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ABSTRACT

We have developed a synthetic multiparametric modeling and
inversion exercise undertaken to study the robustness of inverting
airborne time-domain electromagnetic (TDEM) data to extract
Cole-Cole parameters. The following issues were addressed: non-
uniqueness, ill posedness, dependency on manual processing and
the effect of constraints, and a priori information. We have used a
1D layered earth model approximation and lateral constraints.
Synthetic simulations were performed for several models and the
corresponding Cole-Cole parameters. The possibility to recover
these models by means of laterally constrained multiparametric
inversion was evaluated, including recovery of chargeability dis-
tributions from shallow and deep targets based on analysis of in-
duced polarization (IP) effects, simulated in airborne TDEM data.

Different scenarios were studied, including chargeable targets as-
sociated with the conductive and resistive environments. In particu-
lar, four generic models were considered for the exercise: a sulfide
model, a kimberlite model, and two generic models focusing on
the depth of investigation. Our study indicated that, in cases when
relaxation time (τ) values are in the range to which the airborne
electromagnetic is most sensitive (e.g., approximately 1 ms), it
is possible to recover deep chargeable targets (to depths more than
130 m) in association with high electrical conductivity and in re-
sistive environments. Furthermore, it was found that the recovery
of a deep conductor, masked by a shallower chargeable target, be-
came possible only when full Cole-Cole modeling was used in the
inversion. Lateral constraints improved the recoverability of model
parameters. Finally, modeling IP effects increased the accuracy of
recovered electrical resistivity models.

INTRODUCTION

The interest in the possibility of recovering induced polarization
(IP) parameters from airborne time-domain electromagnetic (TDEM)
data has been recently increased from the mineral exploration indus-
try and airborne electromagnetic (AEM) data providers, after nearly
two decades of scant publication on the subject (Flis et al., 1989;
Smith, 1989; Smith and Klein, 1996; Raiche, 1998; Kratzer andMac-
nae, 2012; Viezzoli et al., 2013). The interest has increased to such
degree that airborne-induced polarization (AIP) has been marketed as
a tool for mineral exploration. Recent work by Macnae (2015) and
Kang and Oldenburg (2015) testifies the renewed momentum in this
field, also within the academic community.
The better signal-to-noise ratio available in the most recent larger

dipole systems undoubtedly has led to the renewed attention in the
airborne IP phenomenon. Arguably, more awareness and more rigor-
ous processing from data providers (e.g., not deleting the negative sec-

ondary EM field voltage values) also revealed more “IP-like effects” in
AEM data sets. The next logical step in the AIP legacy is advanced
modeling and inversion of the AIP effects, for which several groups
are contributing worldwide. This is the first of two papers dedicated to
a more thorough study of AIP in TDEM data. It presents a series of
quasi-2D synthetic forward and inverse modeling examples.
Among the several physical IP models reported in the literature

(e.g., generalized effective-medium theory of induced polarization
[GEMTIP] theory by Zhdanov, 2008), we use perhaps the most popu-
lar, i.e., the Cole and Cole (1942) model (Pelton et al., 1978). The
objective is to model four Cole-Cole parameters (ρ, DC resistivity;
m0, chargeability; τ, relaxation time; and c, frequency parameter)
to comprehensively address the relevance of IP effects in heliborne
TDEM data using various realistic scenarios. We further study the
possibility to recover the Cole-Cole parameters by means of multi-
parametric quasi-2D laterally constrained inversion (LCI). This study
is the companion to another study (Kaminski and Viezzoli, 2016),
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which is dedicated to field case studies, based on Cole-Cole modeling
and inversions (quasi-3D) of AEM data, collected for a range of min-
eral exploration targets. Together, the two papers provide a rigorous
reference and insight on the AIP phenomenon and its potential rel-
evance to exploration and geologic mapping in general.
This study is the natural continuation of previous work including

Fiandaca et al. (2012), Kaminski et al. (2015), Viezzoli et al. (2013,

2015), and Viezzoli and Kaminski (2016). In this paper, a variety of
2D-like synthetic models are used to simulate versatile time domain
electromagnetic (VTEM) full-waveform (Fiandaca et al., 2012)
data sets that are contaminated with noise and then inverted to study
the recoverability of various targets in various environments. The for-
ward computation is 1D, and the synthetic models are therefore actually
2D-like sections obtained from stitched together 1D models. For the

forward modeling, a typical 7.2 ms width VTEM
current pulse waveform was used (Figure 1). The
following four synthetic models were considered:

1) Disseminated sulfide model: In this model,
two targets were introduced. First is a noncon-
ductive and chargeable body (representing
disseminated sulfide), whereas the second is
a conductive and nonchargeable (representing
a general conductor) (Figure 2a and 2b). The
ability to recover the chargeable response
from the resistive target was studied.

2) Kimberlite model: In this model, a synthetic
kimberlite pipe was placed underneath 30 m
overburden (Figure 3a and 3b). The upper fa-
cies of the kimberlite (crater) is chargeable
and conductive, whereas the lower facies of
the kimberlite (diatreme) is less conductive
and nonchargeable. The recovery of depth to
the chargeable target was studied.

3) Dipping chargeable layer model: In this
model, a dipping conductive and chargeable
target starts at surface and reaches a maximum
depth of 150 m. The ability to recover deep-
ening chargeable targets is studied in resistive
and conductive nonchargeable host rock envi-
ronments (Figure 4).

4) “Deep conductors” below chargeable layers
model: This model is otherwise similar to
model 3, but introduces a deep-buried (300 m)
layer with varying conductivity, emplaced be-
low a deepening chargeable layer (Figure 5).
The masking of the deeper conductive bodies
from the IP effect due to the shallower, con-
ductive polarizable layer is studied, as well as
the ability to recover the deep conductive
layer by means of quasi-2D inversion (LCI).

