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ABSTRACT 
JOHANSEN, H. K., and SORENSEN, K., 1979, Fast Hankel Transforms, Geophysical 

Prospecting 27, 876-901. 

Inspired by the linear filter method introduced by D. P. Ghosh in rg7o we have devel- 
oped a general theory for numerical evaluation of integrals of the Hankel type: 

m 
g(r) = Sf(A)hJ,(Ar)dh; v > - I. 

II 

Replacing the usual sine interpolating function by sinsh (x) = a . sin (xx)/sinh (UTW), 
where the smoothness parameter u is chosen to be “small”, we obtain explicit series 
expansions for the sinsh-response or filter function H*. 

If the input function f(A exp (io)) is known to be analytic in the region o < A< CO, 
) o 1 < wg of the complex plane, we can show that the absolute error on the output 
function is less than (K(wo)/r) . exp ( - xw~/A), A being the logarthmic sampling distance. 

Due to the explicit expansions of H* the tails of the infinite summation 5 F(nA)H* 
-m 

((WZ - n)A) can be handled analytically. 
Since the only restriction on the order is v > - I, the Fourier transform is a special 

case of the theory, v = & I/Z giving the sine- and cosine transform, respectively. In 
theoretical model calculations the present method is considerably more efficient than 
the Fast Fourier Transform (FFT). 

I. INTRODUCTION 

This paper is a further development of the linear filter method introduced 
by Ghosh (1970, 1971, Ig7Ia). The astoundingly good results of this simple 
and fast numerical transformation between apparent resistivity and resistivity 
transform curves inspired a number of contributions: A digital filter for com- 
putation of electromagnetic dipole sounding curves was published by Koefoed, 
Ghosh, and Polman (IgTz), and the method was extended to DC-dipole con- 
figurations by Das, Ghosh, and Biewinga (1974) and Das and Ghosh (1974). 
Improved sets of filter coefficients have been reported by Verma and Koefoed 
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(1973)) Johansen (rg75), Bichara and Lakshmanan (Ig76), Bernabini and 
Cardarelli (rg78), and Koefoed and Dirks (1979). Koefoed (1972) analyzed 
theoretically the oscillatory behaviour of the filter function, and investigated 
error propagation in the direct interpretation using the Ghosh filter method 
(Koefoed 1976). 

In all publications on the subject so far, the filter coefficients emerge as 
the ultimate result of extensive numerical computations. Besides obscuring the 
accuracy of the resulting digital filter this makes a subsequent analysis of the 
accuracy of the method rather difficult. 

Searching for tools to construct an analytic solution we came across the 
book “Fourier Transform in the Complex Domain” by Paley and Wiener (1934) 
and found in it a complete mathematical theory for the Watson Transform 
(the author of “Theory of Bessel functions”), of which the transform with 
kernel exp (x) Jy (exp (x)) used by Koefoed, Ghosh, and Polman (1972) is a 
special case. We can recommend this book as a general reference to the fol- 
lowing paragraph. 

2. REFORMULATION OFTHE HANKELTRANSFORM 

We consider the Hankel integral 

g(r) = ; f(QJv(WdL (1) 

where Jy is the Bessel function of the first kind, for real values of v > - I. 

If we perform the substitutions 

A = exp(-u); v = exp (v); u,vin(--co, co) 

and define new functions F and G on ( - co, co) by 

F(u) = exp (- u)f (exp ( - u)) ; GC4 = exp (Q (exp (v)), 

equation (I) may be written 

(2) 

(3) 

G(v) = j= F(u)H,(v- u)dti; G = F*H, 
-m 

(4) 

i.e., G is the convolution of F and the kernel of the transform 

H,(v) = exp (4Jy (exp (v)). (5) 

From computed values of G we can obviously retrieve values of R by a simple 
algebraic operation. 

In order to see why the exponential function factors in the definition of 
F, G, and H are introduced in this particular way we must take the Fourier 
transform of eq. (4). 
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Using the convolution theorem (Bracewell 1965 p. 108) we get 

C(s) = R(s) * A,(s) 

where 
(6) 

k,(s) = OH” exp (- i2xvs)dv 
-m 

(7) 

and analogously for F and G. 

Introducing the explicit expression (5) for H, and substituting back 
v = In (t); t = exp (v) in (7), we get 

m 

A,(s) = 
s 

J,(t)-iznS& = 2-izrrs 
l?((v + I)/2 - ixs) 

l?((v + I)/2 + ixs) 
(8) 

0 

where the rightmost equality is taken from Abramowitz and Stegun (1965) 
eq. 11.4.16. Conditions for convergence in (8) are 

$Jie( - i2x.s) < 8; %e(v - i2x.s) > - I (9) 

which for real s and v are obviously fulfilled for all v > - I. Since the gamma 
function obeys the Schwarz reflection principle (AS 6.1.23) 

l?(Z) = l?(z) (10) 

where the bar means complex conjugation, we see that I?, has the important 
property 

/ A,(s) / = 1; v>-1; Bm(s) = 0. (11) 

Taking the modulus of (6) we get 

I Gs) I = I m I I R(s) I = I Qs) I, (12) 

i.e., the input function F and output function G have identical spectra. Hence 
“noise” in F is neither amplified nor diminished by the convolution with H. 

Since A,(s) is evidently never equal to zero, we obtain algebraically from (6) 

F(s) = qs)/A,(s) = 8(s) * iQj, (13) 

where the second equality follows from the property (II). The inverse 
transform which carries G into F is now obtained by a further Fourier trans- 
formation of (13) : 

F(V) = ~G(u)H,( - (7b zt))du; F = G*H,- 
-m 

(14) 

where H;(V) = HY( - V) is just the original transform kernel “read backwards” 
or-more precisely-reflected in the origin, 
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The reason for the particular choice (5) of convolution kernel may now be 
justified : 

I) The expression (8) is valid for all v > - I, which is the range of v encountered 
in most theorems involving Bessel functions. This means that the results are 
applicable not only for particular choice v = o, I which gives the Hankel 
transforms of integer order, but also for v = * I/Z, which correspond to the 
sine- and cosine transform, respectively, so that the theory contains the 
Fourier transform as well. 

