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ABSTRACT
Modern airborne transient electromagnetic surveys typically produce datasets of
thousands of line kilometres, requiring careful data processing in order to extract as
much and as reliable information as possible. When surveys are flown in populated
areas, data processing becomes particularly time consuming since the acquired data
are contaminated by couplings to man-made conductors (power lines, fences, pipes,
etc.). Coupled soundings must be removed from the dataset prior to inversion, and
this is a process that is difficult to automate. The signature of couplings can be
both subtle and difficult to describe in mathematical terms, rendering removal of
couplings mostly an expensive manual task for an experienced geophysicist.

Here, we try to automate the process of removing couplings by means of an ar-
tificial neural network. We train an artificial neural network to recognize coupled
soundings in manually processed reference data, and we use this network to identify
couplings in other data. The approach provides a significant reduction in the time
required for data processing since one can directly apply the network to the raw data.
We describe the neural network put to use and present the inputs and normalizations
required for maximizing its effectiveness. We further demonstrate and assess the train-
ing state and performance of the network before finally comparing inversions based
on unprocessed data, manually processed data, and artificial neural network auto-
matically processed data. The results show that a well-trained network can produce
high-quality processing of airborne transient electromagnetic data, which is either
ready for inversion or in need of minimal manual processing. We conclude that the
use of artificial neural network scan significantly reduce the processing time and its
costs by as much as 50%.
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INTRODUCTIO N

Currently, it is a very time-consuming task to process large air-
borne electromagnetic surveys conducted in areas with abun-
dant man-made infrastructure: power lines, fences, railways,
etc. Couplings to such infrastructure influence the measured
signal to a degree that cannot be corrected for (Kirsch 2006),
making it necessary to completely remove coupled data from
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the processed dataset. Whereas most of the steps in an air-
borne transient electromagnetic (ATEM) processing workflow
can be automated (Auken et al. 2009), one has to manually
inspect all data in order to remove data that experience cou-
pling. Leaving coupled data in the dataset will, in most cases,
create artificial conductive structures that have no geological
origin. We argue that these structures should not be discarded
by a geologist during the geological interpretation of the in-
version result but rather be removed at the source.
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Describing the signature of couplings in general program-
matic terms is difficult, making it equally difficult to develop
an algorithm for detecting them. Currently, removal of cou-
plings is conducted by manual inspection of all soundings of
the dataset, which can take up as much as 50%–70% of the
total time spent on processing the data. Obviously, it would
be desirable to automate this part of the workflow in order to
save both time and resources.

Rather than trying to automate the process by describing
the behaviour of a coupled sounding in programmatic terms,
we instead try to produce a collection of coupled and uncou-
pled soundings and train an artificial neural network (ANN)
to recognize the characteristics of each category. ANNs have
previously been used in connection with geophysical surveys
but not to remove couplings. A review on the different appli-
cations of ANNs in geophysics, especially in connection with
petroleum exploration, is given by Poulton (2002). ANNs
were suggested as potential alternatives to traditional inver-
sion techniques for electromagnetic data as early as the be-
ginning of the 1990s (Raiche 1991) and have recently been
used for simple two-layer inversions of ATEM data (Zhu
et al. 2012). Inversion of vertical electrical resistivity sound-
ings (Singh, Tiwari, and Singh 2005) and controlled source
audio-magnetotellurics data (Spichak et al. 2002) using ANNs
has also been investigated, with the conclusion remaining that
information can only viably be extracted for a very limited
number of model parameters.

Previously simple, analytic methods have been used to
remove couplings from ATEM data, as described by Auken
et al. (2009). However, since it is hard to describe the charac-
teristics of the couplings in general terms, these methods only
remove a subset of the coupled soundings. Reninger et al.

(2011) used singular value decomposition for the same pur-
pose and concluded that it could make the processing less time
consuming and subjective. We use ANN for the same purpose
but with a higher level of ambition. Our goal is to create a
network so well-behaved that it is capable of outputting data
that can readily be inverted, thus significantly reducing the
time requirements and inherent subjectivity associated with
manual data processing.