METHODOLOGY

Approach

The goal of this paper is to provide insight into
an approach for modeling IP in AEM data, which
can be applied to large-scale field data sets. For
inverting field data, we use the constrained inver-
sion approach, either quasi-2D (LCI; Auken and
Christiansen, 2004) or quasi-3D (spatially con-
strained inversion [SCI]; Viezzoli et al., 2008).
It is based on an objective function with a 1D
forward response and with either 2D or 3D con-
straints on the covariance of model parameters
belonging to neighboring soundings. Such an

Figure 1. The VTEM transmitter current waveform used for synthetic modeling. Only
the positive pulse was used for synthetic modeling.

Figure 2. Synthetic sulfide quasi-2D true model (parameters τ and c fixed to 10−3 and
0.5, respectively). (a) Electrical resistivity model (top 150 m). (b) Chargeability model
(top 150 m). (c) IP effect measure.
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approach is applicable in cases with moderately dipping geologies
and moderate contrast in electrical properties. In other cases, 2D/3D
artifacts may be present in LCI/SCI inversions in the form of edge
effects. When compared with the true 1D inversion (when each
sounding is inverted individually, without any spatial covariance
between neighboring stations), the advantages of the LCI/SCI in-
version are the suppression of noise and the reduction of the non-
uniqueness, which allow recovery of the lateral continuity of the
inverted models.
Given that for the field data we use 1D forward response (Kaminski

and Viezzoli, 2016), all of the synthetic studies subject of the current
paper also adopt the same 1D approach. The forward responses and
the inversions use the same 1D kernel (AarhusInv, Auken et al., 2014),
ensuring that, although some 2D effects of the modeling are disre-
garded by the inversions, the system response is nonetheless properly
modeled and therefore, the obtained results are reliable.
As mentioned earlier, we use the Cole-Cole model and invert for

all its parameters at once (multiparametric inversion). A total of 101
synthetic stations were used for the 1D forward modeling (for each
of the four synthetic models), with a separation of 30 m. A nominal
flight elevation of 30 m over flat terrain was considered.
The forward response is calculated for resistivity only and for a full

suite of Cole-Cole parameters. The VTEM transmitter waveform
used for the simulation is shown in Figure 1, and the time gates used
in the simulation are described in Table 1. The simulated data units
are in volts (V) normalized by the receiver area (m2). A current of
160 A is used for the modeling of VTEM system
data, along with four turns in the transmitter loop.
To bring the units of the modeled data to the stan-
dard VTEM measurement units of pV∕ðA �m4Þ,
they need to be multiplied by the corresponding
peak current, multiplied by the number of turns
in transmitter loop, normalized by the transmitter
area, and multiplied by 1012.
The synthetic data are further contaminated

with noise (Munkholm and Auken, 1996) and
inverted with different starting parameters and
constraint types, including varying lateral con-
straints and additional regularization parameters
as a priori information. Despite the fact that the
synthetic forward modeling is carried out in 1D,
it is still meaningful to invert the data using the
LCI approach, taking into consideration the ill
posedness of multiparametric inversion, which
requires nontrivial regularization. A measure
of depth of investigation (DOI) (Fiandaca et al.,
2015) for each of the output model parameters is
also calculated and used to mask the results. In
addition, some noise-contaminated data were
artificially processed, replicating the advanced
processing techniques required for optimal re-
sults of field data AIP modeling (Kaminski
and Viezzoli, 2016).
The objective of multiparametric inversion

was to test a wide selection of starting models,
as well as different types of constraints (vertical
and horizontal) imposed upon the τ and c param-
eters to test what role locking τ and c plays in the
ability to recover the true model.

Starting resistivity values are tested for half-spaces ranging from
10 to 1000 ohm-m; starting chargeability values are tested ranging
from 10 to 100 mV∕V; and the starting relaxation time constant (τ)
values are tested from 10−4 to 10−2 s (consistent with the expected
range of sensitivity to this parameter in known airborne TDEM sys-
tems) (Macnae, 2015). Parameter c is tested ranging from 0.3 to 0.7
values (Table 2).
These starting parameters yield 81 unique combinations for each

synthetic data set. Two sets of constraints are then tested on τ and c.
First, all 81 starting model combinations are associated to “soft”
constraints (allowing τ and c to vary up to 10% spatially between
neighboring stations and between neighboring layers), then to
“hard” constraints (locking the spatial variance between neighbor-
ing stations and layers in τ and c to 0.1%). Therefore, a total of 162
combinations are obtained.
Furthermore, the measure of IP effect is quantified for the syn-

thetic data, measured as a metric of the difference between IP and
non-IP responses from the same model and representative of IP ef-
fect detectability in the noisy data (metric of the IP effect).

Metric of the IP effect

To better understand the extent of the IP effect, we introduce an
IP effect metric defined as a weighed difference between transients
affected by IP and those not affected by IP. The absolute values of
these differences calculated for each datum are summed up on a

Figure 3. Synthetic quasi-2D kimberlite true model. (a) Resistivity model (top 150 m).
(b) Chargeability model (top 150 m). (c) IP effect metric (blue curve), compared with
system noise (red line).
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transient to transient basis and plotted in logarith-
mic space. The logarithmic space approach re-
duces skewness of the metric toward greater
absolute values in data space and therefore re-
duces the sensitivity of the metric to early times
in the transients. Plotting the metric in logarithmic
space also makes it consistent with similar noise-
level considerations, as those in the predicted data.
Equation 1 describes the IP effect metric:

mIP ¼
Pnt

j¼1 log10kVj
NOIP − Vj

IPk
nt

; (1)

wheremIP is the calculated IP effect metric; VNOIP

is the recorded voltage, for the model without IP,
at the jth time gate in the EM decay transient; VIP

is the corresponding voltage with the considera-
tion of the Cole-Cole model at the jth time gate;
and nt is the number of time gates in the transient
for which the measure is calculated. The normali-
zation of the measurement by the number of time
gates makes this metric invariant to the sampling
rate and therefore uniform and applicable to any
EM transient. The mIP metric is given in log10
(volts), and it is directly comparable with the noise
level of a given system. When the mIP amplitudes
are larger than the noise levels, the IP effect can be
measurable in the data space.

