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Abstract. Creating increasingly realistic groundwater mod-
els involves the inclusion of additional geological and geo-
physical data in the hydrostratigraphic modeling procedure.
Using multiple-point statistics (MPS) for stochastic hydros-
tratigraphic modeling provides a degree of flexibility that al-
lows the incorporation of elaborate datasets and provides a
framework for stochastic hydrostratigraphic modeling. This
paper focuses on comparing three MPS methods: snesim, DS
and iqsim. The MPS methods are tested and compared on
a real-world hydrogeophysical survey from Kasted in Den-
mark, which covers an area of 45 km2. A controlled test envi-
ronment, similar to a synthetic test case, is constructed from
the Kasted survey and is used to compare the modeling re-
sults of the three aforementioned MPS methods. The com-
parison of the stochastic hydrostratigraphic MPS models is
carried out in an elaborate scheme of visual inspection, math-
ematical similarity and consistency with boreholes. Using
the Kasted survey data, an example for modeling new sur-
vey areas is presented. A cognitive hydrostratigraphic model
of one area is used as a training image (TI) to create a suite
of stochastic hydrostratigraphic models in a new survey area.
The advantage of stochastic modeling is that detailed multi-
ple point information from one area can be easily transferred
to another area considering uncertainty.

The presented MPS methods each have their own set of
advantages and disadvantages. The DS method had aver-
age computation times of 6–7 h, which is large, compared to

iqsim with average computation times of 10–12 min. How-
ever, iqsim generally did not properly constrain the near-
surface part of the spatially dense soft data variable. The
computation time of 2–3 h for snesim was in between DS
and iqsim. The snesim implementation used here is part of
the Stanford Geostatistical Modeling Software, or SGeMS.
The snesim setup was not trivial, with numerous parameter
settings, usage of multiple grids and a search-tree database.
However, once the parameters had been set it yielded com-
parable results to the other methods. Both iqsim and DS are
easy to script and run in parallel on a server, which is not the
case for the snesim implementation in SGeMS.

1 Introduction

Recent advances in groundwater modeling have shown the
importance of accurate hydrogeologic models for manage-
ment of increasingly sparse groundwater resources. Ground-
water modeling predictions are sensitive to geologic het-
erogeneity (e.g., Freeze, 1975; Gelhar, 1984; Fogg et al.,
1998; LaBolle and Fogg, 2001; Zheng and Gorelick, 2003;
Feyen and Caers, 2006; Fleckenstein et al., 2006; Zhao and
Illman, 2017). However, geological units include complex-
ities not directly related to hydrofacies (Klingbeil et al.,
1999). Instead, the concept of hydrostratigraphic units is
used throughout this study, which effectively combines ge-
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ological units and reduces the total number of units result-
ing in a closer relation to the hydrologic units. Improv-
ing the realism and quantification of uncertainty around hy-
drostratigraphic models is therefore an important step to-
wards accurate groundwater modeling predictions. Hydros-
tratigraphic models are created using several approaches. A
common approach is a manual co-interpretation of available
geophysical, geological and/or hydrologic data. The geosci-
entist cognitively uses his/her refined knowledge of geolog-
ical processes combined with the provided datasets to cre-
ate a detailed cognitive geological model (e.g., Jørgensen et
al., 2013; Royse, 2010). The cognitive geological model is
then simplified to a hydrostratigraphic model. Even though
the hydrostratigraphic model encapsulates the complexities
related to geologic architecture, it does not reflect the hydros-
tratigraphic uncertainty. It is a so-called deterministic model,
i.e., one version of the hydrostratigraphic subsurface. An al-
ternative to cognitive modeling is stochastic modeling using
geostatistical methods. The field of geostatistical modeling
focuses on creating models depicting subsurface hydroge-
ology and/or reservoir properties. Geostatistics is currently
applied in a number of geoscience fields, such as petrology
(e.g., Okabe and Blunt, 2005), petroleum reservoir modeling
(e.g., Journel and Zhang, 2006; Strebelle et al., 2002), hy-
drogeology (e.g., Huysmans and Dassargues, 2009) and hy-
drology (e.g., Michaelides and Chappell, 2009). Overall geo-
statistical methods provide a framework in which multiple
equiprobable hydrostratigraphic models can be created in a
semiautomated fashion. The individual stochastic models do
not reflect the modeling uncertainty, but the model ensemble
does. The multiple hydrostratigraphic models can be used as
a set of input parameters for the groundwater model. By run-
ning the groundwater model several times with different hy-
drostratigraphic models, multiple predictions can be made,
yielding an estimate of the prediction uncertainty. The abil-
ity to understand how the hydrostratigraphic uncertainty is
related to the prediction uncertainty will help in understand-
ing where to improve the hydrostratigraphic models in order
to reduce the prediction uncertainty. This study will however
not focus on groundwater modeling predictions, but on the
presentation of a stochastic modeling framework for recon-
structing subsurface hydrostratigraphic architecture.

Today state-of-the-art geostatistical tools are readily avail-
able to geoscientists. Traditional two-point statistics, or
variogram-based methods, e.g., sisim (Journel, 1983) and
sgsim (Deutsch and Journel, 1998), have been widely used in
both research and in practice (e.g., Seifert and Jensen, 1999;
Caers, 2000; Juang et al., 2004; Delbari et al., 2009). How-
ever, variogram-based techniques depend on two-point statis-
tics for simulation of complex geological features. Depend-
ing on the complexity of the geological setting, such two-
point statistical methods cannot recreate complex curvilinear
geological features of the subsurface which are common in
fluvial and glaciofluvial environments (e.g., Arpat and Caers,
2005; Hu and Chugunova, 2008; Journel and Zhang, 2006;

Journel, 1993; Liu, 2006; Sánchez-Vila et al., 1996; Strebelle
and Journel, 2001). An additional geostatistical modeling
tool which should be mentioned is T-PROGS (Carle, 1999).
T-PROGS is based on transition probabilities between cate-
gories and generates geostatistical realizations based on such
constraints. In comparison with the indicator method, sisim,
it allows for better integration of these transition probabil-
ities and, hence, the spatial cross-correlations of soil/rock-
type architecture into the groundwater models. However, T-
PROGS also has difficulties in reconstructing curvilinear ge-
ological features. Kessler et al. (2013) made a detailed com-
parison between T-PROGS realizations and real-world cross
sections in a gravel pit in Denmark. The result reveals a sub-
optimal pattern reproduction, in comparison to other simu-
lation tools such as multiple-point statistics (MPS) (Mari-
ethoz and Caers, 2014b). MPS is a recent alternative to clas-
sic two-point statistics. Here, additional multiple-point (MP)
information from a training image (TI) is used to condition
the simulations. The usage of MP information allows for re-
construction of more complex geological features, such as
curvilinear features (Strebelle, 2002). A TI is any 2-D or 3-
D image containing geometrical information relevant to the
hydrostratigraphic model. The crux of the MPS approach is
finding a relevant TI. Some examples of 2-D and 3-D TIs are
categorical images of outcrops (2-D), categorical drawings of
a geological system created by a geoscientist (2-D), and cog-
nitive geological or hydrostratigraphic voxel models (3-D)
(e.g., Høyer et al., 2015a). Today, MPS techniques are widely
used in geoscientific research and studies, a few examples are
Maharaja (2005), Meerschman et al. (2013) and Hermans et
al. (2014). The MPS framework allows for conditioning of
geological architecture/patterns, a stochastic framework and
spatially constraining to both soft data and hard data (Arpat
and Caers, 2005; Guardiano and Srivastava, 1993; Journel,
1993; Strebelle and Journel, 2001).

Within the geostatistics framework the creation of hydros-
tratigraphic models requires the inclusion of data from mul-
tiple sources, often geophysical models (soft data), borehole
data (hard data) and a TI. The different data sources each pro-
vide relevant information. Geophysical models provide infor-
mation regarding the large-scale hydrostratigraphic architec-
ture. Boreholes, on the other hand, provide detailed yet usu-
ally sparse information regarding hydrostratigraphic units.
Each data source is a piece of the puzzle; combining the indi-
vidual pieces improves the resulting hydrostratigraphic mod-
els. The inclusion of several types of data is, however, not
trivial since information regarding their mutual relationships,
e.g., the hydrostratigraphic–petrophysical relationship, is re-
quired. An important source of information which helps to
combine the different sources of data is geologic knowledge.
Geologic knowledge can be defined as information regard-
ing geologic processes, geomorphologic patterns and struc-
tural geology. Incorporating geological knowledge into hy-
drostratigraphic models is often difficult and done ad hoc.
Geologic information, as described above, complements the
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soft data and helps to create more realistic hydrostratigraphic
models. However, within the MPS framework this type of in-
formation can be implemented via the TI.

This study focuses on comparing and testing three MPS
methods on a real-world dataset from a groundwater sur-
vey in Kasted, Denmark. An important part of the dataset is
the airborne geophysical survey, providing a set of resistiv-
ity models containing information regarding the large-scale
hydrostratigraphic architecture of the area. The MPS tools
are used to reconstruct an intricate system of interconnected
buried valleys. The end result is an ensemble of hydrostrati-
graphic models. A 3-D hydrostratigraphic voxel model of
the area is used as a TI, containing detailed MP informa-
tion regarding the hydrostratigraphic features of the survey
area. Information regarding the geological architecture and
the relationship between hydrostratigraphy and petrophysical
properties are contained in the TI. The hydrostratigraphic–
petrophysical relationship is explicitly known since the hy-
drostratigraphic model spatially overlaps with the geophys-
ical and borehole lithology logs. Spatially constraining the
simulation to the soft data, consisting of the resistivity mod-
els, ensures that simulated geological patterns are placed
concurrently to the real world. However, such geophysical
soft data have several types of related uncertainty, e.g., spa-
tial uncertainty related to incomplete datasets, resolution ca-
pabilities and signal-to-noise ratio decrease with depth. In-
complete geophysical datasets are a common problem and
are typically reconstructed using geostatistics – often in a de-
terministic fashion. A common approach is to use variogram-
based geostatistics, such as kriging interpolation, to recon-
struct the incomplete resistivity grid (Isaaks and Srivastava,
1989). We have used the stochastic direct sampling (DS)
grid reconstruction routine proposed by Mariethoz and Re-
nard (2010). Here, the grid reconstruction uncertainty is re-
flected by multiple resistivity grids, yielding variable patterns
in the multiple reconstructed grids. The reconstructed grids
are then used in conjunction with the hydrostratigraphic TI
to create a set of stochastic hydrostratigraphic realizations of
the hydrostratigraphy of the modeled area.