2) Since 1 I?,(s) 1 E I, the existence of the inverse transform follows immedi- 
ately, and the symmetry of the Fourier- and Hankel theorems is preserved. 
The fact that there is no error amplification is particularly important and leads 
to substantial simplifications, as we shall see below. 

3. FORMULATION OFTHE NUMERICAL PROBLEM 

The infinite sampling density, infinite representation accuracy and infinite 
integration range required for the exact evaluation of (4) can not be realized 
in a computer. A computer calculation can yield only an approximation G” to 
G. Our numerical problem may thus be stated as follows : Construct an efficient 
algorithm which for a given E (larger than the representation error in the 
computer) will calculate values of G*(V) so that 1 G(v) -G*(v) j < E for all z, in 
I, I being a sfiecified subset of ( - co, 00) which we find interesting. 

We shall first be interested in constructing a G* at equidistant points 
v=mA, m=o, *I, f2, . . . . and secondly we shall consider a G”* inter- 
polating between these values. 

Let us construct an approximation F * to F from equidistantly sampled 
values F(nA) by the interpolation scheme 

F*(M) = IX F(?zA)P(ti/A - n). (IS) 
-m 

At this point we do not want to commit ourselves to a particular inter- 
polating function P, but one may think of P as “something like the sine 
function”, i.e. P(n) = o for the integer n different from zero and P(O) = I. 

We define G* by replacing F by F” in (4) 

G*(v) z i F*(u)H,(v- u)dzl = ; F(~A)H,*(v - %A), (16) 
-m -m 

where 

H,*(v) = 7 P(u/A)H,(v- u)du 
-m 

(17) 

is the P-response of the H,-transform. 
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In principle G* may be evaluated for arbitrary v by (16), provided H is 
known in the corresponding set of points. In practice the overall computational 
work may be reduced considerably by evaluating only the equidistant values 

G*(mA) = i F(nA) * Hy*((m- %)A) (18) 
-m 

and later interpolate between them by an approximation G** to G*, for 
example of the same form as eq. (IS) : 

G**(v) = i G*(mA)P(v/A - m) (19) 
-m 

(the interpolating function used here may differ from the one used above). 
The essential problem is to compute values of H,*. 

4. AN ANALYTICAL EXPRESSION FOR H*(v) 

The trick is to express H,*(v) as a Fourier integral and evaluate it as a 
contour integral in the complex plane. Since (17) is a convolution, we get 
immediately 

Hz(n) = f Ap(As)fi,(s) exp (&rvs)ds, 
-m 

(20) 

where 3)(s) is the Fourier-transform of P(U). The properties of A.&) for com- 
plex values of the argument < = s + io are investigated in appendix A. It is 
analytic in the entire complex plane except in the points cn = ( - (v + I)/ 
2 - Iz)i/rc on the negative imaginary axis where it has simple poles with residues 

R, = (i/x) (- I) fi z-@n+v+l)/(r(n+ I)lT(V + w+ 1)); n= 0, I, 2, . . . (21) 

In the lower halfplane 1 E?“(c) 1 g oes to zero as rs + - co faster than anyex- 
ponential function except at the poles, of course. This suggests that we should 
choose the integration contour C- shown in fig. I. Applying Cauchy’s theorem 
to the integral along C- yields 

S A@K)fiJi) exp (’ 12&Jdc = zni C Kes {A$(A<)fi,(?J exp (izxv?J} (22) 
c- c- 

where the summation takes into account the residues at poles enclosed by C-. 
Let for a moment Ap(Ac) 3 I, which is analytic everywhere. Then C- may be 
extended to infinity in the lower halfplane, of the four contributions from C- 
only the part along the real axis survives, and we get 

f A@(As)g,(s) exp (i2xvs)ds = - zxi i {A?(A<.) * R, * exp (~(2% + v + I))} 
-m r=o 

(23) 
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Fig. I. Distribution of poles of 2, and P in the complex c = s + ia plane, C- and C+ 
are integration paths. 

Inserting R, from (21) and remembering A@(A<) = I we recognize the right 
hand side of (23) as the series expansion of exp (z))Jy (exp (v)) = H,(v). 

The integration method we use has thus succeeded in giving us the result 
that the Fourier transform of I?, is H, itself, which is not too surprising. What 
makes the method interesting is that it gives an explicit series expansion for 
H,* even when ii is not so simple. 

If we choose P to be the sine function, then $(<) = II(<), equal to I if 
1 s I< 4, & if 1 s / = 4, and zero otherwise (Bracewell 1965). Hence AII(Ac) is 
only analytic in the strip 1 s 1 < sc, where .sc = I/ZA is the cutoff- or Nyquist 
frequency, so that the integration path C- must be confined to this strip. We 
end up with the right hand side of (23) @US the integrals along the two vertical 
parts with s = & se of C, and these integrals have to be evaluated by numerical 
integration. This is essentially the idea of Baranov (1976). 

In order to avoid numerical integrations and make use of (22) instead, we 
must make it possible for the contour C- to pass the barriers at s = i s, and 
go to infinity. Hence we must replace II by a function with “smooth” 
corners, or more precisely-by a function p which is analytic all the way to 
infinity, except possibly in some isolated points not on the real axis. 