Figure 4. (Left) Synthetic quasi-2D simple deep reference model (fixed τ and c parameters to 10−3 and 0.5, respectively); the top 150 m are
shown. (Right) Simulated noise-free dBz∕dt transients (randomly colored) for the profile distance interval between 0 and 1440 m. The deeper
the chargeable anomaly, the later the time of the sign reversal. The dashed red line represents typical noise level of the system.

Figure 5. Synthetic quasi-2D deep conductor true model (fixed τ and c parameters to
10−3 and 0.5, respectively); the top 400 m are shown.
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Metric of the model norm

We also introduce and calculate a metric for each of the Cole-
Cole model parameters to provide a quantitative assessment, be-
yond visual appearance, of the differences between the true and the
recovered models. The matrix ΔParki;j is obtained as the difference
between the value output from each of the inversions (k, with k ¼ 1,
162, as per the total number of inversions tested for each data set)
versus the true value, for each layer (i, with i ¼ 1, 29) and for each
station (j, with j ¼ 1, 101). This metric can be plotted in a 2D sec-
tion, showing spatially the discrepancies between the true and the
output (out) models, for a given Cole-Cole parameter and the results
of the inversions of a given combinations of starting models and
constraints.
The differences are represented in the form of equation 2,

ΔParki;j ¼ log10 Par
OutðkÞ
i;j − log10 Par

true
i;j ; (2)

where ΔParki;j is the difference matrix and matrices Partruei;j and
Par

OutðkÞ
i;j are representative of values associated with the true and

recovered models, respectively.
This measure provides representative graphical description of the

discrepancies between the output of one specific inversion and the
true model. It can be also used for statistical analysis of multiple
inversions carried out with one starting parameter selection versus
a similar suite of inversions, with another parameter selection (e.g.,
inversions with a locked c parameter versus inversions with a con-
strained c parameter).
Of the several possible simple statistical indicators, the mode is the

most adequate because it calculates the most frequent value occurring
in a group. We therefore calculate the 2D matrix modeðΔPari;jÞ for
each parameter, over the full suite of different inversions.

Synthetic data noise contamination

The standard deviation of noise for each gate (σi) takes into ac-
count a multiplicative contribution (σ20;i), uniformly on all time gates
(3% of the signal) and an additive contribution (σ2noise;i), resulting
from a model noise that can be approximated to a straight line
with a slope t−1∕2 in a log-log plot. The additive term represents
the “white” noise, which can be reduced by adjusting the width of
the gates and by stacking. From real VTEM data, we derived an es-
timate value for the white noise of 10−11.5, V∕ðAm4Þ, at 1 ms. The
multiplicative term represents misalignment and geologic (physical
property) complexity. In these synthetic exercises, we assume that the
data are free from any other potential sources of noise such as bias at
the early times or incorrect leveling of the late times that can affect
actual AEM data. The total noise contribution to synthetic data can be
described in equation 3:

Table 1. The VTEM full-waveform channel list.

Channel Time gates full-waveform VTEM (2015) (s)

1 2.10E-05

2 2.60E-05

3 3.10E-05

4 3.60E-05

5 4.20E-05

6 4.80E-05

7 5.50E-05

8 6.30E-05

9 7.30E-05

10 8.30E-05

11 9.60E-05

12 1.10E-04

13 1.26E-04

14 1.45E-04

15 1.67E-04

16 1.92E-04

17 2.20E-04

18 2.53E-04

19 2.90E-04

20 3.33E-04

21 3.83E-04

22 4.40E-04

23 5.05E-04

24 5.80E-04

25 6.67E-04

26 7.66E-04

27 8.80E-04

28 1.01E-03

29 1.16E-03

30 1.33E-03

31 1.53E-03

32 1.76E-03

33 2.02E-03

34 2.32E-03

35 2.67E-03

36 3.06E-03

37 3.52E-03

38 4.04E-03

39 4.64E-03

40 5.33E-03

41 6.13E-03

42 7.04E-03

43 8.08E-03

44 9.29E-03

Table 2. Cole-Cole parameters used in every combination
with each other as starting models for the inversions.

ρ (ohm-m) m0 (mV∕V) τ (s) c (N/A)

10 10 10−4 0.3

100 50 10−3 0.5

1000 100 10−2 0.7

Heliborne IP effect: Synthetic models E35
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σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20;i þ σ2noise;i

q
: (3)

The specific considerations on inversion methodologies custom-
ized for each of the following four synthetic models are explained in

the corresponding sections below, as well as the results and their
discussions.

SYNTHETIC SULFIDE MODEL

True model and forward modeling

The resistivity and chargeability true model are shown in Fig-
ure 2. As it can be seen from Figure 2a and 2b, the model consists
of four general rock types: a slightly chargeable overburden (OB), a
nonchargeable conductor (S), a chargeable and resistive dissemi-
nated sulfide (M), and the nonchargeable, resistive host rock
(HR). The true Cole-Cole parameters used in the model are pro-
vided in Table 3.
For the disseminated sulfide, we have used m0 ¼ 350 mV∕V,

τ ¼ 1 ms, and c ¼ 0.5. According to Pelton et al. (1978), who mea-
sure (galvanically) several samples from different mineralizations
around the world, these parameters are mainly representative of

Table 3. Cole-Cole parameters for synthetic sulfide model.

Sulfide ρ (ohm-m) m0 (mV∕V) τ (s) c

Overburden (OB) 250 10 0.001 0.5

Disseminated sulfide (M) 500 350 0.001 0.5

Conductor (S) 1 0 NA NA

Host rock (HR) 5000 0 NA NA

Figure 6. Noise-contaminated data calculated over the synthetic quasi-2D sulfide model. (a) Resistivity true model of sulfide deposit. (b) Char-
geability true model of sulfide deposit. (c) Stitched 1D simulated (predicted) response for the 2015 VTEM full waveform. (d) Noise-con-
taminated predicted response for the 2015 VTEM full waveform. (e) Predicted transient for station 50 (profile coordinate 1470) with and
without added noise.
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Figure 7. The LCI of the long-pulse 2015 VTEM synthetic quasi-2D sulfide deposit data without consideration of the IP effect. (a) True
resistivity model. (b) True chargeability model. (c) Resistivity model recovered without modeling IP. (d) Data misfit.