This paper is structured as follows: we first briefly de-
scribe ANNs and discuss the specific ANN used for our novel
data processing scheme. The key elements are the inputs to
the ANN and the structure of the network. Having outlined
our methodology, we show how the predictive capabilities of
the ANN depend on the size of the reference dataset before
using the optimal ANN to perform an automatic processing
of a large dataset. The result of automatic processing is then

compared with that of a fully manual processing, and we
compare the results of inversions of both datasets. Finally, we
discuss the advantages and limitations of our approach before
presenting our conclusions.

METHODOLOGY

Neural networks

Artificial neural networks (ANNs) are used in a wide range
of applications across both science and engineering, e.g.,
speech recognition, image compression, detection of credit
card fraud, and stock market prediction (Hsieh 2009). In this
section, we will briefly introduce the concept of ANNs and
present the specific implementation used here.

ANNs are inspired by the network found between neu-
rons in the brain and the idea that one can “teach” a network
to recognize patterns. The neurons are connected to each other
by different couplings and react to signals from each of the
other neurons in different ways. The basic building block is the
neuron or processing element (PE). In our network, these are
organized in layers and the PEs of one layer are connected to
all the PEs of the neighbouring layers. For our purpose, we use
a simple three-layer structure where all PEs in the first layer
correspond to inputs, the second layer is a hidden processing
layer, and the third layer has a single output PE.

The mathematics of an ANN is fairly simple and is briefly
described in the following. Consider an input vector x with m

elements and n PEs in the hidden layer. The output of the ith
PE in the hidden layer is then given by

yi = fi

⎛
⎝

m∑
j=1

wi j xj + bi

⎞
⎠ , (1)

where wij are weight factors, bi is a bias, and fi is the transfer
function. The transfer function should be chosen to resemble
the characteristics of the underlying problem as closely as
possible. For our purpose, the tan-sigmoid function is a good
choice:

f (t) = et − e−t

et + e−t
. (2)

This function smoothly approaches −1 as t goes to – in-
finity and 1 when t goes to infinity, which is very well suited
for a network of binary predictions. The outputs of the neu-
rons in the hidden layer are sent to the output neuron in the
third layer where a weighting is performed and the transfer
function is evaluated. For this PE, we also use the tan-sigmoid
function since our target will be either −1 or 1 for coupled
and uncoupled soundings, respectively.
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Having defined the structure of the network, the next step
is to determine weights and biases matching the features of a
given “training” dataset containing both inputs and targets.
This is called supervised learning since one “tells” the net-
work the target values of different inputs and then optimizes
the network for this situation. The weights connecting the neu-
rons are iteratively adjusted until good agreement between the
output of the network and the targets is found. For this pur-
pose, we use the iterative Levenberg–Marquardt algorithm to
correct the weights by the method of back-propagation.

One central criterion in designing a network of good pre-
dictive capability is to ensure proper normalization of the
inputs with respect to the initial values of the weights while
also taking the nature of the problem into account. If the in-
puts span several orders of magnitude, which is the case for
raw airborne transient electromagnetic dB/dt measurements,
one cannot expect the optimization process to work well if
the weights are initially chosen randomly and of the same
magnitude, which is the standard procedure. In this case, the
large inputs simply have a higher natural influence on the
network output while not necessarily containing more actual
discriminatory power. We thus normalize our inputs as de-
scribed in the next section to achieve good convergence of the
optimization.

While the proper choice of normalization is important,
the predictive capabilities of a neural network can obviously
never go beyond the patterns actually present in the training
set. If the network is to “recognize” specific features in the
data, one has to supply inputs that actually enable this type of
identification and do not contain too many “confusing” in-
puts without discriminatory power. This also means that one
cannot expect an ANN to work well if it is applied to input
data differing significantly from what is actually represented
in the training set. Obviously, it is also of vital importance that
the training set does not contain any inconsistencies, for ex-
ample, in the form of subjective inconsistent human labelling
of grey zone patterns.