Here we choose p to be the product of two Fermi distributions of complex 
argument : 

F(s + i0) = d[r + exp ((s - 4 + io)zx/a)]-l [I + exp (( - s + 4 - io)zx/a)]-l (24) 

where d is a normalization constant. 
The behaviour of / p 1 on the real axis is shown in fig. 2 for various values of 

the “smoothness” parameter a. We see that p becomes boxcar-like when a 
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Fig. 2. Dependence of s(s) on the smoothness parameter a. i;(s) becomes boxcar-like 
when a goes to zero. 

is small, so we will expect the corresponding interpolation function P to 
resemble the sine-function. 

d is determined from the demand 

P(o) = f &)ds = I 
-m 

&J) 

to be d = I - exp (- 2n/a). Invoking this constant in (24) we find the inverse 
Fourier transform of B(s) to be 

sin (~24) 
P(u) = a * sinh (xaU) z sinsh (u), 

which is evidently reminiscent of the sine-function. Hence “sinsh” would be 
a suitable mnemonic for it. An investigation of its behaviour is given in appendix 
B. We shall only mention one interesting property here: Applying the con- 
volution theorem “read backwards” to (26), we find 

p(s) = g tanh ((s + $)x/a) - 4 tanh ((s - $)x/a), (27) 

which of course may be verified directly from (24) and (25). This trans- 
scription will be useful later on. 

Properties of A?(A<) in the complex c = s + icr plane are derived in appendix 
B. In the strip between the two vertical lines s = & s, it is almost equal to one, 
outside the strip it decays exponentially to zero, and on the two lines it has 
simple poles in the equidistant points 

c,’ = &ssc - i(K+ 1/z)sas,; k integer (28) 

with the k-independent residues 

Ri = i 2asJ-m. (29) 
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Except for these poles A?(AC) is analytic in the whole c-plane, so that we 
may apply (22). When we let the vertical parts of C - go to plus and minus 
infinity, their contributions will go to zero even more rapidly than in the case 
considered above because of the exponential decay of i;, in those directions. 
If we let the lower horizontal part of C- pass exactly midway between the 
poles (28), %’ is purely real, positive and less than one, so if we let the path 
cangaroo over the poles in this manner on its way to infinity in the lower 
halfplane, its contribution goes to zero by the same argument which lead to 
the Fourier inversion result above. Hence we obtain for H,*(v) the expression at 
the right hand side of (23) @us the residues at the extra poles (28) with k 3 o, 
which we have introduced in the lower halfplane by our more complicated 
choice of p. 

Let us consider only values of the smoothness parameter a in ? for which 

A/a = MTL, (30) 
where M is a fixed positive integer. It is possible to carry out the calculations 
without this restriction, but it does not harm the results, and it leads to 
important simplifications both in the theory and in the practical calculations. 

With this restriction on a it follows immediately that the numbers Ap(A<,), 
where cn are the poles (AZ) of B,(c), are independent of n. Hence the sum of 
the residues on the imaginary axis becomes simply (see the right hand side of 
(23)) equal to a constant times g,(v), the unmodulated convolution kernel. 

Because of the properties I?( - s+io) = fi(s+io) and $( - s+io) = 

p(s + io) (see app. A and B) we may combine the two remaining sums into one, 
so that we finally obtain 

H,*(v) = c * H,(v) + Im{A,(v) * exp (izxty)}, (31) 

c =(I -exp( -4Mx’sJ) . 5 i ( -I)z+m+(“+l)M(z-m’exp( -2Mx2s,(Z+m)) (31a) 
1-o m-0 

where the oscillating exponential factor, which is common to all terms in the 
summation, has been isolated from the amplitude factor 

A”(v) = - Mx 5 l?,(s,-i(k+ 1/2)/Mx) exp (- v(k+ 1/2)/M). (32) 
k=Ll 

Equation (31) is an analytic expression for Hz(z)), the two series for H”(v) 
and A”(U) being absolutely convergent for all ZJ in (- co, co). Notice the oscil- 
latory nature of the second term in (31), the “modulation” term. This phe- 
nomenon was studied by Koefoed (1972) by another mathematical technique. 
Here we have succeeded in establishing an explicit series expansion of the 
amplitude of the oscillation, which moreover is very rapidly convergent for 
negative v. 
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We shall investigate the nature of the residues along the vertical line s = sc 
a little closer. The poles (28) lie at equidistant points 2~~s~ apart from each 
other. The residues of the modulation function A8(A<) are numerically equal 
to this distance divided by 2x. When we form the right hand side of Cauchy’s 
theorem, which is zxi times the sum of residues, the 2n factors cancel each 
other, and we are left with the sum of equidistantly sampled values of the 
function fi$) exp (i2xzlQ times the sampling distance. This is, however, 
precisely the sum one would form in a numerical integration procedure with 
equidistant sampling at the midpoints of the subintervals. In the limit where 
the smoothness parameter a in ii goes to zero, F(s) becomes equal to II(s) on 
the real axis, and the vertical summations become integrations, all in nice 
harmony with what was said before eq. (24). Conversely, if we had adopted 
the sine-function as interpolating function, and had chosen to perform the 
numerical integrations as described here, we would actzlally have used the 
present sinsh-function theory, but perhaps without realizing it. 

5. ASYMPTOTIC EXPANSION OF H,:(v) 

The absolute convergence of (31) for all real values of z, is a nice mathematical 
property, but unfortunately this does not at all secure a nice behaviour in the 
computer. When ZJ becomes positive and large, the absolute value of the Kth 
term in the series (32) increases rapidly for a number of terms, until eventually 
the faster-than-any-exponential drop of 1 ii, 1 becomes dominating, and the 
series converges. In a computer the result of a summation can not be expected 
to be more accurate than the representation error of the numerically largest 
term. Actually, the value of the modulation term for large YJ computed using 
(32) would be the sum of a huge number of large terms which cancel each 
other more or less. In order to avoid trouble the absolute value of the terms 
should be (essentially) decreasing for increasing k. Using (A?) it can be shown 
that this is the case when ZI < In (2x4. 

The well-known remedy against this problem for the Bessel function-which 
is the important ingredience in H,, the first term in (31)-is to make an asymp- 
totic expansion. We shall do this for H: as well. 