Figure 8. Comparison of inversions of unprocessed versus processed predicted data over a synthetic quasi-2D sulfide model with starting
Cole-Cole parameters: ρ ¼ 1000, m0 ¼ 100, τ ¼ 10−4, c ¼ 0.7, and hard constraints for τ and c. (a) Inversion of unprocessed data (top,
resistivity; middle, chargeability; and bottom, inversion misfit, normalized by standard deviation). (b) Inversion of processed data (top, re-
sistivity; middle, chargeability; and bottom, inversion misfit, normalized by standard deviation). (c) Data fit, shown in transients (blue, noisy
data; red, model) for unprocessed data. (d) Data fit, shown in transients (blue, noisy data; red, model) for processed data.
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disseminated sulfides of relatively low concentration and small
grain size. Examples of well-known deposits with similar τ, how-
ever, include Kidd Creek and Lornex deposits. Raiche (1998) plots
the synthetic TEM responses expected over these deposits, showing
IP effects clearly visible within the frequency bandwidth of the
systems.
The choice of the Cole-Cole values for this and all other models is

based on published literature (from galvanic and EM sources),
bound by the sensitivity limitations of the method. For example,
a 25 Hz AEM system is insensitive to IP effects associated with τ >
1 s (Viezzoli et al., 2013). Macnae (2015) shows, under certain as-
sumptions (step response in transmitter waveform, a target repre-
sented by thin sheet and c ¼ 0.3) that the range
of maximum sensitivity to IP effects for such sys-
tem is between 10−4 and 10−2 for τ values.
For the true model, the IP effect metric (equa-

tion 1) was then calculated and the associated
graph is shown in Figure 2c, with the noise floor.
As shown in Figure 2c, the IP metric is at maxi-
mum over the chargeable disseminated sulfide
body, located between stations 20 and 55. The
metric, well above noise level, implies a locally
measurable IP effect. This is confirmed by visual
inspection of noise-contaminated transients (Fig-
ure 6d and 6e).

Results: Inversions of synthetic sulfide deposit data

Inversion without consideration of the IP effect

The first step was to invert the noise-contaminated synthetic data
without consideration of the IP effect. These quasi-2D LCI inver-
sion results are shown in Figure 7. As shown, inverting the IP-af-
fected data without Cole-Cole modeling produces large data misfits
above the chargeable body. In the model space (Figure 7c), the re-
covered resistivities are representative of the true model directly
over the nonchargeable conductive body, whereas the recovered
model is not well-recovered over the chargeable (disseminated)
target.

Table 4. Statistical analysis of misfits derived from synthetic sulfide data inver-
sions featuring scenarios considering unprocessed data, processed data, and
locking parameter c.

Inversions Minimum Maximum Average Standard deviation

Unprocessed 162 0.8221 313.1986 22.4091 64.1266

Processed 162 0.9203 36.7935 6.88230 10.9176

Locked c 52 0.9470 63.8061 13.32853 20.6242

Figure 9. Unconstrained 1D inversion of proc-
essed full-waveform noisy synthetic VTEM data
over the sulfide model with the starting Cole-Cole
parameters: ρ ¼ 1000, m0 ¼ 100, τ ¼ 10−4, and
c ¼ 0.7. The red lines outline the true model.
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Inversions in the IP mode

The next step was to invert with quasi-2D LCI, the noise-conta-
minated data using full multiparametric inversion (LCI) over 29
layers with simultaneous recovery of four Cole-Cole parameters.
The results obtained using a starting model with a homogeneous
half-space of ρ ¼ 1000; m0 ¼ 100, τ ¼ 10−4; and c ¼ 0.7 are
shown in Figure 8a. The recovered parameters are masked to the
DOI. The horizontal constraints were set to accommodate 10% cov-
ariance between neighboring parameters on m and ρ, and “harder”
constraints (0.1% covariance) on c and τ. The choice of constraints is
due to expected limited variance of c and limited sensitivity of τ to
this parameter beyond the 10−4 to 10−2 range.
The resistive (disseminated sulfide) body is now well-resolved,

with a vertical resolution in the line with expectations for this type
of target/host rock combination. The chargeability section recovers
a target extending to depth and centered on the true target. Some
shallow strongly chargeable “ghost” artifacts are, however, also
present in the inversion results. The latter can be attributed to
the limited vertical sensitivity of the parameter m0. In the next ex-
amples, we try to improve the results further experimenting with the
quality of the inversion input (data processing), inversion regulari-
zation, and a priori information.

Inversions in the IP mode of processed data

Our experience with field AEM data (Viezzoli et al., 2012;
Kaminski and Viezzoli, 2016) shows that assessing and eliminating
noise before inversion improves its outcome in terms of robustness
and accuracy of the recovered model parameters. We now attempt
to prove this observation on synthetic data, in which the true model
is known by introduction of the model norm metric, which provides
quantitative insight to deviation of inversion results from the true
model.
Although it is technically possible to use a constant noise floor for

automated culling of background noise (even more so with synthetic
data), our experience shows that the noise levels contaminating the
recorded ground response can vary during a survey (Kaminski and
Viezzoli, 2016). Therefore, any type of automated filtering requires
manual refinement. The noise-contaminated data shown in Figure 6d
have been first stacked laterally to increase S/N, then they are man-
ually inspected and edited to eliminate noise at late times. The same
inversion settings and starting models used in the previous section
have been applied to invert the processed data. Figure 8b shows the
inversion results, side by side with those obtained from unprocessed
data (Figure 8a) in 2D sections. Processing the data to eliminate
late time noise prior to inversion resulted in a slight, yet noticeable,

Figure 10. The LCI of processed full-waveform
noisy synthetic VTEM data over quasi-2D sulfide
model with starting Cole-Cole parameters: ρ ¼
1000,m0 ¼ 100, τ ¼ 10−4, c ¼ 0.7, and hard con-
straints on τ and c and locked resistivities for sta-
tions 50 and 60 (profile distances 1470 and 1770 m,
respectively). The red lines outline the true model.
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improvement in the recovery of the conductive and the chargeable
targets. The latter, in particular, fills more uniformly, to its full extent,
the outline of the disseminated sulfide. The near-surface artifacts are
also reduced in the recovered chargeability section as a result of
manual data processing.