In relation to the Danish groundwater mapping campaign
(Thomsen et al., 2004), detailed geophysical datasets (Møller
et al., 2009) and hydrostratigraphic models exist. A selection
of the 3-D geologic and hydrostratigraphic voxel models is
reported in the literature (e.g., Høyer et al., 2015a, b; and
Jørgensen et al,. 2015). Additionally, the study by Høyer et
al. (2017) presents a framework for making large-scale MPS
models based on geological 3-D voxel models, as well as
seismic and borehole data. In this study, we will show how
MPS methods can be utilized to model a new survey area.
An existing cognitive model from one area is used as a TI
for simulating another survey area with similar geological
characteristics.

To our knowledge, no vigorous studies comparing multi-
ple MPS methods have been carried out on real-world hydro-
geophysical datasets. By applying several measures to assess

and compare the modeling results, the selected MPS tools
are tried, tested and compared on real-world data. The MPS
methods are tested in a pseudo-synthetic environment, where
an actual 3-D hydrostratigraphic model of the Kasted sur-
vey area is used as a TI. This guarantees a controlled model-
ing environment in which the TI contains highly relevant hy-
drostratigraphic architecture. The main contributions of this
study are (1) a practical real-world example of stochastic re-
construction of incomplete geophysical datasets; (2) com-
parison of three MPS methods for integrating geophysical
data – snesim (Liu, 2006; Strébelle and Journel, 2000), di-
rect sampling (DS) (Mariethoz et al., 2010) and image quilt-
ing (iqsim) (Hoffimann et al., 2017; Mahmud et al., 2014);
(3) validation of the comparison results by (a) visual inspec-
tion, (b) a mathematical comparison method called the anal-
ysis of distance (ANODI) (Tan et al., 2014) and (c) com-
parison of the simulation results against the borehole lithol-
ogy logs; and (4) to show the strengths and weaknesses
of a stochastic hydrostratigraphic modeling framework, and
(5) an example using the direct sampling method and show-
ing how to use the cognitive hydrostratigraphic interpretation
of one area to directly generate hydrostratigraphic models of
new areas, using only the soft data from the new area.

2 Study area and data

The Kasted survey area is located in Denmark, in the east-
ern part of Jutland, close to the city of Aarhus (Fig. 1a).
The 45 km2 area has been surveyed in detail and contains
453 boreholes as well as a SkyTEM survey of 333 line km.
A detailed geologic model of the area has been created by
Høyer et al. (2015a). The dataset was collected and com-
piled in relation to the HyGEM project. The local geology
consists of an intricate system of interconnected Quaternary
buried valleys, infilled with till and meltwater deposits. The
buried valleys are incised into thick hemipelagic Paleogene
clay, which dominates the area (Høyer et al., 2015a). Many
such pre-glaciated areas are dominated by buried valleys,
which have proven important subsurface features in regard
to groundwater flow (Jørgensen and Sandersen, 2006; Seifert
et al., 2008). These noteworthy geological features have re-
ceived a lot of attention in research through the years (e.g.,
Destombes et al., 1975; Jørgensen and Sandersen, 2009; Ke-
hew et al., 2012; Ritzi et al., 1994).

The dataset used in this study consists of a dense air-
borne geophysical SkyTEM survey, near-surface boreholes
from the Danish borehole database, and a cognitive geologic
model created by an experienced geoscientist. In the follow-
ing we will summarize the key features of these datasets.

The SkyTEM system (Sørensen and Auken, 2004) is a he-
licopter transient electromagnetic system allowing for rapid
collection of large geophysical datasets, with high spatial
density. The Kasted SkyTEM survey contains 333 line km
with a line spacing of roughly 100 m (Fig. 1b). The SkyTEM
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Figure 1. An overview map of the Kasted survey area. (a) shows the
geographic location of the survey area, which is marked as a black
box; and (b) shows a close-up view of the Kasted survey area with
the related datasets and infrastructure overlay.

data are inverted and modeled according to the scheme de-
scribed by Viezzoli et al. (2008), with the end result being a
collection of spatially constrained inversion models. In Den-
mark it is standard protocol to calibrate the SkyTEM sys-
tem at an official calibration site, as described by Foged et
al. (2013), ensuring data of high-quality and reproducible
results. Therefore, the resistivity values from a calibrated
SkyTEM survey are comparable to other calibrated SkyTEM
surveys. The SkyTEM system is sensitive towards large-scale
conductive trends in the subsurface, especially when a sig-
nificant contrast between a conductive and a resistive feature
exists. In the eastern part of Jutland it is common that the
lower confining boundaries of the buried valleys are well re-
solved since these buried valleys are often quite resistive and
are eroded into conductive hemipelagic Paleogene clays.

The Danish borehole database, JUPITER (Hansen and
Pjetursson, 2011), contains about 280 000 shallow boreholes
which have been drilled for a variety of purposes, mainly
in relation to drinking water and raw materials exploration,
but also in relation to research and geotechnical studies. The
JUPITER database contains information on location, drilling
method, lithology, geologic age, filter position and water
chemistry.

The cognitive geologic model was created using all avail-
able data, including the 333 line km of SkyTEM data, in-
formation from 435 boreholes and prior geological knowl-
edge of the area. The model was created using the cogni-
tive modeling scheme, which is introduced by Jørgensen et

al. (2013). The geological model is described in great detail
by Høyer et al. (2015a). The geologic model is detailed and
contains a set of 21 interconnected buried valleys. The final
3-D voxel model contains 42 unique geological units, which
are simplified into three overall hydrostratigraphic units in
this study. The three hydrostratigraphic units are chosen for
the purpose of covering the overall hydrogeological features
of the groundwater modeling area. The cognitive hydrostrati-
graphic model will act as the TI as well as a baseline for
assessing the performance of the three MPS methods, and
the stochastic modeling results will be compared against the
cognitive model.

3 Methods

MPS provides a degree of flexibility, which assists the
modeler in creating geologically realistic hydrostratigraphic
models. The idea is to create a suite of hydrostratigraphic
models, which span a realistic subset of possible model ar-
chitectures, as opposed to a deterministic model, which spans
a single possible model architecture. The term realistic refers
to models, which comply with the underlying datasets men-
tioned above, i.e., borehole lithological logs, geophysical
resistivity models and the cognitive geological model. The
underlying datasets have associated uncertainties describing
ranges of possible models. The suite of equiprobable hydros-
tratigraphic models can be used as input to a groundwater
model, making it straightforward to test the sensitivity of spe-
cific groundwater model predictions.

3.1 MPS methodologies

MPS methods use a training image to condition a model sim-
ulation to a prior geological conceptualization. As opposed to
two-point statistics, the joint variabilities of multiple points
are assessed at the same time during simulation. The MP
joint variabilities cannot be inferred from sparse data and
are therefore taken from a relevant exhaustive TI. The jus-
tification that a given TI can be used to infer the joint vari-
ability of MPs heavily lies on the choice of a relevant TI.
A TI should always contain geologically realistic and rele-
vant information (Journel and Zhang, 2006). Finding and/or
creating a realistic TI is thus important to the MPS methodol-
ogy. A TI is essentially any categorical or continuous image.
which contains the geological conceptualization of the target
variable (Mariethoz and Caers, 2014a). It is not a subsurface
model itself, but a quantitative conceptual depiction of it. The
user chooses the TI based on his/her prior understanding of
the local hydrogeological system. The TI does not need to
carry any locally accurate information; i.e., it does not need
to contain the actual geographical positions of the hydros-
tratigraphic architecture, just the general patterns. It needs to
reflect a prior geological or structural concept (Strebelle and
Journel, 2001).
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The MPS methods chosen in this study have been selected
to reflect recent advances in MPS methods. The MPS meth-
ods in this study include the single normal equation simu-
lation (snesim) (Strébelle and Journel, 2000) implemented
in the Stanford Geostatistical Modeling Software (SGeMS),
direct sampling simulation (DS) (Mariethoz et al., 2010)
implemented in the DeeSse software package (Straubhaar,
2011) and image quilting simulation (iqsim) (Hoffimann et
al., 2017) implemented in ImageQuilting.jl.

3.1.1 Single normal equation simulation – snesim

The snesim method is a traditional MPS method. It fits
into the so-called “probability framework” where geophys-
ical models (not data) are considered soft information, and
as such needs to be converted into probabilities. Suppose we
have a categorical random variable S which has K possible
states (sk, k = 1, . . .,K); i.e., there are K hydrostratigraphic
units. For each cell in the target sampling grid a probability
prob{sk} is defined for each of theK states, so that for a given
grid cell, denoted celli ,

prob {celli} =
∑K

k=1
prob {sk} = 1, (1)

where i ∈ {1, . . .,N}, and the sampling grid has a total of N
cells. The crux is then to translate the geophysical data into
the probabilities described in Eq. (1). The collection of all
probabilities for the entire sampling grid is also referred to
as a probability map (2-D) or probability grid (3-D). The
translation of the soft data is usually carried out based on a
prior understanding of the petrophysical–hydrostratigraphic
relationship and will be discussed further later in the paper.
For a detailed description of the more general petrophysical–
lithological relationship, the reader is referred to Barfod et
al. (2016) and Beamish (2013). The probability grids are
used to constrain the simulation using the so-called tau model
(Journel, 2002). The probability grid approach is intuitive
and allows the modeler to incorporate any desired datasets
or variables into the probability map. Examples of soft data
are any type of geophysical soft data and/or prior informa-
tion, which can be translated into probabilities.