Applications in data processing

Our main goal is to make an ANN that can remove so-called
capacitive and galvanic couplings (Danielsen et al. 2003),
which are abundant in densely populated countries such as
Denmark. The two types of couplings give rise to two very
different signals (see Fig. 1) due to their different origin. In
real situations, one can often not consider a sounding affected
by only a galvanic or capacitive coupling. Instead one will
often see both types of couplings present to some degree.

Figure 1 A schematic plot of an uncoupled sounding (fat line), a ca-
pacitive coupled sounding (thin line), and galvanic coupled sounding
(thin dashed line) on a log-log scale. The capacitive sounding changes
sign, indicated by grey connecting line. The negative point itself is
shown with a circle.

The capacitive coupling can be described as an LCR cir-
cuit in the ground and is fairly easy to detect since it demon-
strates large oscillations in the ATEM soundings. A source for
such a coupling could be an underground cable, as shown in
Fig. 2a). Here the LCR circuit consists of the insulating mate-
rial around the cable acting as a capacitor, the underground
return path of the current acting as the resistor, and the whole
circuit as one large inductor. When a current is excited in
such a circuit, it will lead to an oscillating and exponential
damped current. The oscillations are due to the nature of the
LC circuit. A capacitor limits direct currents, and an inductor
limits alternating currents. The interplay between these com-
ponents is therefore an oscillating current. Damping is caused
by energy being dissipated in the resistive ground.

Turning to galvanic couplings, these are generally much
harder to detect than their capacitive counterparts. The un-
derlying LR circuits do not give rise to an oscillatory signal
but only an exponential decay. One common source of these
couplings could be, e.g., grounded overhead power lines, as
shown in Fig. 2b). The LR circuit consists of the resistive
ground and the loop created by the power line mast, the wire
connecting two or more masts, and the ground. This type of
coupling can only be identified by comparing neighbouring
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Figure 2 a) A schematic of the source of a capacitive coupling: an LCR circuit generated by the underground cable and the resistive earth. A
current in the transmitter ITx(t) generates a time-varying magnetic field BP(t), which excites a current IC(t) in the LCR circuit consisting of the
underground cable and the earth. The generated current creates a secondary magnetic field BS(t), which creates a current in the receiver IRx(t).
b) A source of a galvanic coupling could be a grounded overhead power line. In this case there is no capacitive effect and the circuit will be an
LR circuit only.

soundings and identifying spatial variations deemed too
abrupt to be caused by changes in earth resistivity.

In order to find an optimal strategy for automatic detec-
tion of both types of coupling patterns, we have conducted
numerous experiments in terms of inputs for the network.
These included different types of information from both the
dB/dt data itself and the instrument navigational sensors. We
found that a good choice of ANN input for a given sounding
position consists of the raw dB/dt data measured at that very
sounding position and its two neighbours along the flight line.
Thus, an input vector consists of three raw dB/dt measure-
ment vectors stacked on top of each other, with further two
elements holding the time derivative of the instrument alti-
tude between the three soundings. Having three neighbouring
soundings included in the input, the network will know how
the dB/dt signal changes as the measurement position changes.
This makes it possible to identify if the variation is well be-
haved: correlated variations for all gates keep in line with the
change in flight altitude. Conversely, if the changes are irregu-
lar and chaotic, it will probably be caused by random noise or
couplings. Obviously, one can argue that more soundings in
the input vector would be an advantage since this would give
more information to the ANN. This would also increase the
size of ANN parameter space, however, which would result
in an unwanted corresponding increase in the required size of
training set to get to the same training state. In our experience,
three soundings make a good compromise.