When things go wrong in the lower halfplane we are left with no alternative 
but the upper halfplane. Hence we consider the integration path C’ in fig. I. 
The relations 

exp (izxv(s + ic)) = [exp (izxv(s - iG))] -1 and H,(s + io) = [E?“(s - io)jm1 

(see (As)) connect the values of the integrand in the upper halfplane with those 
taken at the complex conjugated points in the lower halfplane. The modulus 
of the exponential factor is exp ( - 2xws), which for positive ZI is decaying in 
the upper halfplane, and more strongly so when z, is large. For G ---f + co 1 H, 1 
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increases more rapidly than any exponential, so that the modulus of the in- 
tegrand blows up, but it has a minimum for a certain cm, which depends on 
the value of vu. 

Hence we choose the horizontal return path of C’ to be < = s + io,. Due 
to the exponential decay of 1 5 1 outside the interval between - sc and + se 
we may let the vertical parts of C’ go to infinity, where they contribute 
nothing to the integral. The “error integral” from the horizontal return path 
goes to zero when v goes to infinity. Hence the sum of the residues in the upper 
halfplane forms an asymptotic series for H,* : 

Hz(v) -Im{B,(v) exp (izxscv)} (33) 

where the amplitude factor B, is given by 

BY(v) - Mx Z I?,(s, + i(K + ~/z)/Mx) exp (- v(K + I/z)/M), (34) 
k 

the summation in k extending over those poles which are enclosed by C’. 
It can be shown-using (A8)-that one may choose om = exp (21)/2x which 

gives an upper limit to the error integral: 

1 error integral 1 < 2 * exp (v - exp (v)) . exp (+sc)/rc2s,. (35) 

For any E > o one can determine ZI+ so large that the right hand side of (35) 
is smaller than E, and hence the expressions (33) and (34) give H,*(v) with error 
less than E for all v > v+. 

6. CALCULATION OF H,*(v) IN THE INTERVAL v-<v<vd 

In this interval neither of the two methods presented above are applicable, 
so we have to introduce a trick based on the properties of the function 

o(C) = (I + exp ( - izx/b * (C - icrc))) -l; C = s+io (36) 

which is examined in appendix C. It has the same form as the two factors 
forming p(c), only rotated ninety degrees, so that the poles lie equidistantly 
on the horizontal line G = oc: 

Cn = (n+ 1/2)b + io,; n= . . . -2, -I,O, I,2 . . . (37) 

with equal residues R, 
2xiRn. = b. (38) 

The trick is to consider the integral 

Hz*(v) = i &s)A?(As)I&(s) exp (izxvs)ds (39) 

instead of (20). For a fixed oc > o we can choose b so small that / o(s) - I 1 < 10-16 
on the real axis. Hence the difference between the old integrand in (20) and 
the new integrand in (39) is less than the representation error on most compu- 
Geophysical Prospecting 27 58 
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ters. It is easy to show that this holds for the difference between H,* and Hz” 
as well, so we may replace Ht by Hz*. 

We evaluate H,** by integration along the path C’ shown in fig. 3. The con- 
tributions from the vertical parts of C’ go to zero as before, and the error 
integral along the horizontal return path contains an extra exponential decay 
factor exp (- 27~/b( cm - rr,)) which-with the three parameters b, cc and cm 
properly chosen--make the error integral less than a given E. Hence Hz* is 
obtained as the “asymptotic series” of residues from the vertical poles plus the 
sum of residues introduced at the horizontal poles of 0. 

Fig. 3. Positioning of the “horizontal” poles from ? relative to the “vertical” poles from 0. 

It is interesting to interpret this extra summation as a numericalintegration, 
just as we did in section 4. If we let cc go to zero the poles approach the real 
axis. In order to still have / 6 I- I on the real axis we must let b go to zero as 
well. Hence the sampling scheme becomes infinitely dense so that the sum of 
residues equals the integral on the real axis. In practice we want to reduce 
the numbers of sampling points, so we must choose oc as large as possible in 
order to permit a large sampling distance b while still preserving 1 0 I- I on 
the real axis with sufficient accuracy. The present application of this integra- 
tion technique gives ten correct decimal digits in H:* at the expense of about 
twenty “horizontal” sampling points in the complex plane. 

7. DEPENDENCE OF THE sinsh-RESPONSE H,*(v) ON sc AND M 

In order to avoid unnecessary complications we shall consider only v = 
- I/Z, for which we have H-~/z(v) = (z/ n 112 exp (V/Z) cos (exp (u)). This is a ) 
permissible simplification because the H”(Z)) for different v-apart from a phase 
term which depends only on v in the argument of the cosinus-show the same 
asymptotic behaviour for v -+ co. Due to the exponential argument of the 
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H*,(v) H*,(v) 
0.2 0.2 

0.1 0.1 

0.0 0.0 

-0.1 -0.1 

-0.2 -0.2 I I I I 

-6 -6 -q -q 

Fig. 4. Graph of H*-1,~ for M = 2 and sc = ?c. 

H:(v) 

6 
” 

Fig. 5. Graph of H*-1~2 for M = 2 and se = 21~. 
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Fig. 6. Three dimensional view of He-q2 with M = 2 and z1 and sC as variables. 