In snesim, the TI is stored in a dynamic data structure
called a search tree. The search tree is a database and can be
seen as a condensed summary of the full TI. It contains the
spatial information to which the simulation is conditioned;
for more detail see Strebelle (2002). To avoid repetitive scan-
ning of the TI, which is computationally expensive, the TI
is stored in a search-tree database ahead of the simulation
(Roberts, 1998). This is done once. TI patterns can then be
retrieved from the database without scanning the entire TI.
Depending on the amount of detail stored in the search tree
this can be quite CPU intensive, since the entire search tree
is stored in memory, and therefore there is an upper limit
to the size of the search-tree pattern database. However, ad-
vances in computers have increased the upper limit for avail-
able CPU.

Another caveat of snesim is the usage of multiple grids
(Tran, 1994). Due to limitations in relation to the search
neighborhood, the simulation of structures on all scales re-
quires the usage of multiple grids. The simulation is carried
out on a series of multiple simulation grids with varying den-
sity, ensuring pattern reproduction at all scales. The search-
tree formulation and multiple grid approach add to the over-
all complexity of parameterization in snesim, but at the same
time ensure stable and reliable MPS modeling results. The
increased number of user-defined parameters makes it less
intuitive, since it is relatively difficult to determine the opti-
mal parameter values for a given dataset.

3.1.2 Direct sampling simulation – DS

The direct sampling simulation (DS) method consists, for
the simulation of each cell, in randomly scanning the TI
until a pattern similar to the pattern centered at the simu-
lated cell is found and then in copying the value in the cen-
ter of the pattern from the TI to the simulation grid. Conse-
quently, contrary to snesim, no probability is explicitly com-
puted to draw a value at a simulation grid cell. In this pa-
per, we use the DeeSse implementation of DS, presented by
Straubhaar (2011). This bypasses the necessity of saving spa-
tial patterns in a search-tree database; instead, spatial patterns
are conditioned by directly scanning the TI.

One issue which needs to be solved is how to constrain a
soft data variable. In DS, this is accomplished by introduc-
ing an auxiliary variable. The auxiliary variable is roughly a
translation of the TI into a soft data variable. Suppose a for-
ward operator, denoted by G, represents the physical model,
which translates the subsurface hydrostratigraphic units into
the continuous soft data variable, as when scanning the near
surface with a geophysical instrument and subsequently pro-
cessing and interpreting the data into the actual petrophysi-
cal parameters. Then we can define an approximate forward
operator G∗ (Mariethoz and Caers, 2014b). The G∗ opera-
tor is an operator which is used to translate the TI into a
spatially overlapping soft data variable. However, in prac-
tice creating a G∗ operator requires several steps. Based on
the modeling setup of this study, we will briefly review the
required steps. Firstly, the TI needs to be populated with
relevant resistivity values. The resulting populated resistiv-
ity grid does, however, not reflect the physical model, G,
which translates the subsurface hydrostratigraphic units into
subsurface bulk resistivity. To properly reflect the G oper-
ator additional complexity needs to added, such as smooth
layer boundaries, loss of resolution with depth, limited reso-
lution capabilities and the instrument footprint. This can be
achieved by using either an approximate 1-D or a full 3-D
forward modeling code to translate the populated resistivity
models into synthetic data reflecting actually measured field
data. These data, the forward responses, then need to be pro-
cessed and inverted back to resistivity models, which now
constitute an auxiliary variable, which reflects the complex-
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ities involved with the SkyTEM system. The auxiliary vari-
able and the categorical hydrostratigraphic variable are com-
bined to create a multivariate or bivariate TI. The bivariate TI
consists of a categorical variable, e.g., the three hydrostrati-
graphic units, and the geographically overlapping continuous
auxiliary variable, representing the soft data variable. The
setup used in this paper avoids the usage of the G∗ operator
to create the auxiliary variable, since the reconstructed resis-
tivity grids and cognitive hydrostratigraphic model grids ge-
ographically overlap. The reconstructed resistivity grids can
thus directly be used as an auxiliary variable for the cog-
nitive hydrostratigraphic model TI. The bivariate TI consti-
tuted of collocated categorical hydrostratigraphic units (cog-
nitive model/primary variable) and resistivity values (auxil-
iary variable) contains information regarding the relationship
between these variables. The simulation is then conditioned
against the bivariate TI by using a so-called distance mea-
sure. Distance measures are designed to compare the simi-
larity of two sets of spatial patterns to each other. The idea
is that similar patterns have relatively small distances, while
dissimilar patterns have relatively large distance values. Con-
ditioning against the MP information contained in the bivari-
ate TI enables the ability to find probable spatial patterns,
which also agree with the soft data variable.

DS is more flexible than traditional MPS methods, such as
snesim. As no search-tree database is required, the multiple
grid formulation used in snesim is not required in DS, which
effectively reduces the number of parameters and makes the
parametrization relatively simple. Furthermore, one can sim-
ulate continuous variables and/or discrete variables with no
limitation to the maximum number of categories (e.g., hy-
drostratigraphic units). In our case, any number of geophys-
ical datasets collocated or not can be included as long as a
corresponding auxiliary variable is added to the multivari-
ate TI. However, it can be a cumbersome process generating
the auxiliary variable. Furthermore, it is even possible to use
probability grids in place of the actual soft data variable, as
in snesim, if desired (Mariethoz et al., 2015). Depending on
the setup and dataset, DS can be computationally as fast as
snesim. Moreover, the DS implementation used in this work
is amenable to scripting yielding the possibility of improving
computation times on computer clusters or servers, if avail-
able.

3.1.3 Image quilting simulation – iqsim

The image quilting simulation (iqsim) method has been bor-
rowed from the computer vision literature (Efros and Free-
man, 2001). The algorithm is originally designed to synthe-
size and/or replicate patterns from 2-D images but has since
been modified to accommodate conditioning data and 3-D
geoscience problems (Mahmud et al., 2014). The concept of
the iqsim method is straightforward. In essence, iqsim cuts
the TI into user-defined patches or blocks and then reassem-
bles the patches to create a simulation. The difficult part

is how to reassemble the patches to create meaningful and
seamless realization results, which can be constrained to a
soft data variable. These difficulties have been solved (for
more detail see e.g., Hoffimann et al,. 2017)1. A great advan-
tage of the iqsim method is its computation time. It has a sim-
ilar setup to DS, regarding the usage of auxiliary variables.
The iqsim method is new within the field of groundwater and
environmental modeling, and for this paper the open-source
Julia implementation by Hoffimann et al. (2017) is utilized.
So far, this code contains the ability to use masked grids,
i.e., grids where only specified grid cells are simulated, con-
ditioning hard and soft data and running simulations on the
computer graphics processing unit (GPU), yielding compu-
tationally fast simulation of hydrostratigraphic models on a
personal computer. As with DS, there are no limitations to
the number of data events, and since the search-tree structure
is avoided, no multiple grids are required, effectively making
for a simple parameterization.

3.2 Reconstructing incomplete dense geophysical
datasets

A common problem in hydrogeophysics is that datasets, al-
beit spatially dense, do not cover the entire modeling grid. In
electromagnetic methods human infrastructure causes elec-
tromagnetic interference with the signal. Such noisy sound-
ings, referred to as coupled soundings, are removed during
processing, as presented by Auken et al. (2009), resulting
in an incomplete dataset with gaps scattered throughout the
survey area (Fig. 1b). Several approaches to manage with
incomplete datasets exist. One approach is to leave the in-
complete dataset as is, meaning gaps are reconstructed dur-
ing simulation of the hydrostratigraphic model without spa-
tially constraining the simulation gaps. The gaps are filled
out solely by conditioning to the TI. Alternatively, dataset
gaps can be filled prior to simulation, which is primarily
done if the dataset has a high spatial density and/or the un-
derlying random variables describing the data are not as-
sumed to be especially complicated. The soft data utilized
for constraining in this study are SkyTEM models. The raw
SkyTEM data undergo processing and inversion (Auken et
al., 2009), resulting in a series of spatially constrained 1-D
resistivity models at the sounding locations (Viezzoli et al.,
2008) (Fig. 1b). The SkyTEM resistivity models are then
assigned to the nearest sampling grid cells by simple krig-
ing with a 50 m search radius. The end result is a spatially
dense incomplete 3-D resistivity grid (Fig. 2a). The high spa-
tial density makes it possible to reconstruct the dataset using
geostatistical tools, such as pixel-based kriging techniques,
a so-called two-point statistical tool, for reconstructing in-
complete datasets (Goovaerts, 1997). Another approach for
reconstruction of incomplete datasets is the method using

1Software is available at https://github.com/juliohm/
ImageQuilting.jl, last access: 14 June 2018.
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DS presented by Mariethoz and Renard (2010). Since the
density of the data points is sufficiently large, the resistiv-
ity grid itself can be used as both a TI and soft data variable
to stochastically simulate the missing values in the resistivity
grid, i.e., the gaps in Fig. 2a. The MPS dataset reconstruction
approach (Fig. 2c and e) is advantageous over the variogram-
based kriging estimation (Fig. 2b and d) since it only requires
setting up a few parameters. Furthermore, the DS approach
uses MP information to condition the reconstruction of the
dataset. Here, it is important to note that the kriging method
is an estimation method, while the DS approach is a simula-
tion method. An estimation method estimates a “best” value,
while a simulation method makes a stochastic ensemble of
equiprobable guesses. The end result of the DS reconstruc-
tion approach is an ensemble of stochastic resistivity grids,
of which one realization is compared against a corresponding
kriging reconstructed grid in Fig. 2d and e. The close-ups in
Fig. 2b and c reveal some key differences in the reconstruc-
tion of gaps using kriging and DS. The resistive peak fringing
the border of the gap in the westernmost resistive buried val-
ley is smeared into the gap in the kriging reconstructed grid
(see close-up in Fig. 2b). However, the single DS reconstruc-
tion presented here does not smear the resistive peak into the
gap (see close-up in Fig. 2c). The usage of MP information
in DS allows the possibility that the resistive peak is not part
of the gap.

The uncertainty related to the stochastic resistivity grids
is different from the kriging resistivity grid uncertainty. The
standard deviation (SD) related to the kriging reconstructed
grid is closely related to the distance to the nearest data point
(Fig. 2f), whereas the uncertainty on the stochastic resistivity
grids reveals values much more correlated to the patterns of
the geophysical information.