The range of input dB/dt data is chosen to only include
the range of time gates where couplings can actually be dis-
tinguished from the signal and background noise. This im-

plies skipping gates from before the primary field has decayed
completely and after the signal becomes dominated by noise.
In practice one chooses a time window narrow enough that
the signal does not include any significant amount of noise
but wide enough that the region where couplings are typi-
cally present is fully covered. Since noise levels are affected
by factors such as flight height, local geology, and transmitter
moment, it is not possible to avoid noise under all circum-
stances. It is therefore important to ensure that the training
set includes data with a similar amount of noise as the data
that one intends to use the ANN on. For the SkyTEM sys-
tem (Sørensen and Auken 2004), which utilizes dual transmit-
ter moments, we found an optimal signal range to be from
20 µs to 180 µs for the low moment and 0.1 ms to 3.5 ms
for the high moment. The ground resistivity is mostly between
10 Ωm and 100 Ωm for the training data. We choose to train
separate networks for each transmitter moment for general-
ity. This approach also allows for discarding only half the
data points of a sounding when only one of the transmitter
moments is actually affected by coupling.

Input normalizations

The range of dB/dt measurements within the time interval
selected for ANN input spans several decades, which makes it
necessary to carefully normalize the data. We normalize by

x′ = sign (x) log |x| , (3)

where sign(x) = 1 for x > 0 and = −1 for x < 0. This nor-
malization retains information about both signs of the signal
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Figure 3 Input data for a coupled (left plots)
and uncoupled (right plots) sounding before
(upper) and after normalization (lower). The
height inputs are not shown. Note that the
unnormalized decays span a factor of a least
100 while the normalized decays span the in-
terval of 0–2.

and makes x
′

of the order of 1 since we further prepare the
input vectors by subtracting its mean and dividing by its stan-
dard deviation. In other words consider all the inputs as a
matrix where each row is an input vector containing the flight
height time derivatives, dh/dt, and the x

′
values for three neigh-

bouring soundings. Let mj be the mean of the jth column and
sj be the standard deviation of the jth column. We normalize
an input x

′
i j by

x
′′
i j = x′

i j − mj

s j
. (4)

Unnormalized and normalized inputs are shown in Fig. 3
for both coupled and uncoupled data. From this figure it is
clear how the inputs are transformed from having a dynamic
range on the order of a factor of 100 into a signal of the order
of 1, which facilitates training with random initial weights.

While the target values of the training set are discrete (−1
or 1 for coupled/uncoupled), the output of the trained network
can be any number between −1 and 1. We therefore have
to determine the optimal “cut-off” value separating coupled
from uncoupled soundings. This is done after the training
process by finding the value that maximizes the agreement
between the network output and the target. In Fig. 5 we show
histograms of targets and output, with a superimposed line
indicating the optimal cut-off. These figures will be described
in more detail in connection with the field example.

F IELD EXAMPLE

To demonstrate the capabilities of our technique, we now
apply it to a SkyTEM dataset acquired by the German/Danish
border in 2008–2009. The survey covers an area of 730 km2

with 3327 km of flight lines. Full survey details are provided
by Jørgensen et al. (2012). The dataset consists of multiple
sub-surveys that were originally processed by different parties,
thus containing small subjective differences in the processing
patterns. In order not to let the different subjective personal
opinions of the original data processors affect the network,
we decided to reprocess a small portion of the survey for our
training set and do it as consistently as humanly possible.

Figure 4 shows the layout of the survey flight lines north
of the Danish border, with the position of the reprocessed data
marked in blue. The position of the data for reprocessing was
chosen to cover all geologically distinct settings of the survey
area, which is essential in order to obtain a well-trained net-
work. In total we reprocessed around 10% of the survey, cor-
responding to �16000 soundings. These data were randomly
divided into three datasets, where one contained 70% of the
data and was used for training and the second contained 15%
and was used to validate the artificial neural network (ANN)
result during training. The remaining 15% was used to test
the ANN after the training had terminated. Using a division
in three distinct bins of training data ensures that the net-
work is not “over-trained” to a very specific subset of data
but performs well on the more general patterns. Primarily, we
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Figure 4 Full flight lines of the Danish part of the survey. The blue lines are reprocessed data, the black line indicates the data shown in Fig. 8,
and the black square indicates the data used in Fig. 10.