H*, iv) 
0.2 - 

O.l-- 

0.0 -__ 

-0.1 -_ 

-0.2 -7 

-6 

f 

-6 

I 1 I 

-9 -2 
i 

2 6 
V 

Fig. 7. Dependence of H*-112 on M. se is equal to x. The smoothest curve corresponds to 
M = I while the more oscillating curve corresponds to M = IO. 
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cosine, arbitrarily high frequencies become represented in HJz)) (and due to 
the exponential envelope with modulus one) as u + CO, so it is this part of the 
integral kernel which lets through high frequencies in the input function F. 
Fig. 4 shows the sinsh-response function H,:(V) for the “pseudo cutoff- 
frequency” sC equal to x. We notice that about v = 2 the asymptotic expression 
(33) takes over, thus admitting practically no frequencies above .sC to pass. 
For negative values of v, however, the modulation term is merely a perturba- 
tion (with characteristic frequency sC) to the undisturbed integral kernel. In 
fig. 5 sC is twice as big. The relative magnitude of the modulation term for 
negative v has diminished, while the original integral kernel now survives up 
to about v = 3, before (33) takes over. The gradual recovery of the high fre- 
quency part of H-1,2(v) with increasing s, is perhaps illustrated best by the 
three dimensional view in fig. 6. The dependence on the “sharpness number” 
M is less complicated, as depicted in fig. 7, where two curves corresponding 
to M = IO, M = I are drawn. For large M the magnitude of the modulation 
term becomes larger and dies out more slowly for 1 v 1 --f co. 

8. AN UPPERBOUND ONTHE SAMPLINGERROR 

We can obtain an upper bound for the error j G(v) - G*(v) j, in,the following 
way: Replace G-G* by the inverse fourier transform of G-G*, move the 
modulus sign inside the integral and omit the modulus of the exponential, 
since it is equal to one. This gives the inequality: 

1 G(v) - G*(v) 1 d f 1 e(s) -c*(s) 1 ds (40) 
-m 

where the right hand side is independent of ZI. Since G* = FiH, (eq. 16), we 
have & = $‘* * I?,, which together with (6) gives 

@-C*1 = p-$*1 (41) 
because / I?, I E I. 

In order to express p* in terms of 8 and ?’ we consider an auxiliary generalised 
function IF defined by means of the shah symbol j-J-i, which is a series of 
equispaced Dirac delta functions. 

IF(u) = F(u) * (I/A) Iii2 (u/A) (42) 

where (Bracewell 1965 p. 77) 

I(u) = 5 qu- n). (43) -m 

We observe that 

F*(u) = IF(u) * P(u/A). (44) 
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Using the convolution theorem we get : 

F*(u) = f(u) * A&As). (45) 

The fourier transform of (I/A) JJ-J (u/A) is m (As) (Bracewell p. 79), so 
when we apply the convolution theorem to (42) we obtain 

B(s) = f(s) . j-J-J (As) = (I/A) 5 @(s - s/A) (46) 
-m 

and hence finally 

3*(s) = @(As) i 8(s) -n/A). (47) m- 

Inserting (41) and (47) in (40) and splitting the term with YL equal to zero 
from the summation we obtain 

where 

I G(v) -G*(v) / d II + 12, (48) 

II = ; I p(s) 1 I I - p(As) 1 ds 
-m 

(49) 

and 

I2 = ;\$(As)\.Z)F(s-m/A)Ids. (50) 
-m 17.0 

Since @(As) and I - $(As) are both real and positive in this case the modulus 
signs on them may be left out. 

The integral I2 can be simplified considerably: We exchange the order of 
integration and summation in (so), change the integration variable in each 
of the integrals and exchange the summation and integration once more. We 
obtain 

Iz = s”{ c, @(As + VZ)} . I g(s) I ds. (51) 
-m *so 

From (B 13) we see that the function in brackets is nothing but I -@(As), 
so 12---which is due to aliasing-is actually equal to II, which comes from 
truncation of the spectrum. The validity of the .above operations is ensured 
by absolute convergence of the integral (so). For functions F meeting this 
demand we have thus achieved a global error limit : 

I G(v) -G*(v) / < z 7 I p(s) I (I - ?(As))ds 
-“p 

(54 
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9. ANALYTICITY OF f AND THE SPECTRUM OF F 

We shall prove the following sfiectrum majorization theorem : 

If f(z) = f(A exp (io)) is analytic in the region o <A < co, 1 w / Q 00 of the 
complex plane, if f(z) is 0( 1 z 1 -l+E), E>O for j z 1 +o andis 0( 1 z 1-2-s), 8>0 
for 1 z / + co in this region, then 

IF(s)\ < K(wo)exp(-2xw01s/) (53) 

for all s in (- co, co), where 

K(oo) = max { y j f(h exp ( f io0)) I dh} (54) 

This theorem is a direct consequence of the exponential substitution (2) and 
Cauchy’s integral theorem. We consider the rectangular integration path ABCD 
in fig. 8, which is mapped into the angular circle section abed by (2). If f is 

Domain of f Domain of F 

r-N, r-N, exph) :exp(-dexp(-iw) exph) :exp(-dexp(-iw) 

I 1 I 1 : hexpkid : Aexpkiw) 
I \ 

I ‘- 
\ 

\ D 72-L- C 
W :u+iw + 

, 

I------- --.------ 2 

-In(hexp(-iw)):-Inl-tiw) -In(Aexp(-iw)):-InA-tiw) 

:u*iw :u*iw 

Fig. 8. Correspondence between the domains for f and F. The logarithmic substitution 
maps the integration path abed into ABCD (and vice versa for the exponential substitu- 

tion) 

analytic inside abed, then F will be analytic inside ABCD. The integrals of 
If 1 along bc and da vanish when we let b and c go to the origin and a and d 
go to + 00 and + cc * exp ( - ioo), respectively. Hence the integral of I F / along 
BC and DA also vanish when these paths are at plus and minus infinity, re- 
spectively. Applying Cauchy’s theorem to the Fourier integral of F we thus get 

i+(s) = fF(u) exp (- ’ 
m+iOO 

12xzls)da = J F(w) exp (- iznws)dze, 
-m -CO+100 

m 

= exp ( + 2~0s) j F(u + iw0) exp ( - izxus)dzl 
-m 

(55) 
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so that 
m 

( p(s) ( < exp (+ zrcw~s) J ( F(u + iwo) 1 dzh. 
-m 

(56) 

