(e). In this particular case, a residential facility is nearby,433

and the anomaly is most likely caused by an underground434

utility connection. However, there is no visual evidence of435

the cause of this coupling. This fits well with the experience436

that in many cases, the source of coupling cannot be visually437

identified, and may only be evident from the data.438

In a geological context, the resistivity models in439

profiles 1 and 2 in Fig. 10 represent a two-layered structure,440

where the top resistive layer indicates a quaternary meltwater441

sand underlain by a low resistive prequaternary clay layer.442

A dipping thin clay layer is interbedded in the top sandy layer,443

as seen in profile 2.444

IV. APPLICATION TO AN AIRBORNE SYSTEM445

To apply the proposed methodology on an airborne446

TEM dataset, we use data from the SkyTEM system [6].447

Fig. 11. Examples of SkyTEM raw data stacks: (a) data with no couplings
and (b) data stack with couplings at late time data points in LM (50 μs
onward) and in HM from 100 μs onward. Larger error bars are due to the
random background noise.

The SkyTEM system typically images the subsurface down 448

to 300–400 m. Similar to the tTEM, the SkyTEM system uses 449

a dual-moment measurement acquisition scheme. However, 450

in the SkyTEM case, the LM and HM waveforms are signifi- 451

cantly different, and the LM and HM data span quite different 452

time intervals, as shown in Fig. 11. The larger differences in 453

the LM and HM data often result in couplings being observed 454

in one of the moments only. Therefore, we need to train one 455

network for the LM data and another one for the HM data. 456

A. Training Dataset 457

The process of generating the training dataset for the air- 458

borne system is similar to the approach given in Section III-A. 459

For the resistivity models to be compatible with the SkyTEM 460

system, we consider a top layer thickness of 4 m and a depth 461

to last layer boundary at 500 m. In total, we generate one 462
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Fig. 12. Comparison of manual and automated data processing (18 km × 23 km area): (a) processing comparison for LM data and (b) HM data processing
results.