use ANN configurations ranging from 15 to 35 neurons for
the networks and around 35 inputs. With fewer neurons the
network will not be able to distinguish all the relevant charac-
teristics of the couplings, and we therefore get bad agreement
between the manual processing and the network. When the
number of neurons is higher than �35 neurons, we generally
do not see any improvement in the agreement. We avoid net-
works with excessive neurons in the hidden layer since the
network training also becomes slower with an increased num-

ber of neurons. The number of inputs depends on the number
of gates included per sounding, which can vary and is not nec-
essarily equal for the two moments. If there are many inputs,
it will generally be a good idea to use many neurons since
there will also be more characteristics in the data.

The output of a 30-neuron network on high-moment data
is shown in Fig. 5. The blue bars are the manual processing
and the red lines are the output of the network. The black
dashed line indicates the optimal cut-off. The output of the
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Figure 5 The training state of a 30-neuron network trained on high-moment data. The training data are used to train the network. For each
training iteration, the network is evaluated on the validation data and finally tested on the test data after the training has terminated. The hit
rate is the percentage of ANN outputs that agree with the target.

Figure 6 The hit rate of a 30-neuron ANN
depending on the size of the training set for
high-moment data. A trend line has been
fitted to guide the eye.

network has clear and distinct peaks at −1 and 1 as expected,
and the distributions of the three training datasets are almost
identical. Generally the coupled peak at −1 is narrower than
the uncoupled at 1, suggesting that it is easier for the network
to recognize a coupled signal compared to a clean earth signal.
The small number of soundings falling in between the peaks
can be considered as “grey zone” soundings. If one has a
network that is not as well trained, it will show up as more
“grass” in between the two peaks where the network is unable
to determine if a sounding is either coupled or uncoupled.
Furthermore, the number of soundings in the region between
the two peaks is also a sign of possible inconsistencies in the

manual processing used to train the network; if the training
data contain soundings that are similar but marked differently,
it will be difficult for the network to determine the output and
it will most likely have an output around 0 in the “grey zone”.
Generally we find hit rates (percentage of ANN outputs equal
to the target) above 90% for the high moment and around
85% for the low moment.

Before applying the trained network to the actual field
data, we first validate whether the training set is of an optimal
size or if the network would benefit from a larger training set.
In Fig. 6 we show the hit rate of a 30-neuron ANN for high-
moment data as a function of the number of soundings used
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Figure 7 Sounding positions for the high-moment data for a subset of the full survey. Roads (light grey) and towns (dark grey) are marked. The
blue dashed line is a power line, the red lines are the flight lines, the black dots show where the ANN finds uncoupled soundings, the blue small
dots are the manually processed uncoupled soundings, and the green line is the line shown in Fig. 8. One sees that the ANN generally accepts
slightly more data than the manual processing but otherwise removes the same data.

for the training. From this figure it is clear that the hit rate
converges around 8000 training soundings, corresponding to
approximately 230 km of flight lines. Beyond this point the
improvement of the hit rate is very small when the size training
dataset is increased. In other words, one can create a custom
ANN for a new survey by processing a small representative
sub-portion of the total survey area. A similar result is found
for the low moment.

Having trained the ANNs for the two transmitter mo-
ments and verified their validity, we apply the networks to

the full survey dataset. In Fig. 7 we show a detailed view of
a part of the survey, with flight lines (red lines), good sound-
ings based on human opinion (blue dots), and good soundings
flagged by ANN (black dots). Apart from the very good over-
all agreement, we observe several interesting features. The
blue dashed line going north–south in the figure indicates a
power line, and both processing schemes succeed in removing
soundings in close proximity. Furthermore, both schemes also
successfully remove data around almost all roads and close to
towns. Overall the ANN processing accepts slightly more data
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Figure 8 High-moment data sections for the green line in Fig. 7 flying from south to north. a) The output of the ANN and b) the manual
processing. In the top of each figure, the flight height is shown in red. There are three large regions (A, B, and C), which have been removed in
both cases but there are slight variations in the extent of the exclusion regions.