It is important to note that the resistivity parameter uncer-
tainty has neither been included in the kriging nor the DS re-
construction, enabling the comparison of the SD maps. As an
example, a gap present in the homogeneous conductive units
with resistivity values between ∼ 2 and 8�·m has a low SD.
According to the TI there is a high probability of finding a
conductive unit in a gap surrounded by only conductive units
due to the homogeneity of such conductive units. However,
gaps fringing the border of two contrasting resistivities have
large SD values, since information regarding the exact loca-
tion of the boundary is missing in the TI (e.g., the large SD
value at the eastern border of the survey area seen in Fig. 2g).

In summary, the uncertainty of the DS reconstruction pro-
vides additional information regarding the reconstructed re-
sistivity patterns over, for instance, a kriging approach. Also,
the MPS reconstruction of the incomplete dataset is less
smooth, easier to parameterize, and stochastic, and the uncer-
tainty is related to pattern reconstruction and not the distance
to the nearest data point.

3.3 Hydrostratigraphic modeling setup

The MPS grid reconstruction procedure is used to generate
an ensemble of resistivity grids without gaps (Mariethoz and
Renard, 2010). The reconstructed resistivity grids are used as
soft data for constraining the simulation of the hydrostrati-
graphic models, with the cognitive 3-D hydrostratigraphic
model used as a TI. The full cognitive geological model con-
tains a total of 42 different geological units (Høyer et al.,
2015a), which have been grouped together to form three key
hydrostratigraphic categories. The three categories are de-
scribed as follows.

1. Sand and gravel: Miocene sand, Quaternary meltwa-
ter sand and sand till, within and above the Quaternary
buried valleys.

2. Glacial clay: Quaternary clay till and meltwater clay
within and above the buried valleys.

3. Hemipelagic clay: hemipelagic, fine-grained Paleogene
and Oligocene clays.

The simplified cognitive hydrostratigraphic model is used
as a TI and contains the most significant hydrostratigraphic
units. Such 3-D voxel TIs are usually not readily available,
and in most cases 3-D TIs are fabricated ad hoc and are
merely conceptual. However, in this case the TI is actually
the model we wish to simulate. The justification for this
choice of TI lies in that this study is a proof-of-concept study,
where three different MPS methods are compared against
each other. Using a detailed TI containing the desired hydros-
tratigraphic concepts showcases how well the MPS methods
perform in a stochastic hydrostratigraphic modeling work-
flow with a relevant TI.

The overall workflow can be seen in Fig. 3. In detail, the
steps are described as follows.

1. The SkyTEM resistivity grids are reconstructed using
the methodology of Mariethoz and Renard (2010) as de-
scribed in Sect. 3.2 “Reconstructing incomplete dense
geophysical datasets”.

2. The ensemble of reconstructed SkyTEM resistivity
grids is used as soft data for constraining the three MPS
methods.

a. A reconstructed resistivity grid and the TI are used
in the snesim framework.

– Using histograms created using the resistivity
atlas approach presented by Barfod et al. (2016)
(Fig. 4c and d) a single reconstructed resistivity
grid is translated into a set of probability maps
(Fig. 5).

– The TI is used for conditioning in conjunction
with the probability maps, which are used for
spatially constraining the snesim simulations
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Figure 2. Comparison of the deterministic kriging and stochastic DS resistivity grid reconstruction and their corresponding standard devi-
ation. The presented horizontal slice is centered on 20 m b.s.l. (a) shows the incomplete resistivity grid using simple kriging with a kriging
radius of 50 m, (b) shows a close-up of the reconstructed resistivity grid using kriging, (c) shows a close-up of the reconstructed resistivity
grid (shown in e) using DS, (d) shows the full reconstructed resistivity grid using kriging, (e) shows a single realization of the full recon-
structed resistivity grid using DS, (f) shows the standard deviation from the reconstructed resistivity grids of (d) using kriging, and (g) shows
the standard deviation calculated from an ensemble of 51 stochastic reconstructed resistivity grids using DS.

using the tau model (Journel, 2002). The end
result is a realization of a hydrostratigraphic
model.

b. A reconstructed resistivity grid is selected and used
in combination with the TI for running DS.

– The soft data variable (the resistivity grid) is
used for both constraining and as the auxiliary
variable. The soft data grid is directly available
as an auxiliary variable since it geographically
overlaps with the categorical TI variable. The
combination of the cognitive hydrostratigraphic
model and auxiliary variable creates a bivariate
TI.

– The bivariate TI is used together with the soft
data grid to simulate a realization of the hydros-
tratigraphic model.

c. A reconstructed resistivity grid is used together
with the TI for running iqsim.

– As with DS, the soft data grid is used as an aux-
iliary variable and for spatially constraining the

simulations. The TI and auxiliary variable are
combined into a bivariate TI.

– The bivariate TI is used to create a simulation
of the hydrostratigraphic model.

Steps 2a–c are repeatedN times, once for each reconstructed
resistivity grid. In this study N = 51. For each of the 51 re-
constructed soft data grids three simulations have been run
– one simulation per MPS method (snesim, DS and iqsim),
yielding a total of 153 hydrostratigraphic realizations.

3.4 The hydrostratigraphic–resistivity relationship

Spatially constraining the simulations to the soft data re-
quires information regarding the relationship between hy-
drostratigraphic units and, in this case, resistivity values. In
DS and iqsim the information is contained in the bivariate
TI, which in this case consists of a categorical and a con-
tinuous auxiliary variable. As discussed in Sect. 3.1.2 the
setup used in this paper avoids using the G∗ operator due to
the geographically overlapping resistivity and cognitive hy-
drostratigraphic model grids. This also enables summarizing
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Figure 3. Workflow diagram showing the stochastic modeling pro-
cedure for a single realization. Each simulation is run with snesim,
DS and iqsim.

the hydrostratigraphic–resistivity relationship as a set of his-
tograms (Fig. 4a and b). The histograms summarizing the
hydrostratigraphic–resistivity relations used in DS and iqsim
are seen in Fig. 4a, and the corresponding summary statistics
are found in Table 1. These histograms are created by select-
ing one of the reconstructed resistivity grids and combining
it with the TI. The same relationship is seen in Fig. 4b; how-
ever, instead of using the DS reconstructed resistivity grid
the kriging reconstructed grid is used. The main difference
between the two sets of histograms is a slightly larger sep-
aration of the sand and gravel and the glacial clay for the
kriging reconstructed grid (Fig. 4a and b) (Table 1). For the
DS reconstructed grid the median values for sand and gravel
and glacial clay histograms are 48 and 32�·m, respectively,
while for the kriging reconstructed grid the median values are
46 and 27�·m, respectively. Furthermore, the kriging sand
and gravel histogram is wider with an interquartile range of
38�·m, which for the DS grid was 31�·m.

In the snesim framework, constraining to the soft data
requires a translation of the soft resistivity data into a set
of probability maps, one for each of the hydrostratigraphic
units. This is achieved by using prior information regard-
ing the hydrostratigraphic–resistivity relationship. Often this
information is difficult to obtain, unless a large number of
boreholes are available. If boreholes are readily available the
resistivity atlas framework (Barfod et al., 2016) can be uti-
lized. The raw resistivity atlas histograms are seen in Fig. 4c.
Due to the general coarse nature of the histograms the mean
and interquartile range from the coarse histograms (Fig. 4c)
were computed and used to create a set of smooth histograms
with identical summary statistics (Fig. 4d). By comparison
the resistivity atlas histograms are quite similar to the krig-
ing grid histograms (Fig. 4b). However, the separation be-
tween the (i) sand and gravel and (ii) glacial clay histograms

Figure 4. The hydrostratigraphic–resistivity relation shown as a se-
ries of histograms. (a) shows the histograms created by categorizing
the DS reconstructed resistivity grid according to the simplified hy-
drostratigraphic model created by Høyer et al. (2015a), (b) shows
the histograms created by categorizing a resistivity grid which has
been reconstructed using kriging, (c) shows the histograms resulting
from the resistivity atlas approach presented by Barfod et al. (2016),
and (d) shows the resistivity atlas histograms that have been repro-
duced based on the summary statistics from (c) to create a set of
lognormal histograms.

is even larger in the resistivity atlas histograms. The respec-
tive median values are 59 and 34�·m. The sand and gravel
histogram also has a quite large spread with an interquartile
range of 43�·m (Fig. 4c and d) (Table 1).

The hemipelagic clays have unique properties. They are
aquitards with low hydraulic conductivity and often used
as a hydraulically confining no-flow boundary at the bot-
tom of a groundwater model in parts of Denmark. When
hemipelagic clay is encountered during drilling, the drilling
is halted and generally hemipelagic clay is sparse in Dan-
ish borehole lithology logs. For this reason the resistivity
atlas based on transient electromagnetic data does not pro-
vide a lot of information on hemipelagic clays. However,
the hemipelagic clays are regionally extensive and homoge-
neous. From wireline resistivity logs in eastern Jutland they
are found to be conductive, with median resistivities ranging
between 4–7�·m. Based on this knowledge the hemipelagic
clay histograms in Fig. 4c and d are created.

The model setup is different for the three MPS meth-
ods. When running DS and iqsim the hydrostratigraphic–
resistivity relationship is explicitly given due to the ge-
ographically overlapping resistivity grid and hydrostrati-
graphic TI. Normally the auxiliary variable has to be cre-
ated for the given TI using the G∗ operator. The full G∗ ap-
proach has been elaborated in Sect. 3.1.2 and requires prior
knowledge regarding the hydrostratigraphic–resistivity rela-
tionship, much like when creating the probability grid for
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Table 1. The summary statistics table for the histograms in Fig. 4. The first section, named DS, shows summary statistics for the three
histograms seen in Fig. 4a. The second section, named kriging, shows the summary statistics for the histograms in Fig. 4b. The last section,
labeled resistivity atlas, shows the summary statistics for the resistivity atlas histograms in Fig. 4c and d. All the values presented in the table
are resistivities (�·m).