The s-dependence of the right hand side is entirely in the exponential func- 
tion, which decays for decreasing s with decay constant PXWO proportional to 
the opening angle wo of the region of analyticity. The inequality is valid for 
all s in ( - 00, co), but it is only useful for negative s. In order to obtain a useful 
inequality for positive s as well, we choose the dashed integration contour in 
fig. 8, which only changes 00 into - wo in (54). The two inequalities can be 
combined into one : 

IF(s)1 < K(wo)exp(-mo0IsI) (57) 

where wo > o and 
m 

K(w) = max ( J ) F(u & iwo) / du]. 
-m 

Inserting F from (3) and changing variable according to (z) we observe that 
the present expression for K(oo) is identical with the one postulated in the 
theorem, and this completes the proof. Notice that f need not be analytic at 
the origin, we only demand that f(z) be 0( 1 z j -l+a). Hence the theorem would 
still apply to a function of the form 

f(z) = Z-lfiqco + ClZ + c2z2+ . . . .) 

with a branch point at the origin. 
(59) 

In order to give an idea of the applicability of this theorem in practice we 
shall just mention--without proof-two properties of the resistivity transform, 
which takes the place of f when we want to calculate geoelectric sounding 
graphs : 

I) It is analytic in the halfplane Re(h) > o, thus admitting 00 to be-almost- 
equal to x/2. 
2) The corresponding constant K(oo) can be proved to be less than IO even for 
resistivity contrasts as high as 10~. 

IO. EXPLICIT EXPRESSION FOR THE SAMPLING ERROR 

Substituting the exponential majorant (53) for / i;‘(s) / in (52) we get 

1 G(v) -G*(v) I < 4K(oo) - E(oo, sc, M) 

where 

E(w0, sc, M) = fexp (- ZXWOS) (I -?(As))ds 
V 

(60) 

(61) 
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which can be evaluated directly by substituting (27) for I and replacing 
the hyperbolic tangent functions by their expontential series expansion: 

co 
tanh(z) = 1+2X(-r)nexp(-2%~) 

f&=1 
(62) 

After some manipulation we obtain 

exp (- zxwOs,) 
E(o,, A, M) = ___ ___- 

o0 m 

znM sin (w,/M) ’ x n=1 c C-1)” 
exp ( - n * 2n2Ms,) 

(nMX)2 - cd; - (63) 

We consider only M > I and 00-c rc, so the summation is an alternating 
series of numerically decreasing terms. Hence the error from truncating this 
series has the same sign as and a smaller magnitude than the first term neg- 
lected, so when we discard the series altogether, we obtain the (strict) in- 
equality 

E(oo, sc, M) < 
exp (- 2~~0s~) 

2xM sin (oo/M) ’ (64) 

For large sC or large M (or both) the magnitude of the series is negligible 
compared to the first term, so we may use the equality obtained from (64) 
by replacing the < sign by = as a good approximation to E(oo, sc, M). 

Large M correspond to a sharp cutoff of p, and indeed 

lim E(wo, se, M) = exp (- 2~co0s,)/(z~cw0), E5) 
M-h 

which is the result one obtains by inserting a boxcar function in (61). 

Putting M equal to infinity in (64) gives the smallest error estimate, but 
the effect of decreasing M is not serious. If for instance 00 = x/2, then M 
equal to 3, 2, and I give error estimates which are only 5%, 11% and 57% 
higher than the minimum value. Hence M = 2 is a good compromise, reducing 
the computation work to obtain Hz without affecting the end result too much. 

The exponential decay of the error with decreasing A yields good results 
even at moderate sampling densities. Let us consider the calculation of 
geoelectric sounding curves as a specific example. The apparent resistivity 
p,(r) is given by the formula 

pa(r) = p1(1+ 2~~ J$)hJl(hr)dh) = p1(1+ 2r2g(r)) 
D 

(66) 

where the characteristic function f(~) has the properties asserted in the pre- 
ceeding paragraph. We actually calculate an approximation ‘g*(r) = G*(lnr) 
to Ye = G(lnr) so we get an approximate sounding curve 

p*,(r) = PI@+ 2r2g*w (67) 
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The relative error is 

1 p,(r) - p*,(r) / / p1 = ZY 1 G(lnr) - G*(lnr) 1 < 9.0 * r exp (- x2sc) 

where we have put wo = x/z, K = IO and M = 2 in (64). 
(68) 

With a sampling density of x points per decade we have A = (In IO)/%. The 
maximum relative error for various values of x are presented in table I. We 
see that a sampling rate of eight points per decade is quite sufficient, and that 
an increase in the computational work by 10% (to 9 samples per decade) 
yields an accuracy which is an order of magnitude better. 

TABLE I 

Maximum relative error in the calculation of geoelectric sounding cwves fey 
various sampling rates. 

Samples 
per decade 3 4 5 6 7 8 9 IO 

max. rela- 
tive error 14.5 1.70 0.20 0.023 0.0027 3.2,/ 3.Q 4.410-e 

II. TACKLING THE INFINITE SUMMATION 

At this point-if not before-the pure mathematician would probably 
consider the problem solved. However, since our goal is to actually construct 
an efficient algorithm, we are obliged to show how to handle the infinite sum- 
mation in (18). Due to the explicit expressions (31) and (33) for H,* we can in 
fact apply a few tricks, as we shall see. 

The input function f may have a branch point at the origin, as in (59), but 
let us for the sake of argument assume f to be analytic at the origin. Hence 
the power series expansion off around the origin 

f(A) = co+ c1h+ c2h2+ . . . (69) 

will be convergent inside a disc extending out to the nearest singularity off. 
In equidistant points u = nA we have 

F(nA) = exp (- nA) f(exp (- nA)) = exp (- nh) ; cj exp (- j+zA) (70) 
,=O 

which will be rapidly convergent when n is large and positive. Usually it is 
quite easy to obtain explicit expressions for CO and cl for a given function f. 
In geoelectricity, for instance, we have 

co = (PN - PI)/P~ and cl = (R - p$)h, (71) 
N-1 N-l 

where R = C p&f and C = E dgilpj, pj and dj being the resistivity and thick- 
i-1 1-1 
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ness of the jth layer. cz is more complicated, however, so we want to choose 
N’ so large that the terms with k > 2 can be neglected when s > N’ . This is 
obviously justified if 

1 CZ/CO 1 - exp (- zN+A) < EO (72) 

where the computer’s representation error EO for real numbers is 10-10, say. 