than the manual processing, which is also seen in several places
in the figure. As an example, the manual processing has a clear
tendency to exclude more data around roads than the ANN,
especially from flight lines that are close and parallel to roads.
The reason for this might be that, when the angle of the flight
line compared with the road is very small, the signal changes
(especially galvanic couplings) very slowly, which is hard for
the network to detect, since it only sees three soundings at a
time. On the other hand a human inspection of the data allows
inspecting many neighbouring soundings at a time, utilizing a
GIS map with superimposed maps of roads and other infras-
tructure. Therefore, the network is not always able to remove
the couplings that show up as very small perturbations to the
signal, which are also difficult to detect by human inspection.

The high-moment soundings of the flight line marked in
green in Fig. 7 are shown in a gate-by-gate data section in
Fig. 8. In this figure there are three clearly coupled data re-

gions (marked A, B, and C), where data have been removed
by both the manual and ANN processing. From the overview
map in Fig. 7, it is evident that these all correspond to roads.
The A and C regions contain clear signatures of capacitive
couplings, given the large fluctuations and spikes in the data
section. The B region features much smoother data from a
large galvanic coupling (overlain by signatures of a capacitive
coupling), given rise to a smooth signal increase in proximity
of the road. In this case, the ANN processing has included a
single sounding in the manual exclusion region and excluded
three soundings where the manual processing has accepted
them. One also clearly sees that the exclusion regions are nar-
rower for the ANN processing, which means that more data
are left for the inversion. Obviously, this is only an advantage
as long as the data can actually be considered uncoupled.

To investigate the raw data section in Fig. 8 in more de-
tail, we have conducted multiple inversions of this data using
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Figure 9 Model sections based on a temporal running mean of the raw high-moment data shown in Fig. 8. a) The inversion result based on the
full dataset where couplings have not been removed. b) The inversion based on the ANN processing. c) The inversion of the manually processed
data. The dashed line indicates the boundary between the bottom conductive layer and the upper resistive layer for the data without processing.
This line is also drawn in b) and c) for better comparison. The vertical dashed lines in a) indicate the boundaries of regions A, B, and C that are
excluded by the manual processing.

identical settings. The inversions are performed on temporal
running means of the raw data, however, since the signal-to-
noise ratio of each individual raw sounding is much too low
for a meaningful inversion (Auken et al. 2009). The results
are presented in Fig. 9 where we show the model sections cor-
responding to the raw high-moment data in Fig. 8. Note that
there is no direct 1:1 correspondence between the sounding
positions of two figures since one operates directly in raw data
space and the other on temporal averages. Figure 9a) shows
the model section obtained from data experiencing no process-
ing at all. For comparative purposes, we have superimposed
a dashed line marking the boundary between the conductive
bottom layer and the resistive top layer. In regions A and B,

the elevation of this boundary increases by 20 m–30 m, thus
showing large deviations from the otherwise flat boundary.
In C, the boundary is also found to be somewhat uneven. In
Fig. 9b) and c), we show the same results for ANN and man-
ually processed data, respectively. The superimposed dashed
line is identical to that in Fig. 9a), allowing for easy compar-
ison of the differences. It is clear that the regions where the
boundary line is rapidly changing have mostly been excluded
by the ANN processing and almost completely excluded by
the manual processing. In A, the coupling shows up from
900 m to 1200 m. The ANN excludes only half of this region,
and the manual processing excludes it almost completely but
not fully. In region B, both b) and c) remove the coupling
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completely, which is quite impressive since this is also the
most galvanic coupling, and these are generally harder to de-
tect than the capacitive couplings. In region C a very large
amount of data is removed in the manual processing. In the
ANN processing, most of these data are removed but there are
some models from 3400 m to 3600 m. In this interval one also
sees a 50-Ωm region at a depth of 40 m in the 100-Ωm, layer
which is caused by a small coupling. This small region has not
been removed by the ANN. The elevation of the boundary
line also changes by around 30 m at 3600 m. It is difficult to
determine if this change is present in c) or not.