million forward responses, sampled between 10 and 350 μs463

for LM and 127 μs and 13 ms for HM, which is the typical464

time range of data from the SkyTEM system. Additionally,465

the flight altitude is uniformly chosen between 10 and 120 m466

for each model.467

B. Network Configuration468

The network configuration for the processing of HM data of469

the airborne system is kept the same as for the ground-based470

tTEM system, whereas the configuration for LM processing is471

slightly different due to fewer data points of LM data.472

The shape of the input layer for the LM data processing473

corresponds to 16 data points of LM. The input shape is chosen474

to result in an integer representation during downsampling for475

the bottleneck of the network. The rest of the configuration476

remains the same.477

The training loss of the LM and HM networks follows a478

similar trend as in Fig. 5. The LM network training takes a479

total of 14 699 epochs, and each epoch consumes ∼3.5 s of480

processing time while the HM network training takes a total481

of 21 824 epochs and consumes ∼6 s of processing time per482

epoch. The LM network training takes less time as compared483

to the HM network due to a lower number of data points at484

the input which reduces the total weights of the LM network.485

C. Field Data Results486

We use the same algorithm as presented in Section III-C487

to show the performance for the airborne system. Due to488

the sensitivity of the LM data to flight altitude, we choose489

βmax = 0.86. We apply both networks for LM and HM data490

processing to a subset of the SkyTEM dataset acquired in491

Heretaunga Plains, located in the southern North Island of492

New Zealand. The Heretaunga SkyTEM survey was done in493

2020 and holds ∼2600 line kilometers of data. In the manual494

processing, the culled LM data account for ∼28%, and the495

culled HM data account for ∼20% of total HM stacks.496

Fig. 12(a) and (b) shows the comparison of performance 497

for LM and HM airborne data, respectively. Similar to the 498

tTEM processing results, automated data processing generally 499

shows good agreement with manual processing and agrees 500

for 84% for LM and 94% for HM data. The automated 501

processing keeps ∼12% more LM data and ∼10% more 502

HM data. 503

We show an approximately three-minute long data 504

stream with LM data and corresponding flight altitude in 505

Fig. 13(a) and (b). It is evident that a higher altitude generally 506

results in lower signal level and a lower flight altitude results 507

in a higher signal level. There is an obvious coupling between 508

the time interval 30 and 60 s in the LM data [Fig. 13(b)], which 509

is removed in the manual processing (marked in orange), 510

as observed in Fig. 13(c). Additionally, some outlier data 511

points, e.g., at times ∼150 and ∼160 s, have also been 512

removed in the manual processing by the filters designed 513

to assist data processing [18]. The result of the automated 514

processing is shown in Fig. 13(d) based on the confidence met- 515

ric given in Fig. 13(e). The proposed automated strategy results 516

in lower confidence values for anomalous data and effectively 517

identifies couplings between the time interval 30 and 60 s. 518

However, it also removes some data stacks and data points at 519

the outliers, e.g., at time ∼160 s. 520

For an inspection of HM data, we show a data stream 521

and the corresponding flight altitude in the second column 522

of Fig. 13. There are two obvious areas centered at ∼75 523

and ∼110 s where the HM data [Fig. 13(g)] are affected 524

by couplings. The coupled HM data are removed by the 525

manual operator (marked in orange) shown in Fig. 13(h). The 526

automated approach also removes these anomalies effectively, 527

observed in Fig. 13(i) based on the confidence values given in 528

Fig. 13(j). It is evident from Fig. 13(j) that the coupled data 529

result in lower confidence values. 530

To compare the inversion results for the automated and 531

manually processed data, the airborne data are inverted using 532

the same framework described in Section III. In this case, 533
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Fig. 13. Comparison of manual and automated data processing for LM and HM airborne data: (a) and (f) flight altitude of the airborne system; (b) and
(g) raw data stacks; (c) and (h) manual processing; (d) and (i) automated processing; and (e) and (j) confidence metric for expert system decision-making.

the models are discretized from 4 to 500 m in depth, and534

data points exceeding 20% data uncertainty are excluded.535

Additionally, the raw data stacks having less than seven usable536

LM or HM data points after data processing were omitted537

prior to the inversion. The manually processed data take538

16 iterations to converge and result in a total data misfit539

of 0.65. On the other hand, the automated processed data540

converge in 13 iterations with the same misfit.541

The data processing results for another data stream are542

shown in Fig. 14(a) and (b), and the inversion results for the543

corresponding processed data are shown in Fig. 14(c) and (d),544

respectively. In general, there is a good agreement between545

the inversion results for both processing schemes. However, 546

the proposed automated strategy keeps more early time data 547

points at several instances, which results in more subsurface 548

information with shallow DOI. 549

In a geological context, the top ∼100 m in the central 550

part of the section is the unconsolidated sediments followed 551

by the basement. The unconsolidated sediments consist of a 552

∼5-m top resistive sand layer followed by a ∼10-m conductive 553

clay layer and a ∼90-m-thick high-resistive gravel layer. The 554

basement reaches the surface in the southwest part while the 555

boundary to the basement is unclear in the northeast part due 556

to limited DOI. 557
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Fig. 14. Comparison of manual and automated processing for LM and HM airborne data, and the corresponding inversion results. The profile is shown in
the map: (a) processing by manual operator; (b) automated processing; (c) inversion results for the corresponding manual data processing; and (d) inversion
results for the corresponding automated data processing.

It should be noted that the raw data stacks in Fig. 14 are558

plotted over time (x-axis) while the resistivity models are559

shown on a distance x-axis. Due to variation in flight speed,560

some misalignments are observed between the data stacks561

and corresponding inversion results. As such, gaps in the562

resistivity section corresponding to the culled data stacks are563

not perfectly aligned.564

V. DISCUSSION565

The inversion on the data processed by the proposed auto-566

mated strategy takes fewer iterations to converge as compared567

to the manually processed data due to the improved handling568

of the couplings, especially in the ambiguous zones. As such,569

the footprint of the TEM system widens with depth; therefore,570

the signature of couplings generally appears in late time data571

points first and in early time data points afterward as the572

system approaches to the coupling source. On the contrary,573

when the system moves away from the coupling source, the574

coupling effect fades in early time data points first and in late 575

time data points afterward. These ambiguous zones are dealt 576

with appropriately due the fuzzy decision-making workflow 577

where each data point is flagged as coupled or uncoupled for 578

moderate values of Cavg (see Figs. 7 and 13). This is normally 579

not done in manual processing, as it would make a tedious 580

task even more challenging and time-consuming. 581

Our automated approach is unaffected by different proper- 582

ties of the man-made conductors, e.g., dimension and buried 583

depth, that influence the amplitude of the coupling response. 584

As long as the observed data cannot be represented by 1-D 585

model parameters, the reconstruction error from the network 586

is elevated, which indicates coupling in the data. 587

However, there are occurrences during a TEM survey when 588

a coupling response mimics a geological response. If such 589

data can be represented by 1-D model parameters, the auto- 590

encoder reconstructs the data with low error and the data will 591

not be discarded. In these scenarios, the artifacts may be seen 592
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in the inverted data, which are also observed at ∼1500 m in593