Hence we consider the sum 

.S&+ (m) =S~+A)“((~- %)A). (73) 

Writing x = exp (- A) < I in the series expansion (70), substituting in (73) 
and changing the order of summation we get 

S&+ (m) = i ~~~(j+l)N+T~+l(m- N’), (74) 
j=o 

where the TV are defined by 

T&z) = 5 xjVI,*((m-Z)A); j = 0,I . . . (75) 
1=0 

Note that these numbers depend only on H,* and not on the input function 
F, so they need only be computed once and for all. But even this is not 
necessary, because they satisfy the simple recursion formula: 

T&a+ I) = H,*((m+ I)A) + dTj(m) (76) 

so that it is enough to calculate them for one particular value of m, which we 
choose to be large and negative so that all of the values of H,* appearing in 
(75) can be replaced by (31). Remembering (5) and (32) we have series expan- 
sions for the two terms in (31): 

m 
cH,( (m - l)A) = C ,Q&+l+2W (2-m) (77) 

k-0 

where 

and 

where 

hk = c( - ~)k ++2k)/(k!I’(v + k + I)), (78) 

Sm{&((m - Z)A) exp (izns,(m - I)A)} = i a&-m)(k+ll@/M 
k-0 (79) 

ah = (- ~)~-m+lMx Sm{@,(s,- i(k + 1/2)/hlx)}. (80) 
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Let us consider that part T)‘)(m) of Tj(m) which comes from the Bessel 
function term. Substituting (77) in (75) and changing the order of summation 
we get 

The rightmost summation is a geometric series and can be expressed in 
closed form. Hence 

qlym) = ; /?&mHv+l+2qI _ xy+1+j+2k), (82) 
k=0 

which is rapidly convergent for negative m. For T:“) from the modulation term 
we obtain similarly 

m 
qym) = c akX(-nz)w+wM/(I _ ~5+(k+w/M), (83) 

k=0 

and we have 

Tj(rn) = Tjym) + q”‘(m). (84) 

By means of the above formulas S;V +(m) can be calculated for all values of 
m with an accuracy which is only limited by the representation error in the 
computer. 

The sum 

S,- (m) = !i F(fiA)H:((m- %)A) (85) 
n--m 

is connected to the behaviour of f(h) for large values of h. If the response from 
a half-space with resistivity pl is treated separately by analytical means, so 
that f describes only deviations from this response due to layering, we find for 
both the geoelectric sounding and the electromagnetic dipole-dipole sounding 
case that f(h) is O(exp (- zdlh)) for h + co. Hence F(nA) is O(exp (- nA) exp 
( - zdl exp (- %A))) f or n +- co, which solves our problem immediately, 
since this function goes abruptly to zero for negative n. If f is not majorized 
by a decaying exponential function for large h it may still be possible to obtain 
an asymptotic expansion in inverse powers of A 

which permits a technique similar to the one developed for S+ to be applied. 
This is particularly useful when we want to calculate the electromagnetic 
half-space response for the perpendicular loop configuration. An explicit 
solution for this case has been found by Wait (rg55), but it turns out to be an 
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expression involving the modified Bessel functions IO, Ko, 11 and K1 of complex 
argument. There exist of course routines to calculate these functions (see for 
instance Burrel Ig72), but they are neither simpler nor faster nor more accurate 
than the present algorithm, which moreover needs only to be called once 
instead of the four calls to the modified Bessel functions. 

12. THE FOURIER TRANSFORM AS A SPECIAL CASE 

The results we have obtained are valid for all real values of v greater than 
minus one, and in particular for v = + 1/2. Due to 

,";," (hr) = (~/2)1/~ (hr)1/z JTl/z (hr) (87) 

we can interprete the cosine and sine transforms as Hankel transforms 
m m 

2 $ f(X) ii:; @=)dx = d2 J fi (h)hJ71,2 (hr)dh 
0 

(88\ 

where I = .s(zx)l/2; h = x(~Tc)@, and PI = f(h/(zx)1/2)/h1/2. In ordinary 
time series analysis, where the input data would be values of f measured at 
equidistant times, the present method could not be applied, but in theoretical 
model calculations we are free to choose a logarithmic sampling scheme for f, 
and under these circumstances this method has proved to be considerably 
more efficient than the Fast Fourier Transform (FFT). The reason can be seen 
as follows : 

The behaviour of the transformf(s) for large values of s is mai&y controlled 
by the behaviour of f(x) near the origin (see for instance Morse and Feshbach 
1953, p. 462). In order to obtain f(s) with a given accuracy we must therefore 
represent f(x) with a certain minimum sampling density near the origin 
(sampling error). Once an adequate sampling density has been chosen we must 
(in case of the FFT) apply this sampling rate to an interval so large that f(x) 
can be neglected outside of it (aliasing error). With the present method the 
total number of sampling points needed to achieve the same accuracy is con- 
siderably smaller because they are placed strategically better. 