25th percentile Median 75th percentile IQR

DS

Sand and gravel 34.2 47.6 65.5 31.3
Glacial clay 21.1 31.8 42.9 21.8
Hemipelagic clay 2.2 2.6 3.7 1.5

Kriging

Sand and gravel 29.7 46.4 67.9 38.2
Glacial clay 17.2 26.6 38.2 21.0
Hemipelagic clay 1.9 2.4 3.6 1.8

Resistivity atlas

Sand and gravel 38.4 59.2 81.4 43.0
Glacial clay 24.2 33.9 46.7 22.5
Hemipelagic clay 2.1 2.5 3.4 1.3

snesim. The snesim setup, however, avoids using the G∗ op-
erator approach, and in place the resistivity atlas histograms
(Fig. 4c and d) can be used to directly translate the resistivity
grid into probability grids (Fig. 5).

3.5 The modified Hausdorff distance – a measure for
similarity

Comparing 153 3-D models each with 1 187 823 grid cells is
not trivial. Visual comparison is used mainly to check if the
results are geologically realistic, but a detailed visual com-
parison would be time consuming and subjective. Therefore,
a set of tools are used to compare how similar the simulation
results are to each other and how different they are from the
TI.

In this study, a distance measure is used as a measure of
similarity between 3-D model simulations. The chosen dis-
tance measure is the modified Hausdorff distance (DMH),
which is a measure for similarity between two binary im-
ages; i.e., dissimilar images have relatively large distances
(Fig. 6e), while similar images have relatively small dis-
tances (Fig. 6c). Identical images have a distance of exactly
zero (Fig. 6b). Firstly, the images we wish to study are sum-
marized as binary images. The pixels for each object we wish
to compare are set to one, while the remaining pixels are
disregarded as a background variable and set to zero. For a
pair of images, ImA and ImB , to be compared, two point sets
are defined:A=

{
a1,a2, . . .,aNa

}
andB =

{
b1,b2, . . .,bNb

}
,

where ai, i ∈ {1,2, . . .,Na} and bj , j ∈ {1,2, . . .,Nb} are po-
sitional vectors containing the x, y and z positional coor-
dinates in ImA and ImB for the binary object pixels only;
i.e., the background variable positions are not included in the
point sets. Then the DMH between point sets A and B is de-

fined as follows:

DMH (A,B)=max

(
1
Na

∑
aεA

minbεB ‖a− b‖ ,
1
Nb

∑
bεB

minaεA ‖b− a‖

)
, (2)

where Na and Nb are the total number of points in point sets
A and B, respectively. In the context of this paper, A and B
are our 3-D voxel models containing the objects we wish to
compare. The Euclidian distances between a given point a
from point set A and all points in point set B are computed,
and min(. . .) selects the smallest of these distances. This is
repeated for all points in point set A, and the average is com-
puted. The same operations are performed for point set B.
The maximum value of these two results is then returned.

Dubuisson and Jain (1994) found that the DMH was
the best performing distance measure out of 24 different
Hausdorff-based distance measures in relation to objects
matching of images. In order to make the pairwise DMH
computation tractable in 3-D, we approximate the DMH be-
tween solid geobodies by the DMH between their bound-
aries. In short, the boundary is the selection of the edges or
outlines of the geometric objects, such that the objects are
now represented by their outlines instead of the entire ob-
jects (see Fig. 6b–e). The Roberts cross operator (Roberts,
1998; Senthilkumaran and Rajesh, 2009) is used to select the
boundary. Instead of defining the point sets based on the ge-
ometric objects themselves, only their outlines are included
in the point sets. The point sets containing the outline of the
geometric objects are then compared using the DMH.

A 2-D example is presented to illustrate the overall DMH
concept in Fig. 6. The 3-D hydrostratigraphic model and the
DS modeling results are simplified into 2-D horizontal cross
sections from the modeling grid layer centered on 20 m b.s.l.
The initial step is to create a binary version of the hydrostrati-
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Figure 5. The SkyTEM soft data grids are translated into three sets of probability grids, one for each lithological category to be simulated;
(a) shows one of the reconstructed SkyTEM grids – the top frame is a horizontal slice in the 3-D grid at 20 m b.s.l., the second frame is
a horizontal slice of the grid layer at 60 m b.s.l. and the bottom frame shows the vertical cross section intersecting at UTMY coordinate
6 230 150 m; (b) shows the sand and gravel probability grid; (c) shows the glacial clay probability grid; and (d) shows the hemipelagic clay
probability grid. The horizontal slices and the vertical cross sections of (b), (c) and (d) are the same as the ones presented in (a).

graphic simulation model (Fig. 6a and b). Ideally, it would
be optimal to compute the DMH between each of the hydros-
tratigraphic categories of the model. However, due to com-
putational limitations of the utilized DMH implementation,
the valley categories, i.e., sand and gravel and glacial clay,
were re-categorized as a single unit, and hemipelagic clay
was used as the background variable. After categorization,
the Roberts cross operator is used to find the boundary of
the objects (Fig. 6b). The procedure of creating the binary
image and outlines is carried out for all the 51 DS simula-

tions. For illustration purposes, this example is only com-
puted for the horizontal cross section centered on 20 m b.s.l.
The DMH is calculated between each of the 51 horizontal bi-
nary maps, representing the DS simulations, and the binary
hydrostratigraphic model. The resultingDMH values are then
sorted in ascending order and the binary version of the real-
izations corresponding to the 1st, 25th and 51st DMH values
are presented in Fig. 6c–e.

From here on, we leave the 2-D example and consider the
entire 3-D model. In this study, the DMH is used as a global
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Figure 6. A 2-D example of the binary categorization of the hydrostratigraphic models and example of the Roberts cross operator for
edge tracing. (a) a horizontal slice of the hydrostratigraphic model at elevation interval centered on 20 m b.s.l.; (b) the result of the binary
categorization of the hydrostratigraphic model into two categories – (1) non-hemipelagic clay (black) and (2) hemipelagic clay (white). The
boundary of the objects in the binary image is shown in red. (c) shows the object and boundary of the objects for the DS simulation which has
the smallest modified Hausdorff distance (DMH), i.e., it is the most similar to (b). (d) shows the DS simulation, which has the 25th largest
DMH; and (e) shows the DS simulation with the largest DMH and therefore represents the model which is least similar to (b).

distance measure. A more in-depth analysis of the DMH re-
sults is gained by using the analysis of distance method
(Tan et al., 2014). The overall goal of ANODI is to pro-
vide a framework for comparing realizations from different
stochastic MPS methods. The framework presented by Tan
et al. (2014) uses the following definition of “best”: “one al-
gorithm A is better than an algorithm B if the training image
statistics are reproduced better while at the same time the
space of uncertainty (the variability between realizations) is
larger”. In the particular MPS setup used in this study, the
TI is a relevant cognitive hydrostratigraphic model and ge-
ographically overlaps with the hydrostratigraphic MPS re-
alization grids. Hence, the MPS realizations should portray
similarity to the cognitive model. In this study, a further com-
plexity to the definition of best is added. An algorithm with
a large space of uncertainty is not necessarily better if the
resulting models do not reflect the underlying datasets.

The initial step is to create a matrix containing all DMH
values between all 153 realizations and between the individ-
ual realizations and the cognitive model. It is similar to a
covariance matrix, but, instead of containing covariance val-
ues, it contains DMH values. The usage of bold letters refers

to a matrix. The full DMH is computed as follows:

D
(i,j)
MH =DMH

(
reali , realj

)
, where

{
i = 1, . . ., (Nreals+ 1)
j = 1, . . ., (Nreals+ 1) ,

(3)

where D(i,j)MH denotes the DMH at position (i,j) of the DMH
matrix; reali and realj denote the individual hydrostrati-
graphic realizations;Nreals is the total number of realizations,
in this caseNreals = 153; and the last row and column of DMH
contains the distances between the realizations and the cogni-
tive model – i.e., realNreals+1 represents the cognitive model.
One DMH matrix is created for all three MPS methods. For
each of the three MPS methods, the DMH can be evaluated
by itself by calculating the DMH variability, DMH, var:

DMH, var =
1

(Nreals/3)2
∑MPSend,i

i=MPSstart,i

∑MPSend,j

j=MPSstart,j

(
D
(i,j)
MH

)
, (4)

where Nreals is the size of DMH (in this study Nreals = 3×
51= 153), MPSstart,i and MPSend,i are the start and end in-
dexes for the entries related to the given MPS method, and
D(i,j)MH is DMH

(
reali, realj

)
. Note that the distances between
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the individual realizations and the cognitive model are not in-
cluded in theDMH,var. TheDMH,var equates to computing the
average of the DMH values between the realizations of a sin-
gle MPS method. The larger the DMH, var, the more dissim-
ilar the simulation results, meaning they portray a large set
of possible hydrostratigraphic architectures. Using Eq. (4) it
is also possible to compute the distances between the real-
izations of different MPS methods, e.g., the average DMH
between snesim and DS.

The other evaluation measure, which can be calculated
from DMH, is the distance between the realizations and the
cognitive hydrostratigraphic model (cog), or TI, which is
summarized by the DMH,cog, which is computed as follows:

DMH, cog =
1

Nreals/3

∑MPSend,i

i=MPSstart,i

(
D
(i,Nreal+1)
MH

)
, (5)

where, again, Nreals = 153, MPSstart,i and MPSend,i are the
start and end indexes for the entries related to the given MPS
method andD(i,Nreal+1)

MH is theDMH (reali,cog). TheDMH,cog
is the average DMH between each individual realization and
the cognitive hydrostratigraphic model. The larger the av-
erage DMH, the more dissimilar the hydrostratigraphic re-
alizations are from the cognitive hydrostratigraphic model.
The reason we wish to compare the distance to the cogni-
tive model is that the cognitive model geographically over-
laps with the hydrostratigraphic MPS realizations.