Fig. 10(e). In scenarios where an anomalous-like geological594

pattern appears in the data close to any infrastructure, the595

data are conservatively culled by the manual operator to avoid596

any misrepresentation. Therefore, we see no anomaly in the597

inverted data processed manually [see Fig. 10(d)]. One could598

make use of remote sensing data, e.g., satellite maps, to locate599

infrastructure and remove data in its near vicinity.600

If there are 2-D or 3-D effects in the data that cannot be601

represented by any 1-D resistivity model, a low confidence602

value may be obtained for such data, which consequently603

might be identified as an anomaly by our expert system.604

However, the data with 2-D or 3-D effects also require a605

different modeling framework. A future expansion of the data606

space incorporating data with 2-D or 3-D effects may enable607

its identification. To generate a 2-D or 3-D resistivity database,608

one would generate the initial von Kármán models as 2-D609

sections or 3-D volumes and use a 2-D or 3-D forward and610

inversion process, which of course would be much more611

computationally expensive compared to the 1-D case.612

It is important for the proposed approach to have reliable613

data uncertainty estimates. For the SkyTEM and tTEM data614

used in the examples, the uncertainties for the data points for615

the raw stacks are estimated based on the standard deviation616

from the raw transients [5]. For moving TEM systems, e.g.,617

the airborne SkyTEM and ground-based tTEM, it is important618

to have a relatively short raw stacking window to obtain good619

uncertainty estimates and to prevent the coupling signatures to620

be smeared, which would make the detection of the coupling621

more difficult. Further stacking of the TEM data can be622

applied after the automated data processing scheme to suppress623

the random background noise. Obtaining the raw data stacks624

and the corresponding data uncertainties is not trivial and625

may not be available for some TEM systems on the normal626

user/client level. In that case, the thresholds α and βmax627

may be empirically adjusted to obtain adequate processing628

results.629

The automated processing involves several parameters, i.e.,630

α, βmax, W , and �max. The thresholds α and βmax give an631

intuition about the leniency or strictness in the automated data632

processing. The window size W is used to smooth out short-633

term fluctuations in the raw data stacks. A larger value of W634

would smear the effect of couplings in the data. Additionally,635

�max identifies noise-free data and a smaller value means more636

certainty in the data. However, a higher value of �max may637

include some data points that are affected by the background638

noise. In that case, the values of β for such data points will639

still be low due to their higher data uncertainty and they will640

be classified as uncoupled. These parameters are not very641

sensitive and can be adjusted in different ways to obtain similar642

data processing results.643

Extensive testing on the data of several survey areas reveals644

that the same set of thresholds results in the best performance645

compared to the manual processing by searching for the best646

parameters by a grid-search method. This scenario may not647

be true if the signal levels are drastically low, e.g., in a very648

resistive case. In that case, the thresholds can be adjusted649

appropriately.650

The proposed approach is fast and takes only 0.3 ms 651

per raw data stack on an Intel Xeon Gold 6132 CPU at 652

2.60 GHz. Therefore, it can be incorporated directly in the 653

TEM systems for real-time data processing. Our strategy is 654

largely insensitive to the system transfer functions, e.g., system 655

waveforms and low-pass filters in the receiver system, unless 656

significant changes are made. The proposed method can easily 657

be extended for other TEM systems by retraining on forward 658

responses for those systems. 659

A small filter size in the convolutional layers ensures faster 660

network training by reducing the computational complex- 661

ity [35], and an odd number filter size symmetrically divides 662

the previous layer data around the output. The chosen number 663

of filters in the convolutional layers results in the best tradeoff 664

between inference time and data reconstruction accuracy, and 665

increasing the number of filters does not substantially increase 666

the reconstruction accuracy. 667

The dimensionality of the latent space should ensure that 668

only the useful features are learned instead of merely copying 669

the input to the output. Our trained networks cannot recon- 670

struct the data affected by couplings, which indicates that only 671

the useful features are learned at the bottleneck. However, 672

the dimensionality of the latent space can be reduced at the 673

expense of increased reconstruction error. 674

We have only compared the automated processing against 675

the manual processing. To the best of authors’ knowledge, 676

there are no other automated methods that would operate 677

without training on a subset of the data from the specific 678

survey area. 679

Our methodology is designed in a hydro-geological context. 680

If the infrastructure that induces coupling response in the data 681

is considered as exploration targets, a different strategy may 682

be required where similar coupling patterns are identified. 683

However, it is beyond the scope of this work and can be 684

considered as future work. 685

VI. CONCLUSION 686

We have presented an automated approach to identify and 687

cull couplings to infrastructure in ground-based and airborne 688

TEM data. Due to the unsupervised learning strategy, our 689

method is flexible to various survey areas and diverse geo- 690

logical conditions. The benefits of an automated and fast data 691

processing approach are higher for electromagnetic surveys 692

in areas with dense infrastructure where a major part of 693

the data can be affected to couplings, and the manual data 694

processing would be even slower. Our method is a significant 695

step forward toward completely automated processing and 696

inversion workflows to enable TEM methods to deliver the 697

subsurface information in a time-efficient and cost-effective 698

manner without the need for highly skilled specialists. 699
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