Testing different starting Cole-Cole parameters in multiparametric
inversion

The next step was to test the dependence of the simultaneous
inversion of four Cole-Cole parameters on starting models selection
and different regularization types. In general, the inverse problem is
underdetermined and considering four varying parameters, the
problem can become unstable and sensitive to starting models.
Inverting with consideration of the full suite of different starting

models combinations (Table 2) yields a total of 81 combinations.
All of these combinations were tested with two types of regulariza-
tion on τ and c parameters: soft constraints (allowing 10% variance
between neighboring horizontal and vertical locations) and hard con-
straints (allowing 0.1% variance between neighboring horizontal and
vertical locations). A total of 162 inversions were therefore carried
out first on the unprocessed, noise-contaminated data shown in Fig-
ure 6d, then on processed data. The inversion results were then as-
sessed by misfit values. Global misfit values, normalized by standard
deviations of unprocessed data inversions, range from 0.82 to 313.20

depending on the starting parameters and type of constraints. The
processed data inversion results were subject to similar misfit analysis
and comparison of misfits with those achieved for unprocessed data
inversions (Table 4).
The misfits normalized by standard deviation for processed data

range from 0.92 to 36.79. Their average and standard deviation val-
ues are significantly lower than for the unprocessed data. There are,
nonetheless, high misfits still associated with a significant number
of inversion results. This is due to combinations of unrealistic start-
ing models, which prevented convergence. Furthermore, the lowest
data misfit achieved for processed data inversion is actually slightly
higher than the lowest misfit for unprocessed data inversion, which
is a result of eliminating noisy late times during processing, asso-
ciated with large data misfits and, therefore, easier convergence.
We have shown that processing data generally reduces misfits,

and it assists in recovery of better models. The nonuniqueness, how-
ever, still remains significant even for processed data, hence it is still
essential to test a range of starting parameters for Cole-Cole inver-
sions. As with any other ill-posed problem, the use of ancillary in-
formation in the form of a priori information (drilling, downhole,
ground geophysics, etc.) reduces the ambiguity of the results and
allows narrowing down the number of plausible recovered models.
The visual inspection of the 162 inversion models proves, for ex-
ample, that the use of tight spatial constraints on the c and τ param-
eters often improves the match between recovered and true models,

Figure 11. The LCI of processed full-waveform
noisy synthetic VTEM data over quasi-2D sulfide
model with starting Cole-Cole parameters: ρ ¼
1000,m0 ¼ 100, τ ¼ 10−4, c ¼ 0.7, and hard con-
straints on τ and c and locked resistivities and char-
geabilities for stations 50 and 60 (profile distances
1470 and 1770 m, respectively).
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without a significant increase in misfit. The latter confirms that sen-
sitivity to c and τ remains limited; however, these parameters should
be still inverted for, not locked (as shown in the next section).

Testing different types of constraints and a priori information on
the synthetic sulfide deposit model

In the following exercises, the inversions were carried out for proc-
essed data, testing different combinations of lateral constraints and a

priori information inputs. They illustrate the improvement brought by
adding extra data that reduce the ill posedness of the problem.
The synthetic data were inverted in entirely 1D mode, i.e., with-

out any lateral or spatial constraints and as a sequence of individu-
ally inverted soundings. The results are shown in Figure 9. The
comparison with Figure 8b provides a clear visual assessment of
the effects of the lateral constraints on resistivity and chargeability.
Although the data misfit is similar, the Cole-Cole parameters
recovered in Figure 9 display a larger degree of variance. Due to

Figure 12. The LCI of processed full-waveform
noisy synthetic VTEM data over quasi-2D sulfide
model with starting Cole-Cole parameters:
ρ ¼ 1000, m0 ¼ 100, τ ¼ 10−4, c ¼ 0.3, and hard
constraints on τ and locked c.

Figure 13. Mode calculated for the logarithmic
differences between the true and recovered charge-
ability models, which have produced misfits less
than 2 (normalized by standard deviation).
(a) Inverting for c. (b) With locked parameter c.
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the absence of lateral constraints, such variance is, in many places,
exaggerated with respect to the true model.
Another advantage of applying the LCI/SCI lies in its capacity

of spreading robustly the localized a priori information that might
originate from, e.g., boreholes. In the next examples, a priori infor-
mation was applied, associated with lateral constraints of varying
strengths. The a priori information enters the inversion as another
data set, with its own uncertainty. The LCI seeks a result that balances
the information from AEM data, a priori, and lateral constrains. The a
priori was introduced for stations 50 (profile coordinate: 1470) and

Table 5. Cole-Cole parameters for synthetic kimberlite model.

Kimberlite ρ (ohm-m) m0 (mV∕V) τ (s) c (N∕A)

Overburden (OB) 500 10 0.001 1

Crater facies (S) 30 300 0.001 0.5

Diatreme facies (M) 250 0 NA NA

Host rock (HR) 5000 0 NA NA

Figure 15. The LCI of the synthetic kimberlite VTEM data without consideration of the IP effect. (a) True resistivity model. (b) True charge-
ability model. (c) Resistivity model recovered without modeling of the IP effect. (d) Associated data misfit.

Figure 14. Synthetic quasi-2D kimberlite true
model. (a) Resistivity model (top 150 m). (b) Char-
geability model (top 150 m). (c) IP effect metric
(blue curve), compared with system noise (red
line).
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60 (profile coordinate: 1770), locking the resistivity and the charge-
ability parameters at their true values, as if they had been gathered
from direct measurements. Then, hard lateral constraints were intro-
duced, increasing the spatial coherence of neighboring stations. The
results in Figure 10 show an improvement in the geometry of the
recovered targets, although they are rather localized around the sta-
tions with available a priori. Tightening the lateral constraints further
extrapolates the effect of a priori farther away from their source (Fig-
ure 11). As a result, the disseminated sulfide model is better recov-
ered in terms of its resistivity and chargeability values. The geometry
of the target is also closer to true model.
The recovered c and τ models require additional discussion. Their

true values were set to half-space (Table 3). Figure 10 shows the re-
sults obtained solving for c and τ, but without lateral constraints. In
places, the recovered c value has a large, localized artificial anomaly
(e.g., around profile coordinate 1300). This is associated with heavily
suppressed chargeability. The presence of lateral constraints stabilizes
the inversion and reduces significantly such artifacts. With applica-
tion of lateral constraints, the recovered relaxation time constant τ
remains close to the starting value, with the output models changing
almost insignificantly from the starting models. The only exception is
perhaps shown in Figure 11, which displays a slight increase in τ in
correspondence to the disseminated sulfide model. The frequency
parameter c, on the other hand, generally shows more structure with
the output values that differ significantly from the starting models.