A theoretical VLF problem has recently been studied by Olsson (1978). 
The numerical solution of an integral equation in the wave number domain 
had to be Fourier transformed to yield the response in the space domain. 
In order to achieve about four digits accuracy the FFT needed 512 sampling 
points, while the present method needed less than IOO points. Hence the size 
of the linear equation system could be reduced by more than a factor 25, which 
was quite important in this case. When better accuracy is wanted, the advan- 
tage of this method relative to the FFT is even more pronounced. A logarithmic 
sampling rate of IO points per decade was used. Increasing this by only 10% 
to II points per decade would give one digit more right away, while a refined 
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FFT result would require 1024 sampling points, so that the equation system 
would contain more than one million array elements-a severe task even for 
computers of today. 
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APPENDIX A: PROPERTIES OFH,(C) 

A,(c) = 2-iM 
l?((v + 1)/z - in<) 
P((v + 1)/z + in<) ’ ’ = ’ + iO’ (AI) 

Because I/I?(C) is an entire function, the poles and residues of A,(<) are 
obtained as 

cn = - ((v + I)/2 + qx, n = 0, I, 2, . . . . 642) 

Rn = (-1)"2-( ~~+~+%~/(TT~(v + n + I)lT(n+ I)). (A3) 

The values of A,(<) with arguments placed symmetrically with respect to 
either the real axes or the imaginary axes are closely related, due to 

r(c) = r(t): 
Z?,(s + io) = iz.,( - s + ifs) (A4) 

i?“(s + io) = [E?y(s--i6)] -l. (A5) 
Another characteristic of J?“(c) is a recursion formula, which is derived using 

w+ I) = uw : 

r?,(C + i/x) = 4((v + 1)/2 - M) ((v + I)/2 + ix< - I) H,(c). M 

The properties eq. (A4) and eq. (Ag) are important for reducing computa- 
tional work. Similarly eq. (AG)-in connection with the fact that asymptotic 
values of a,(<), ) < / -+ co can easily be calculated-yields a simple way to 
compute a,(<). 

The following inequality is achieved from eq. (A6) : 

I d,(C + 4x) I /(2x I s I )2n 2 I @,(C) I, IsI>o. (A7) 
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This inequality is used for estimating an upper limit for 1 @J<) 1 in the 
lower halfplane. 

In the upper halfplane 

I A,(k) 1 < z2x* exp (+ I s I )I?((1 + I v I )/2 + x8)/x (A4 
v > -I,8 > (1+ 1 v j)/zTF 

is valid. Eq. (AS) is obtained mainly by means of I'(<)I'(I - <) = n/sin xc. 

APPENDIX B: PROPERTIES OFTHE INTERPOLATING FUNCTION P 

Let us consider functions P(v) whose Fourier transform p(s) can be expressed 
in the following form: 

F(s) = 6(s+so+ I) - 6(s+so). PII 

By means of mathematical induction we obtain that 

: fj(s+.) = 6(s+so+(N+1)) - O(s+so) 
*=ll 

and 

-i B(s + n) = 6(s + so) - 6(s + so- N). (B3) 
x= -1 

Combining (Bz) and (B3) and letting N + cc we derive 

2 $‘(~+a) = lim(G(N) - 6(-N)), (B4) 
-m N-fin 

provided that 6(s) is finite, and 6(N) and 6(-N) tend to a finite limit for 
N -+ co. Hence 

I; $(s+ 12) = lim (6(N) - 6(-N)) -p(s). 0%) 
174 N+m 

This property (Bg) is very important for estimating the aliasing error using 
P(v) as interpolating function. 

We consider 

Ap(A<) = A(I - exp ( - 2x/a)) [I + exp ((AC - ~/z)zx/a] -1 * 

* [I + exp (- (AC+ I/z)zz/u)]-1, C = s+ io. W) 

The poles and residues are achieved from a Taylor expansion around the 
zeroes of each denominator: 

?$ = i(k + ~/a)a/A * I/zA; k = . ., -2, -I, o, I, 2, . ., (B7) 

I?; = ‘F a/zxA. WY 
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The asymptotic behaviour follows directly from (B6), when large values of s 
are inserted : 

I A%) I N A(r-exp(-zTca))exp(-zrcAlsI/a), Isj+co. (B9) 

It is easy to show that 

3(s) = I/Z tanh ((s + 1/2)x/a) - I/Z tanh ((s - ~/z)x/a). 

Defining 

a(s) = I/Z tanh (s~/a) 

we have 

PI01 

PII) 

F(s) = qs- I/2 + I) - 6(s- I/Z) 

Therefore, eq. (Bg) is valid for 3)(s) defined by (BIo) : 
75 B(s+n) = I-F(S). 
%‘O 

PI2) 

W3) 

We observe that (BIz) may be written as a convolution: 

P = 20*11; (BI4) 

where i . II(s) = ijz(S(s + 112) -8(s - 42)) is the Fourier transform of sin (nut) 
(Bracewell 1965 p. 79). ii defined by (BII) is the Fourier transform of 
ia/z sinh (xazt) (Bracewell 1965 p. 366), so by the convolution theorem we obtain 

P(u) = 
a - sin (~24) 

sinh (nati) 
E sinsh (u) 

For 1 u I small we have sinh (xa~) E rcau and hence 

P(u) z 
a sin (x24) 
-- = sine (24) ; ] xaz4 1 4 I 

7tau 

PI5) 

(BI6) 

while sinh (nazl) z sgn (G) . exp (- 7ca ( zt ( )/2 for ( u j large, so that 

P(u) % (42) exp ( - Ta I 24 I ) sin(x/Ul); 17Faz4 % I. (BI7) 

The main difference between sine and sinsh is thus that the latter is damped 
exponentially for large arguments, which is due to the analyticity of its 
Fourier transform. 

APPENDIX C: PROPERTIES OFQ(<) 

We consider &,) defined by 

Q(c) = (I + exp ( - i(c - ibJzn/b))-l, < = s + io. (CI) 

Using a Taylor expansion around the zeroes of the denominator we obtain 
the poles and residues of o(C) : 

cn = (uz+I/2)b+ia,;n = .., -2, -I,o,I,2, .., (C2) 
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and 

R, = blzxi. 

-+ The asymptotic behaviour in the upper halfplane for IJ 

I Q(C) I - exp (- (c- c,Jm/b), G + co. 

Similarly, we have in the lower halfplane 

I &CC) I N 1,0--t-CO. 
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