It is also possible to evaluate the DMH using dimensional
reduction techniques. Such techniques help us view the high
dimensional DMH in a 2-D and/or 3-D map. Such a plot
gives us a visual representation of the most significant struc-
tures of the DMH. For dimensional reduction we use a varia-
tion of so-called stochastic neighbor embedding (SNE) (Hin-
ton and Roweis, 2002). The technique is called t-distributed
stochastic neighbor embedding, or t-SNE (Maaten and Hin-
ton, 2008). The t-SNE method is advantageous over other
SNE techniques, since it is easier to optimize and produces
better visualizations. The idea is to visualize the level of sim-
ilarity of individual entries, or distances in the DMH. The
overall goal is to place each DMH value as a point in a 2-D
space where the relative distances between the point values
reflect the degree of similarity. Similar points are close to
each other, while dissimilar points are far from each other.
This is achieved by t-SNE.

3.6 Distance to boreholes

In reservoir modeling, boreholes are considered to be hard
information, due to their overall high quality. However, in
many surveys related to groundwater modeling, boreholes
cannot be considered as reliable hard data due to vari-
able quality – such as seen in Barfod et al. (2016) and
He et al. (2014), where boreholes were divided into quality
groups. Therefore, the simulations are run without constrain-
ing against boreholes, and then the realizations are compared
against the boreholes as an independent measure of geologi-

cal realism. A method for comparing similarity between the
simulated hydrostratigraphic models and the boreholes was
developed. The method does not use the DMH, which has
previously been used for measuring distances. Instead, the
simple Euclidean distance is used to measure the average dis-
tance between each individual hydrostratigraphic realization
and the borehole dataset. The first step is to sort the bore-
hole lithology logs according to the respective hydrostrati-
graphic units to create a hydrostratigraphic log (see left half
of Fig. 7). Once this has been carried out, three sets of binary
and regularized logs are created from the hydrostratigraphic
log (see right half of Fig. 7). For each sampling grid inter-
val, the presence of the given hydrostratigraphic category,
say sand and gravel, is saved in the binary log. The end result
is a log which states whether or not sand and gravel is present
within the given sampling grid interval – active if present and
inactive if not present. Three such binary logs are created,
one for each of the hydrostratigraphic categories, i.e., sand
and gravel, glacial clay and hemipelagic clay (Fig. 7). A bi-
nary log grid is created by simply assigning the binary active
values to the grid cell in which they are present. The average
Euclidian borehole distance, DAEB, between the binary logs
and a given realization (real) for a given hydrostratigraphic
category (hydro. catj , where j ∈

{
1, . . .,Nhydro. cats

}
), is cal-

culated as follows:

DAEB
(
hydro.catj

)
=

1
Nactive

∑Nactive

i=1(∥∥binlogi − real(hydro.unitj )
∥∥) , (6)

where binlogi is ith active cell in the binary log grid; Nactive
is the number of active cells in the binary log grid; ED is the
Euclidian distance; and real(hydro. unitj ) is the binary real-
ization grid containing only the j th hydrostratigraphic unit,
where in this case Nhydro. cats = 3.

The end result is three arrays, one for each hydrostrati-
graphic unit, each containing one average distance per real-
ization for the given MPS method. The distance arrays for
each individual MPS method can then be compared to the
distance arrays of the other MPS methods.

4 Results

The hydrostratigraphic simulation results include 153
3-D hydrostratigraphic realizations, each containing
1 187 823 grid cells. The models can be subdivided into
51 snesim realizations, 51 DS realizations and 51 iqsim
realizations. A visual presentation of the hydrostratigraphic
model or TI as well as two realizations for each of the three
different MPS methods is seen in Fig. 8. The cognitive
hydrostratigraphic model (Fig. 8a) shows clear-cut and
smooth buried valley architecture with almost no short-scale
variability. Comparing the cognitive hydrostratigraphic
model to the stochastic MPS hydrostratigraphic models
reveals the more erratic nature of both snesim and DS; i.e.,
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Figure 7. An example of how a single lithology log is categorized
and sorted for the purpose of calculating the borehole distance. The
first step is to translate the raw lithology log into a hydrostrati-
graphic log, which is achieved by categorizing the multiple litholog-
ical categories into a subset of three hydrostratigraphic categories
corresponding to the target categories we wish to model. Note that
some categories do not fit into the overall hydrostratigraphic cat-
egories and are therefore not translated, e.g., the meltwater sand
category in this example. The final step is then to assign the hydros-
tratigraphic logs to the regularized sampling grid and create one
binary log for each of the three target modeling categories. This is
done by simply asking whether or not the given hydrostratigraphic
category is present (true) or not (false) for the given sampling grid
interval.

both MPS methods yield models containing short-scale
variability (Fig. 8b and c).

Overall snesim (Fig. 8b) and DS (Fig. 8c) realizations are
similar in nature. In the example provided, Fig. 8c, the west–
northwest- to east–southeast-trending glacial clay valley (see
box in Fig. 8a) is uninterrupted in one realization, but in-
tersected by hemipelagic clay in the other realization. In 47
of the 51 snesim realizations, the glacial clay valley is un-

interrupted; in the remaining 4 realizations the valley is in-
tersected by hemipelagic clay. The presented soft data grid
in Fig. 5d shows a small probability of approximately 10 %
for hemipelagic clay at the position of the valley gap. The 4
realizations which yielded an interrupted glacial clay valley
amount to 8 % of the 51 realizations, which is close to the
probability found in the probability grids. The DS realiza-
tions shows valley architecture with less resemblance to the
soft data, i.e., the valleys are not conditioned in accordance
to the soft data grids. In 11 of the 51 simulation results the
valley is intersected by hemipelagic clay, amounting to 22 %
of the 51 realizations.

The iqsim results are the most similar to the cognitive hy-
drostratigraphic model with regards to short-scale variabil-
ity, which is generally nonexistent. Generally, realizations
will reflect the TI, and short-scale variability is only intro-
duced if present in the TI. This is due to the nature of iqsim,
which is not a pixel-based algorithm, like snesim and DS.
Instead, iqsim cuts the TI into patches and then reassem-
bles the patches, which means that noise patterns which are
smaller than the patch size cannot be fabricated, unless actu-
ally present in the TI. The iqsim realizations show smooth
and clear-cut valley architecture. The main issue with the
iqsim realizations is that artifacts are introduced near the
surface of the model, which is evident if the vertical iqsim
cross sections (Fig. 8d) are compared to the remaining verti-
cal cross sections of the TI, snesim and DS (Fig. 8a–c). This
is neither reflected in the resistivity grid (Fig. 5) nor in the
TI (Fig. 8a). Close to terrain hydrostratigraphic layers con-
sist of either glacial clays or sand and gravel, and conductive
hemipelagic clays are not evident. Since the soft data does
not support the presence of the hemipelagic clays in the up-
per part of the hydrostratigraphic model, the soft data can
be concluded to be improperly constrained with this specific
setup. Another observation is that in 43 out of the 51 realiza-
tions, amounting to 84 %, the referenced glacial clay valley
is intersected by hemipelagic clay.

An advantage of the iqsim implementation used (Hoffi-
mann et al., 2017) is the favorable computation time. On an
Intel®HD Graphics Skylake ULT GT2 GPU of a Dell XPS
13 laptop, iqsim runs with an average simulation time of 10–
12 min per realization with the attempted setup. On a dif-
ferent laptop running a 64 bit Windows system, with 8 GB
RAM, an SSD hard disk, with an Intel®Core i7-3520 M CPU
at 2.9 GHz, the computation times for snesim were on aver-
age between 1/2 and 1 h. Since the DS computation times
were significantly larger at 6 h 15 min per realization, the DS
simulations were run on a 64 bit Windows server with a 64 bit
AMD Opteron processor 5376 at 2.3 GHz each, with a total
of 128 GB RAM and a SSD hard disk. The implementation of
DS used in this paper is called DeeSse (Straubhaar, 2011) and
is easy to script and run in parallel on a server or computer
cluster. The total time required for 51 simulations running
in parallel was approximately 32 h, without enabling paral-
lelization, which is available in DeeSse. One DS simulation
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Figure 8. The hydrostratigraphic MPS realizations are presented as horizontal slices centered on 20 m b.s.l. and vertical cross sections
intersecting at UTMY 6 230 150 m. (a) shows the cognitive hydrostratigraphic model, with a west–northwest- to east–southeast-trending
glacial clay valley marked by a box; (b) shows two snesim realizations; (c) shows two DS realizations; and (d) shows two iqsim realizations.

took between 6 and 7 h. For more detailed information see
Table 2, which summarizes computation times for the three
MPS methods.

4.1 Modified Hausdorff distance results

The DMH is computed for a binary case where the glacial
clay and sand and gravel have been combined into one cate-

gory. Therefore, the DMH measures differences in the overall
buried valley architecture. The full DMH matrix is presented
in Fig. 9a and b. Using Eqs. (4) and (5) the DMH is sum-
marized in Table 3, without the usage of dimensional reduc-
tion techniques. The method with the largest variability, i.e.,
least similar hydrostratigraphic realizations, is iqsim, with a
DMH,var of 1.79. The snesim and DS models show generally
lower DMH,var values of 0.48 and 0.78, respectively. This
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Table 2. A table presenting the average computation times per re-
alization for each of the three MPS methods and the approximated
computation times needed for running 51 realizations with the setup
used in this study. ∗ indicates that the given realizations were run in
parallel on a server; other realizations were generated on a personal
laptop.

snesim DS iqsim

Comp. times 1/2–1 h 6–7 h∗ 10–12 min
per realization
Approx. comp. times 38 h 15 min 32 h∗ 9 h 21 min
51 realizations

Table 3. Summary of the modified Hausdorff distance (DMH) ma-
trix portraying theDMH results.DMH,var presents the variability of
the given MPS method or between the different MPS methods; for
example, the value in the DMH,var column and the snesim → DS
row represents the average distance between the snesim and DS re-
alizations. TheDMH,cog is the average distance from the simulation
results to the cognitive model.