The latter can be attributed to the very significant effect that changing
c has on the slope of the transients (Walker and Kawasaki, 1988;
Viezzoli et al., 2013). As a consequence, we anticipate that locking
the frequency parameter to a predefined constant value can result in
high misfits and/or artifacts in some of the other Cole-Cole models
recovered.
To further illustrate the effect of locking c parameter, we have

inverted the synthetic data set with constant c ¼ 0.3 (half-space)
and not allowing it to vary. All other inversion parameters were kept
the same as in the case shown in Figure 8.
Figure 12 shows the inversion results with locked parameter c.

With the use of certain starting model parameters, it became nu-
merically possible to achieve satisfactory data misfit in the data
space. However, in model space, the differences between locking
c and inverting for c are obvious. For example, in the chargeability
section (m0, Figure 12), the chargeable material distribution is
skewed toward the near surface and at the same time is recovered,
suggesting larger absolute values. When Figure 12 is compared with
Figure 8, the match with the true model is visibly better for the
model shown in Figure 8. In the case when c is locked, the m0

distribution is skewed. Numerically, this skewness is reflecting
compensation for the impossibility of recovering structure in the
c parameter domain. The recovered relaxation time τ appears to
be recovered below its true value. The resistivity model is not sig-
nificantly affected.

Figure 16. The LCI of synthetic quasi-2D kimber-
lite VTEM data with starting Cole-Cole parame-
ters: ρ ¼ 1000, m0 ¼ 50, τ ¼ 10−3, c ¼ 0.3, and
soft constraints on τ and c.
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We also ran the full suite of inversions, scanning the entire range
of starting models (Table 2) with the exception of c, which remained
locked at 0.3 value and have further analyzed the results in terms of
misfits and divergence from true model (Table 4). The misfit is gen-
erally increased, and it displays a higher variance with respect to
solving for c.
To analyze the statistics in model space, we calculated the mode

of the differences in chargeability between the true and output mod-
els, described in the “Methodology” section. The population was
limited to the chargeability models associated with misfits less than
2. The results (calculated in log space) are shown in Figure 13a and
13b. The values around zero are representative of the smaller differ-
ence between the true and the recovered models. The comparison is
only meaningful in the proximity of the synthetic disseminated sul-
fide, in which the data are expected to have some sensitivity to m0.
Figure 13 shows that inverting for the c parameter, rather than lock-
ing it, yields lower values of the mode of the differences. The output
models obtained from inversions with varying c parameter are
therefore statistically more often closer to the true models.

SYNTHETIC KIMBERLITE MODEL

True model

The true model of the kimberlite is shown in Figure 14a
and 14b. It consists of four general rock types: overburden (OB),

crater facies of kimberlite (S), diatreme facies of kimberlite (M),
and the host rock (HR). The true model parameters are provided in
Table 5.

IP effect metric and noise contamination

The model shown in Figure 14a and 14b was used to forward
simulate the responses of the same VTEM system used previously.
Similar modeling considerations were in effect for the synthetic
kimberlite model, as in the case with the synthetic sulfide model.
The synthetic VTEM data set, produced with Cole-Cole forward
modeling for the IP effect, was then contaminated with noise.
Then, the IP effect metric (equation 1) was calculated (Fig-

ure 14c). The latter suggests that the IP effect should be detectable
above the noise.

Results: Inversions of synthetic data

Inversion without consideration of the IP effect

The first step was to carry out the quasi-2D LCI on the synthetic
data without consideration of the IP effect. The results are presented
in Figure 15. It is clear that inverting the IP-affected data without
the consideration of the IP effect produces a large (7.4) misfit in
the data space. In the model space, the inversion recovers a rea-
sonable resistivity section, which, however, does not resolve the

Figure 17. The LCI of synthetic quasi-2D kimber-
lite VTEM data with starting Cole-Cole parame-
ters: ρ ¼ 1000, m0 ¼ 50, τ ¼ 10−3, c ¼ 0.3, and
soft constraints on τ and c; a priori true values
of ρ and m0 were locked around station 55 (profile
coordinate 1620) and the effect of this a priori
extrapolated onto neighboring stations via in-
creased smoothness (spatial coherence) in the x-di-
rection.

E44 Viezzoli et al.

D
ow

nl
oa

de
d 

12
/0

1/
17

 to
 1

30
.2

25
.1

84
.6

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



overburden and slightly underestimates the depth to the crater fa-
cies of the kimberlite. No information on the chargeability distri-
bution is obtained.

Inversions in the IP mode

The results of the quasi-2D LCI (29 layers) in the IP mode for
the kimberlite model are presented in Figure 16. They have been
obtained with a starting model with a homogeneous half-space of
ρ ¼ 1000, m0 ¼ 50, τ ¼ 10−3, r ¼ 0.3, and soft constraints on τ
and c. The resistivity section is slightly closer to the true model,
especially the crater facies (the red line shows the contours of the
true model). The chargeability section provides the satisfactory
recovery of the geometry of the crater facies. The displayed lateral
variability of parameter m0 in the model can be attributed to
the presence of noise in the data, as well as to the fact that the
sensitivity to m0 distributions at those depths is moderate under
implemented soft constraints. As per the general LCI approach
(Christiansen and Auken, 2012), tightening up the constraints
would increase the lateral coherence of the parameters. The shal-
low artifacts visible in the overburden are mainly associated with
the reduced sensitivity to the thinning target at the edges of the
crater facies. The rather homogeneous c and τ sections are indica-
tive of the limited sensitivity to both parameters.