Finally, in Fig. 10, we compare mean resistivity maps
at 30 m–40 m of depth for the area indicated in Fig. 4
based on data with no processing a), an ANN processing b),
and a manual processing c) for both high- and low-moment
data (for geological interpretations, we refer to Jørgensen
et al. (2012)). The main feature of the map is a large high-
resistivity region in the southern part and a low-resistivity re-
gion in the north. The general shape of these regions appears
virtually identical for all three inversions; however, looking
into details, many small discrepancies can be identified. Start-
ing with unprocessed data in a), the resistivity is very uneven
and has many small low-resistivity regions spread over the
entire map. These regions often follow power lines, roads, or
other infrastructure and are caused by coupled data, e.g., the
power line going east–west in the upper part of the map where
the resistivity drops to less than 3Ωm. The inversion based on
ANN processed data b) is significantly more even than a) but
still experiences some coupling artifacts. For example, one can
still see a small low-resistivity region along the power line and
the resistivity drops from 100 Ωm to around 50 Ωm along
a road in the southwestern corner of the map. Finally, the
manual processed data c) result in the smoothest inversion;
however, one still finds regions that might be questionable.
The small discrepancies between b) and c) do not alter the
general good agreement between the two inversion results.

Discussion

In this paper we train and apply our ANN in a very local
context where the survey conditions in terms of flight height,
signal, and noise level are reasonably constant. We found that
such a local network is not readily applicable to surveys con-
ducted under entirely different conditions, which was also
not expected. However, one should be able to improve the
applicability of an ANN incrementally by adding more data
from different locations to the training set. We have investi-
gated this by adding reference data to the training set from

Figure 10 Mean resistivities at a depth of 30 m–40 m based on dual
moment data a) without processing, b) ANN processed data, and c)
on manually processed data. In the background is a card of the area
showing roads, towns, and power lines (grey dashed lines).
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an entirely different survey. The resulting combined network
worked equally good on both datasets, and we thus feel confi-
dent that one can incrementally increase the input parameter
space covered by the network by adding more and more data
to the training set. For the network presented here, we chose
to include three neighbouring soundings for each input vector
to the network. If one is only interested in capacitive cou-
plings, one can neglect both the height information and the
neighbouring soundings since the distinct signature of capac-
itive couplings can be identified on a single sounding level.
However, for the galvanic couplings, one has to include more
soundings since this coupling develops over several soundings
and can only be identified by comparing several neighbouring
soundings. One could consider using even more soundings in
each input vector. The disadvantage of this is that the input
parameter space is also drastically increased, which affects the
amount of data needed to train a network.

CONCLUSION

We have shown that one can successfully train an artificial
neural network (ANN) to recognize couplings to man-made
conductors in airborne transient electromagnetic (ATEM)
data in order to automatically remove them before conduct-
ing an inversion. In order to get the best performance of the
network, we had to normalize the data to values of the order
of 1 and use 3 dB/dt soundings and the change in the flight
altitude as an input. Measuring the performance of the net-
work in terms of how well it reproduces a human processing
(the hit rate), we are able to get a hit rate above 90%.

From our experiments, we found that a network needs
to be adapted to the local survey and geological conditions.
This is not ideal, but we have shown that, in large surveys,
one can manually process a small subset (200-km flight lines
corresponding to one to two flights) of the full dataset, train a
network, and successfully apply it to the remaining data. This
can significantly reduce the labour-intensive task of manually
processing ATEM data and hence can reduce the data pro-
cessing costs by up to 50%. Furthermore, it seems possible to
continuously improve the applicability of a network by adding
more data to the training set, eventually leading to a versatile
and more general network applicable under any conditions.
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