DMH,var DMH,cog

snesim 0.48 3.01
DS 0.78 2.80
iqsim 1.79 2.65
snesim → DS 1.05 –
snesim → iqsim 2.37 –
DS → iqsim 2.19 –

means that the iqsim results span the largest set of possi-
ble models, when measuring on the binary classification in
hemipelagic clay and not hemipelagic clay. The iqsim re-
alizations also have the smallest average DMH between the
individual realizations and the cognitive hydrostratigraphic
model, with a DMH,cog of 2.65, meaning that on average
iqsim realizations resemble the cognitive hydrostratigraphic
model the most, when it comes to the location of the val-
leys. The snesim and DS DMH,cog are 3.01 and 2.80, respec-
tively. On average, the DS realizations are more similar to
the cognitive hydrostratigraphic model in comparison to the
snesim realizations, while both are more dissimilar than the
iqsim realizations – again, when it comes to the location of
the valleys. The two MPS methods which had the smallest
distances, and therefore were most similar, were snesim and
DS, with an inter DMH distance of 1.05. The distance be-
tween DS and iqsim was larger, with a value of 2.19, while
the largest interDMH distance was between snesim and iqsim
with a DMH value 2.37.

The DMH can also be evaluated by applying the afore-
mentioned t-SNE method. Here, each realization is visually
represented as a point in 2-D space. Similar values, with
small DMH values, are closely spaced, while dissimilar val-
ues, with large DMH values, are separated from each other.
Firstly, the t-SNE results show snesim and DS point clouds,

which are closer to each other relative to the iqsim point
cloud (Fig. 9c). This means that they are similar in nature,
as reflected in Table 3. The iqsim point cloud is isolated in
the 2-D space since the iqsim realizations are significantly
different from the snesim and DS results. Furthermore, the
iqsim point cloud is also the largest, which reflects the larger
dissimilarity of the output realizations. On average, the iqsim
point cloud is closer to the cognitive model, which is also re-
flected in Fig. 9b and Table 3.

4.2 Borehole validation results

The final comparison of the MPS methods regards the av-
erage Euclidean distance between the simulation results and
the regularized binary hydrostratigraphic logs. The sorted av-
erage distances between each individual simulation and the
boreholes are seen in Fig. 10.

The average distances between the simulated hydrostrati-
graphic models and the boreholes are presented according to
the three key hydrostratigraphic units. The average distance
between sand and gravel units in the hydrostratigraphic real-
izations and sand and gravel units in the boreholes seems to
be the largest for the modeling results of all three MPS meth-
ods (Fig. 10); i.e., the red curve is always on top. The average
values of the individual curves in Fig. 10 are computed and
presented in Table 4. An overall borehole distance average
for each of the three MPS methods is computed as the av-
erage of each row in Table 4. The sand and gravel average
in Table 4 reflects the large distances between resistive sand
and gravel units in the realizations and the hydrostratigraphic
logs. By comparing the individual frames of Fig. 10 it is seen
that the average values for the hydrostratigraphic models cre-
ated using iqsim have a higher average distance. The iqsim
average for sand and gravel is centered on 5.8 m, while for
snesim and DS it is centered on 3.8 and 4.9 m, respectively.
The iqsim average distance to glacial clay is centered on a
relatively large value of 3.5 m, as opposed to 2.1 and 2.8 m
for snesim and DS, respectively. The hemipelagic clay units
show a different pattern where iqsim has the lowest average
distance of 0.2 m, while the snesim and DS distances are 1.6
and 0.8 m, respectively. The snesim method has the smallest
borehole distance row average of 2.5 m, while DS and iqsim
have row averages of 2.8 and 3.2 m, respectively.

4.3 Hydrostratigraphic modeling of new surveys

In areas of groundwater interest, the initial step is to collect
different types of data relevant to the hydrogeological proper-
ties of the subsurface. Among these data are dense geophys-
ical datasets, e.g., SkyTEM, which can be collected quickly
and usually cover a significant part of the survey area. The
different datasets are processed and modeled and used in
conjunction with the borehole lithology logs to create a sin-
gle geological and/or hydrostratigraphic model. This model
is only one version of the subsurface, encasing only part
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Figure 9. The DMH results presented without and with dimensional reduction. (a) The full modified Hausdorff distance (DMH) matrix
showing the distances between individual realizations and between individual realizations and the cognitive hydrostratigraphic model. The
last column and row of the distance matrix of (a) represent the distances between the realizations and the cognitive model. (b) shows a
scatterplot of these distances between the realizations and the cognitive model, revealing greater detail than can be seen with the naked eye
from the DMH matrix itself. (c) shows the 2-D t-SNE plot of the DMH matrix.

Table 4. The borehole distance results are summarized in this table.
The borehole distances are the 3-D Euclidean distances calculated
using the concept presented in Sect. 3.6. The presented distance val-
ues are the averages of the curves shown in Fig. 10, one average for
each of the individual hydrostratigraphic units for each of the pre-
sented methods: snesim, DS and iqsim realizations. The last column
shows the average distances for each of the three MPS methods.

Sand and Glacial Hemipelagic Row
gravel (m) clay (m) clay (m) average (m)

snesim 3.8 2.1 1.6 2.5
DS 4.9 2.8 0.8 2.8
iqsim 5.8 3.5 0.2 3.2

of the complexity related to the given hydrological system.
We present an example of stochastic simulation of hydros-
tratigraphic models. The result consists of multiple hydros-
tratigraphic realizations, covering a larger span of possible
models. Using the cognitive hydrostratigraphic model from
area A as a TI, another hydrostratigraphic model from sur-

vey area B is simulated, using only the geophysical data in
area B for spatial constraining. An important assumption is
that the geological settings of area A and B are similar, since
the hydrostratigraphic information is shared through the TI
from area A. Furthermore, the hydrostratigraphic–resistivity
relationship needs to be stationary so that it can be assumed
that the hydrostratigraphic–resistivity relationships are statis-
tically comparable.

The example presented in this study is synthesized from
the Kasted dataset. The dataset is divided in two along the
UTMX coordinate 569 025 m (Fig. 11a). The left half of the
cognitive hydrostratigraphic model is then used as a TI to
simulate the right half of the model. The reconstructed resis-
tivity grid is also cut in half (Fig. 11b). The left half of the
resistivity grid is used as an auxiliary variable describing the
hydrostratigraphic–resistivity relationship, as seen in Fig. 4a,
while the right half is used for spatially constraining the sim-
ulation. In this example 10 stochastic hydrostratigraphic re-
alizations are created using DS. The DS method was selected
since it is both easy to parameterize and to run in parallel on
a computer cluster. A single hydrostratigraphic realization is
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Figure 10. The borehole distance results are presented for each of the three MPS methods: snesim, DS and iqsim. (a) shows the snesim
borehole distance results for the three hydrostratigraphic units, (b) shows the DS borehole distance results for the three hydrostratigraphic
units, and (c) shows the iqsim borehole distance results for the three hydrostratigraphic units.

seen in Fig. 11c, while the mode of the hydrostratigraphic
model ensemble is seen in Fig. 11d. Using the same splitting
of data and TI from the Kasted survey area, simulations using
iqsim are presented by Hoffimann et al. (2017).

The simulation results show that one hydrostratigraphic
realization represents the overall architecture of the resis-
tivity grid (compare Fig. 11c and b). Comparing the single
hydrostratigraphic realization (Fig. 11c) to the original cog-
nitive model (Fig. 11a) reveals that one realization largely
reflects the variability in the soft data grid. The mode of the
model ensemble on the other hand (Fig. 11d) has a closer re-
semblance to the cognitive hydrostratigraphic model (com-
pare Fig. 11a and d). This means that the individual realiza-
tions do on average resemble the original cognitive model.
The end goal is not to create a set of hydrostratigraphic mod-
els which match the cognitive hydrostratigraphic model. The
goal is to create a suite of realistic hydrostratigraphic mod-
els. Generally, short-scale variability is introduced in both
the single hydrostratigraphic realization and in the ensemble
mode model, but is generally not present in either the TI or
the resistivity grid.

5 Discussion

The snesim setup is different from the DS and iqsim se-
tups. The snesim setup differs in the usage of the probabil-
ity framework and in the choice of the implicit resistivity at-
las histograms (Barfod et al., 2016). The implicit histograms
(Fig. 4d) are used to directly translate the resistivity grids
into probability grids. This illustrates the utility of the resis-
tivity atlas framework in relation to geostatistical modeling.
The DS and iqsim frameworks would normally, in real-world
cases, require the usage of a G∗ operator since no auxiliary
variable which geographically overlaps with a conceptual TI
exists. As explained in Sect. 3.1.2, applying a realisticG∗ op-
erator requires several steps and can be a complicated affair.
In this study, however, the TI was an actual cognitive geo-
logical model of the Kasted study area, meaning a resistivity
grid which geographically overlaps with the TI exists. Using
the SkyTEM resistivity grid as an auxiliary variable resulted
in the application of different resistivity–hydrostratigraphic
relationships in the DS and iqsim approach – compare the
explicit histograms used in DS and iqsim, Fig. 4a, with the
implicit resistivity atlas histograms used in snesim, Fig. 4d,
or see Table 1. Even though there are some differences in
the setups of the different MPS algorithms, the snesim and
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Figure 11. An overview of the setup for simulating new survey areas and the hydrostratigraphic modeling results using the Kasted dataset.
The presented horizontal slices are centered on 20 m b.s.l., and the vertical cross section intersects at UTMY 6 230 150 m. (a) The cognitive
hydrostratigraphic model is cut in half to simulate having two survey areas, one area with a cognitive hydrostratigraphic model (training
image) available and the other without. The white area represents the new survey we wish to simulate. (b) The horizontal slices and vertical
cross sections of the soft data used to simulate the new area. The left half is the auxiliary variable, while the right half constrains the simulation
of the new survey area. (c) A single hydrostratigraphic realization. The left half is exactly the same as the cognitive model, see (a), while the
right half is simulated using DS. (d) The mode of an ensemble of 10 hydrostratigraphic model realizations. Again, the left haft is the same
as the training image and the right half shows the ensemble mode of 10 realizations.

DS realizations are still similar in nature (compare Fig. 8b
and c). The differences mentioned here are mainly due to the
differences of the implementation of the algorithms.