Testing different types of constraints and a priori information

A priori information was introduced for station 55, locking
resistivity and chargeability parameters at their true values and
expanding their effect to neighboring points by assigning tighter
lateral constraints on these parameters. This slightly increased the
accuracy of the recovered crater facies’ geometry (Figure 17), in
the resistivity and chargeability sections. The near-surface
chargeable artifacts in the overburden are also reduced. The
c section in this case shows some structure corresponding to the
crater facies. This is due to the extra information provided as input
to the inversion (the a priori from boreholes and the tighter con-
straints).

Figure 18. The LCI of 2015 VTEM full-waveform
synthetic data with starting Cole-Cole parameters:
ρ ¼ 1000, m0 ¼ 50, τ ¼ 10−3, c ¼ 0.3, and soft
constraints on τ and c, a priori information and re-
leased vertical constraints were used for this inver-
sion.

Table 6. Cole-Cole parameters for simple deep synthetic
model.

Simple deep model ρ (ohm-m) m0 (mV∕V) τ (s) c (N/A)

Host rock #1 1000 1 0.001 1

Host rock #2 50 1 0.001 0.5

Host rock #3 1000 1 0.001 0.5

Target 30 300 0.001 0.5
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Finally, we ran another inversion with the same starting model and a
priori information of the previous example, but releasing completely
the vertical constraints on m0 and ρ (Figure 18). This test emphasized
the horizontal interfaces, producing more blocky results in the vertical
direction and more smooth results in the horizontal direction. As a con-
sequence, the c section is also recovered with greater accuracy.

“DEEP” MODELS

Twomore synthetic models have been designed to study the detect-
ability and behavior of the IP effect arising from deeply buried targets,
as well as in the absence of the IP effect. These models, which do not
aspire to represent any specific type of geology or target, include

• the “dipping chargeable layer” model, in which the depth
to conductive and chargeable layer increases along the profile

• The “buried conductor,” a modified version of the previous
model with a conductive, nonchargeable basement placed
below the dipping conductive and chargeable layer.

Dipping chargeable layer model (“simple deep” model)

In this exercise, series of conductive and chargeable targets are
placed at increasing depth along the profile (Figure 4), resembling a
dipping layer. The surficial rock resistivity is split in half, resem-
bling a conductive (right) and a resistive (left) overburden, both

Figure 19. The LCI of quasi-2D simple deep si-
mulated data in the no-IP mode.

Figure 20. The LCI of synthetic VTEM data for a
quasi-2D simple deep model in the IP mode with
the following starting model parameters: ρ ¼
1000, m0 ¼ 10, τ ¼ 10−3, c ¼ 0.5, and hard con-
straints on τ and c.
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nonchargeable. Table 6 contains the Cole-Cole parameters used for
this model, chosen to have high sensitivity to the chargeable tar-
get (τ ¼ 1 ms).
The insert in Figure 4 shows the forward-modeled transients cal-

culated over the left half of the model. As expected, the trough as-
sociated with the IP effect migrates to later times as the layer dips
toward the center of the model.

Inversions of synthetic data

Inversion without consideration of the IP effect

These simulated VTEM data were first inverted using the 2D-LCI
approach in the “no-IP mode” using ρ ¼ 1000 for the starting model
of the homogeneous half-space (Figure 19). The recovered resistiv-
ity section is producing high misfit in the data space. Below the
resistive overburden, the depth to the conductor is underestimated
and its thickness is overestimated. The inaccuracies of the recovered
model increase in the presence of a conductive host rock (right part
of the cross section).

Inversions in the IP mode

The data were further inverted with a quasi-2D LCI inversion in
the IP mode (Cole-Cole modeling), using a subset of the full suite of
starting model combinations described in Table 2. Figure 20 shows
the results obtained using the starting model parameters: ρ ¼ 1000,

Figure 21. Sensitivity to chargeability calculated
for quasi-2D simple deep model.

Figure 22. Synthetic quasi-2D deep-conductor
true model (fixed τ and c parameters to 10−3

and 0.5, respectively); the top 400 m are shown.

Table 7. Cole-Cole parameters for deep conductor synthetic
model.

Sulfide ρ (ohm-m) m0 (mV∕V) τ (s) c (N/A)

Overburden 1000 1 0.001 1

Host rock 1000 1 0.001 0.5

Shallow conductors 30 300 0.001 0.5

Conductor #1 10 1 0.001 0.5

Conductor #2 1 1 0.001 0.5
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m0 ¼ 10, τ ¼ 10−3, c ¼ 0.5, and hard constraints on τ and c. As
discussed earlier, the hard constraints reduce the ill posedness of
the inversion problem and the ambiguity of the results. The charge-
able and conductive dipping layer is recovered rather accurately to
depths in excess of 100 m under resistive host rock and to depths not
exceeding 50 m under conductive host rock. These observations are
in agreement with the sensitivity analysis (Auken and Christiansen,
2004) for the true chargeability model as shown in Figure 21. The
2D section clearly shows the area of higher sensitivity associated to
the dipping layer. The sensitivity is reduced by the presence of the
conductive overburden to the right. The presence of conductive host

rock also reduces the accuracy of the recovered resistivity section,
although it remains in better agreement with the true model than the
section obtained without IP modeling.

“Buried conductor” model

The purpose of this experiment was to illustrate the potential mask-
ing effect of a shallower conductive and chargeable layer on a buried
conductive basement. We have used a slightly modified version of the
model described in the previous section. A buried conductive base-
ment with changing conductivity was added at depth of 260 m. The

Figure 23. The LCI of IP-affected data in no-IP
mode (third panel — resistivity only) with a
1000 ohm-m starting model. The red lines outline
the reference model.

Figure 24. (Top) Reference quasi-2D model (no-
IP). (Bottom) Laterally constrained resistivity inver-
sion in the no-IP mode with 1000 ohm-m starting
model and plotted misfit. The red lines outline the
reference model.
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true model is shown in Figure 22; the Cole-Cole
parameters of the true model are shown in Table 7.
The model is similar to the one used in a previous
experiment (Figure 20), which has produced a
measurable IP effect, and it is therefore suitable
for testing if IP effects can mask buried con-
ductors.