The snesim and DS realizations portray some differences,
which are related to the choice of the implicit resistivity at-
las histograms for translating the resistivity grid. This can
help us understand some of the basic differences in the infor-
mation provided by the implicit resistivity atlas histograms
and the explicit auxiliary variable. In DS probable hydros-
tratigraphic units are not conditioned properly. An exam-
ple of this is the aforementioned west–northwest- to east–
southeast-trending glacial clay valley (see Fig. 8a), which is
uninterrupted in 78 % of the DS realizations. The same val-
ley is clearly represented in the resistivity grid (Fig. 5a) and
in the cognitive model (Fig. 8a). However, the explicit auxil-
iary variable histograms show increased overlapping resistiv-

ity values for the glacial clay and sand and gravel histograms
(Fig. 4a, d). The auxiliary variable histograms (Fig. 4a) re-
veal approximately equal probability of glacial clay and sand
and gravel resistivities lying close to 40–45�·m. The his-
togram also shows that hemipelagic clay has a resistive tail,
resulting in a small probability for hemipelagic clay in the
areas of intermediate resistivity values of 10–50�·m. The
resistivity atlas histograms (Fig. 4d), on the other hand, favor
the glacial clay in the 40–45�·m range, with a 0 % prob-
ability for hemipelagic clay. The snesim realizations show
an uninterrupted glacial clay valley in ∼ 90 % of the realiza-
tions in the horizontal cross section centered on 20 m b.s.l.
The probability grid for snesim reveals a ∼ 75% probabil-
ity for glacial clay at the location of the west–northwest-
to east–southeast-trending glacial clay valley at 20 m b.s.l.
(Fig. 5c). At 20 m b.s.l. sand and gravel has probability
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∼ 15–20 %, while hemipelagic clay has a low probability
of ∼ 0–5 % (Fig. 5b, d). The underlying hydrostratigraphic–
petrophysical relationship, which holds information on how
to condition the simulations to the soft data, is important to
the MPS modeling results, especially when extensive and
spatially dense geophysical datasets are available. The pre-
sented practical example, showing the simulation of a new
survey, has the two aforementioned requirements: (1) the ge-
ological environments of the two areas need to be similar and
(2) the statistical hydrostratigraphic–petrophysical relations
also need to be similar. Since the resistivity atlas histograms
are created using only local data, i.e., boreholes and SkyTEM
resistivity models, they represent the local relationship. Since
stationarity in the hydrostratigraphic–petrophysical relations
is not guaranteed (Barfod et al., 2016), it is necessary to
check for stationarity, which is possible within the resistivity
atlas framework. Here, histograms can be created for each
area and compared. If statistically similar, stationarity can be
inferred for the hydrostratigraphic–petrophysical relations.

The DMH results revealed some interesting trends be-
tween the MPS realizations. TheDMH,var for snesim, DS and
iqsim were 0.48, 0.78 and 1.79, respectively. The low snesim
DMH,var is related to the soft data conditioning, which is de-
pendent on the choice of histograms for translating the resis-
tivity grids into probability grids. For this translation, as men-
tioned, the implicit resistivity atlas histograms were used.
Overall, the implicit histograms show a larger separation be-
tween the glacial clay and hemipelagic clay histograms com-
pared to the explicit histograms (compare Fig. 4a and d). This
results in less ambiguity in the transition from glacial clay to
hemipelagic clay in the probability grids, yielding a smaller
subset of possible models. This also results in snesim real-
izations, which closely resemble the soft data variable, com-
pared to DS and iqsim. The borehole distance results are also
influenced by choosing the implicit histograms. Generally,
the snesim realizations show the smallest borehole distances
with respect to glacial clay and sand and gravel units, while
the corresponding hemipelagic clay distances are the largest.
The increased separation of the glacial clay and hemipelagic
clay histograms seems to improve the snesim borehole dis-
tances to the glacial clay and sand and gravel units, while
hemipelagic clay seems to be underestimated.

In conclusion, snesim and DS yield similar realizations,
portrayed by the relatively small DMH values between
snesim and DS. This is reflected in the t-SNE plot (Fig. 9c),
where the iqsim point cloud is isolated from the snesim and
DS point clouds and is closer to the cognitive model. The iso-
lation of the iqsim point cloud agrees with iqsim being im-
precise in its simulation of the valley architecture compared
to snesim and DS. However, the abundance of hemipelagic
clay close to terrain is clear and undesired in iqsim realiza-
tions (see the vertical cross sections of the models, Fig. 8).
Evidence of abundant near-surface hemipelagic clay is also
found indirectly in the borehole distance results. The bore-
hole distances of the iqsim realizations revealed exceedingly

small hemipelagic clay distances, with an average of 0.2 m.
In comparison, snesim and DS had hemipelagic clay bore-
hole distance averages of 0.8 and 1.6 m, respectively. This
shows that iqsim produces realizations where hemipelagic
clay units are, on average, closer to the borehole hydrostrati-
graphic logs. However, it is important to also notice the rel-
atively large iqsim borehole distances for glacial clay and
sand and gravel units. This indicates that the ample near-
surface hemipelagic clay increases the glacial clay and sand
and gravel borehole distances (Fig. 10) (Table 4). Here,
it is important to understand the trade-off relationship be-
tween the different hydrostratigraphic categories. As more
hemipelagic clay is introduced at the surface of the iqsim re-
alizations, it does not increase the average borehole distance
for hemipelagic clay, since the algorithm only measures the
distance from the borehole cell to the nearest cell in a re-
alization with the same hydrostratigraphic category. Instead,
the sand and gravel and glacial clay distances increase, since
the realizations no longer match with the borehole lithology
logs, which only reveal the presence of sand and gravel and
glacial clay close to the surface. The trade-off relationship is
also evident from the row averages presented in Table 4. It
is clear that, even though iqsim has a low hemipelagic clay
borehole distance of 0.2 m, the row average is still the largest
with a value of 3.2 m, while Table 4 reports corresponding
snesim and DS row averages of 2.5 and 2.8 m, respectively.

Short-scale variability is present in the snesim and DS re-
alizations. This can be seen as an artifact introduced by the
algorithms themselves and does not reflect the underlying
datasets, i.e., the soft data or TI. As Linde et al. (2015) dis-
cuss, fine-scale patterns are present in the real-world hydros-
tratigraphic subsurface but are only slightly resolved in geo-
physical models. Two of the three presented stochastic MPS
methods introduce fine-scale variations in the form of short-
scale variability to the overall hydrostratigraphic architec-
ture, with the overall architecture resembling the underlying
datasets. This adds complexity to the realizations and the re-
sulting equiprobable hydrostratigraphic models span a larger
subset of possible models. The question, however, is whether
this short-scale variability is similar to the real-world short-
scale variability missing from our geophysical data, which is
difficult to answer. The importance of short-scale variability
also depends on the type of prediction for which the hydros-
tratigraphic model is to be used.

An important difference in the iqsim realizations, com-
pared to snesim and DS, is the lack of fine-scale variability
and the resulting valley architecture. The DMH results reveal
that the iqsim realizations were the most similar to the cogni-
tive model and that they were different from the snesim and
DS realizations. The iqsim realizations have a high DMH,var
of 1.79, which means that each realization is significantly
different from one another, which indicates a large variability
in the realizations. However, the overall placement of the val-
leys agrees with the cognitive model, which results in a small
DMH,cog, and the most significant valley features of the cog-
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nitive model are reproduced. Note that the DMH is not sensi-
tive towards the hydrostratigraphically unrealistic placement
of hemipelagic clay at the surface in the iqsim realizations.
The presented DMH results reveal that iqsim performs best,
according to the definition of best introduced in Sect. 3.5.
The TI statistics are better reproduced and the space of uncer-
tainty is large. However, the iqsim realizations do not reflect
all complexities of the underlying datasets, which is also re-
flected by the poorer borehole distance results for glacial clay
and sand and gravel units.

In relation to the new survey example, it is worth mention-
ing a caveat. When cutting the TI in half the 3-D objects are
reduced in size and some of the 3-D objects are entirely re-
moved. Generally the TI should contain the objects which are
to be conditioned during simulation (e.g., Emery and Lan-
tuéjoul, 2014; Journel and Zhang, 2006; Strebelle, 2002). If
the 3-D objects are not fully represented in the TI, it cannot
be guaranteed that they will be reproduced in the resulting re-
alizations (Emery and Lantuéjoul, 2014). It is therefore im-
portant to state that the example simply just exemplifies an
important application of MPS in relation to dense geophysi-
cal datasets but is not a valid practical application.

6 Conclusions

The three MPS methods – snesim, DS and iqsim – are
used for stochastic hydrostratigraphic modeling. The mod-
eling results are compared in an elaborate framework of
comparing the modeling results visually, mathematically and
against boreholes. Each individual MPS method has its own
set of advantages and disadvantages which are covered in
this study. Overall the DS method had the highest computa-
tion times. An average DS realization takes 6–7 h, while for
snesim it takes 2–3 h and for iqsim 10–12 min. We empha-
size that these times are for a specific setup and that they will
likely change for different configurations. Both the snesim
and DS methods yield realizations with sufficient soft data
conditioning, as reflected in the modeling results in Fig. 8a–
c. The iqsim realizations showed erratic results in regards to
the overall valley architecture, compare Fig. 8a, d, which was
due to insufficient soft data conditioning.

The presented example for modeling new survey areas
uses a cognitive hydrostratigraphic model from one area as
a TI to simulate the new area without a preexisting cogni-
tive model. The requirements are two-fold: (1) the geological
settings of the two areas need to be similar and (2) the statis-
tical hydrostratigraphic–petrophysical relationship needs to
be stationary between the two areas. The presented example
shows a case where the two requirements are true, and the set
of stochastic models is consistent with the cognitive geolog-
ical model.

Finally, the importance of the underlying resistivity–
hydrostratigraphic relationship has been shown. The rela-
tionship contains information on the translation of the con-

tinuous soft data variable into subsurface hydrostratigraphic
units and is indirectly used for soft data conditioning. The
MPS modeling results are therefore sensitive towards the
resistivity–hydrostratigraphic relationship, and the more in-
formation acquired regarding the relationship, the better the
realizations.

Data availability. The Kasted data are publicly available and can
be downloaded by using the interactive maps found on http://
jupiter.geus.dk/, which is the Danish borehole database, and http:
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The Kasted data were collected around the vicinity of the city of
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