Inversion without consideration of the IP effect

As in previous examples, the IP-affected, noise-
perturbed synthetic VTEM data were inverted for
resistivity only, without consideration of the IP
effect (Figure 23). The data misfit is high. The
buried conductors are not recovered in the inver-
sion. It is most likely that this is due to the pres-
ence of a shallower chargeable and conductive
layer. At this stage, it is not clear whether it is the
chargeable or the conductive characteristics (or
their combination) of this shallower layer that are
responsible for masking the buried conductor. To
sort this, we ran another experiment, using a new
model, identical to the previous, but for the total
absence of chargeable material (Figure 24). The
IP-free VTEM data set was inverted (in the no-IP
mode), using a starting model with homogeneous
half-space of 1000 ohm-m. The inversion results
are presented in Figure 24 (lower panel). The
basement conductors are now recovered, even
though the more conductive basement to the right
is rendered deeper than the true model. This is due
to the vertical constraints applied on the resistivity,
which smear the sharp transition between host
rock (1000 ohm-m) and basement (1 ohm-m).
It is conclusive that it is the chargeability in the
dipping shallower layer that hindered the recovery
of the conductive basement in the previous experi-
ment. It is, however, possible to adequately image
the deep-seated conductor with proper differentiation of its varying
electrical conductivity.
The final question is whether, in the presence of the shallow dip-

ping chargeable layer, the basement conductor can be recovered if it
is inverted in the IP mode, or whether it will remain unresolved.
This is assessed in our next numerical experiment.

Inversions in the IP mode

The IP affected, noise added synthetic VTEM data associated
with the model of Figure 22 and Table 7 were inverted in the IP
mode (Cole-Cole modeling), using a subset of the full suite of pre-
viously described Cole-Cole parameter combinations. Figure 25
shows the results obtained with following starting half-space param-
eters: ρ ¼ 100, m0 ¼ 100, τ ¼ 10−3, c ¼ 0.3, and soft constraints
on τ and c. The data misfit is homogeneously low along the entire
section. The resistivity of the dipping layer is well-resolved, where-
as the chargeability is resolved to a fair degree. The deep conductors
are recovered fairly well in the middle of the section, even though
the vertical constraints create an artificial offset at the boundary
between the two halves of the conductive basement. As discussed
earlier, the constraints seem to smear the otherwise very sharp boun-

dary between the host rock and the 1 ohm-m basement. The con-
ductive basement is less well-recovered toward the edges of the
section, where the IP effect is the strongest, due to the shallower
burial depth of the chargeable layer. This means that, by virtue of
IP modeling, one may or may not allow resolving otherwise masked
bedrock conductors, depending on the magnitude of the IP effect
associated with the shallower chargeable layers.

CONCLUSION

This study reports and analyzes the results of numerical experiments
carried out with quasi-2D forward of AEM data and subsequent inver-
sion of a series of models with chargeability distributions. We describe
an approach to multiparametric quasi-2D inversion of AEM data af-
fected by IP, using Cole-Cole modeling and lateral constraints. The
conclusions derived herein are based on the range of Cole-Cole param-
eters used in our experiments (e.g., τ range between 10−2 and 10−4 s).
This ill-posed problem calls for careful use of ancillary informa-

tion in the inversion, in the form of both lateral constraints and,
when possible, of a priori information. The range of the starting
model parameters should be properly sampled, within the expected
sensitivity range of the AEM system because having the starting

Figure 25. Inversion in IP mode of synthetic VTEM data with the following starting
model parameters: ρ ¼ 100,m0 ¼ 100, τ ¼ 10−3, c ¼ 0.3, and soft constraints on τ and c.
The red lines outline the reference model.
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model values too far from the true values can prevent convergence
and/or produce artifacts in the output models. As expected, the data
showed limited sensitivity to τ and c parameters. It is nonetheless
important to invert for these parameters, possibly using hard con-
straints, rather than locking them, to avoid near-surface skewness
and other artifacts in the chargeability distribution. Prior to the inver-
sions, it is also important to perform careful preinversional processing
of the AEM data to assess and reduce the effects of noise. The output
models should always be assessed against any available ancillary in-
formation to reduce ambiguity.
Our results prove that this approach can be very useful in cases in

which standard EM modeling (conductivity-only) yields inaccurate
results, due to the presence of IP effects. Examples of improvements
in EM modeling using our multiparametric approach include

• improved resistivity cross sections (IP effects can cause in-
accurate resistivity estimates if not modeled)

• detection of chargeable targets (also in the absence of signifi-
cant resistivity contrast), with an associated estimate of the DOI

• detection of buried, dipping chargeable, and conductive
layers to depths in excess of 100 m

• detection of basement conductors buried below chargeable
layers that, in some cases, can mask them if the IP effect
is not modeled

• improved interpretation.

All these described advantages contribute to a potential signifi-
cant improvement in interpretation for geologic mapping and min-
eral exploration. When dealing with real AEM data sets, usually
acquired with parallel lines, this approach should be slightly modi-
fied to quasi-3D, using the SCI. The spatial constraints are an ef-
fective tool to further stabilize the inversion.
Several questions remain open and are subject to ongoing research.

Examples include automated data processing customized for IP
effects, or greater flexibility in the inversion scheme, which better
reflects the sensitivity of the different model parameters (e.g., start
inverting only for ρ and m0 during the first few iterations, then in-
troduce varying c, then τ). Models different from Cole-Cole can also
be tested. A similar systematic numerical analysis could also be car-
ried out for B-field data, which, bringing the sign change to earlier
times, are arguably better suited for extracting IP information from
AEM. The level of inaccuracy of applying the 1D approximation, and
its significance to real field data from large-scale surveys remains to
be assessed. Notwithstanding all these potential improvements, the
methodology presented herein is robust and appropriate to produce
significant impact on real AEM data sets over different targets and
with different AEM systems from around the world.
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