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S U M M A R Y
The application of time-domain induced polarization (TDIP) is increasing with advances in
acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP
data for the spectral Cole–Cole parameters is a non-linear problem, but by applying a 1-D
Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty anal-
ysis of the parameters and the parameter correlations can be accessed. This is essential to
understand to what degree the spectral Cole–Cole parameters can be resolved from TDIP data.
MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions
with a single maximum, show that the Cole–Cole parameters can be resolved from TDIP data
if an acquisition range above two decades in time is applied. Linear correlations between the
Cole–Cole parameters are observed and by decreasing the acquisitions ranges, the correlations
increase and become non-linear. It is further investigated how waveform and parameter values
influence the resolution of the Cole–Cole parameters. A limiting factor is the value of the fre-
quency exponent, C. As C decreases, the resolution of all the Cole–Cole parameters decreases
and the results become increasingly non-linear. While the values of the time constant, τ , must
be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and
a 100 per cent duty cycle for the current injection does not have an influence on the parameter
resolution. The limits of resolution and linearity are also studied in a comparison between the
MCMC and a linearized gradient-based inversion approach. The two methods are consistent
for resolved models, but the linearized approach tends to underestimate the uncertainties for
poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC
inversion of 1-D field data verifies that spectral Cole–Cole parameters can also be resolved
from TD field measurements.
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1 I N T RO D U C T I O N

Time-domain (TD) induced polarization (IP) is a geophysical
method that is applied increasingly in environmental investigations
and mineral exploration. Today, field applications include landfill
characterization (Gazoty et al. 2012a, 2013; Wemegah et al. 2014),
lithology discrimination (Gazoty et al. 2012b; Chongo et al. 2015;
Johansson et al. 2015, 2017; Maurya et al. 2016), prospecting of
quartz-sulphide-gold mineralizations (Tarasov & Gurin 2016), time-
lapse monitoring of CO2 injections (Fiandaca et al. 2015; Doetsch
et al. 2015a) and investigation of permafrost freezing processes
(Doetsch et al. 2015b). Recent laboratory applications include stud-
ies of the relationship between IP and the hydraulic properties of
the subsurface (e.g. Titov et al. 2010).

The TDIP phenomenon is manifested by a transient potential
decay following termination of an applied electric direct current
(DC) conducting through the subsurface. Previously, only the inte-
gral chargeability of the transient IP decay curve was considered
when inverting and interpreting TDIP data (Oldenburg & Li 1994).
This method, however, disregards the spectral information given by
the shape of the IP decay. More recently, modelling methods have
been introduced where the entire IP decay is used to resolve, for ex-
ample, the Cole–Cole parameters (Cole & Cole 1941; Pelton et al.
1978), which parametrize the spectral information. One of these
methods divide the IP decay into time gates and invert each time
gate independently with DC algorithms (Yuval & Oldenburg 1997;
Hönig & Tezkan 2007). Such method works well for a wide range of
parameter contrasts (Hördt et al. 2006), however, errors may arise
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from neglecting the actual transmitter waveform. Fiandaca et al.
(2012) presented a 1-D laterally constrained inversion algorithm,
which takes into account the full IP potential decay as well as the
transmitter waveform and the receiver transfer function when in-
verting for the spectral content of the IP signal. The algorithm has
been extended to handle 2-D spectral inversions as well (Fiandaca
et al. 2013).

Access to full-waveform recordings is a necessity in order to
retrieve spectral information from TDIP data. This is today possi-
ble given the recent improvements in acquisition equipment. With
the full-waveform recording, it is possible to facilitate compre-
hensive processing of the recorded IP signals. This is especially
important in order to access the IP data at early times after current
alternation. Olsson et al. (2016) presented a method to remove har-
monic noise from IP data, thus improving the signal-to-noise ratio
at early times significantly, moving the first usable time gate up to a
few milliseconds. They also introduced a processing scheme with
spike-and-drift removal. The combined effect of these processing
schemes doubles the usable range of the TDIP signal to almost four
decades in time (Olsson et al. 2016). Furthermore, Olsson et al.
(2015) suggested the use of a 100 per cent duty cycle waveform for
data acquisition. Here, the injected current is switched directly from
positive to negative and the data measurements are performed in the
current on time. This improves the signal-to-noise ratio further due
to the superposition of the IP decay signal and the ongoing current
injection.

It is a non-linear problem to retrieve the spectral Cole–Cole
parameters from TDIP data and many different deterministic in-
version methods can be applied (e.g. Yuval & Oldenburg 1997;
Kemna 2000; Xiang et al. 2003). Often, the problem is linearized
and solved using gradient-based methods. The gradient-based spec-
tral inversion scheme presented in Fiandaca et al. (2012) applies a
traditional Taylor expansion for linearization and iterates to mini-
mize a given objective function. A linearized uncertainty analysis
of the spectral Cole–Cole parameters can then be computed from
the posterior covariance matrix of the forward problem. However,
it is in general understood that the linearized methods tend to un-
derestimate the parameter uncertainties (Sambridge & Mosegaard
2002).

To investigate the linearity of the spectral TDIP problem and
to evaluate how well a linearized inversion approach preforms, a
full non-linear inversion and uncertainty analysis must be carried
out. By exploring the space of models, which are consistent with
an observed data set, instead of just finding a single best model
as given by gradient-based methods, it is possible to make a com-
plete interpretation of the problem. This can be done by applying a
probabilistic formulation.

The probabilistic formulation of non-linear inversion problems is
well known within geophysical methods, where the aim is to com-
pute probability distributions for data and model parameters (Taran-
tola & Valette 1982). Ghorbani et al. (2007) applied a Bayesian
model to invert synthetic TD and frequency-domain (FD) IP data
and used numerical integration techniques to obtain marginal pos-
terior probability distribution of each Cole–Cole parameter. The
Markov Chain Monte Carlo (MCMC) method is another way to
compute probability densities and it is more frequently applied in
geophysical inversions today (Mosegaard & Tarantola 1995; Sam-
bridge & Mosegaard 2002). Chen et al. (2008) compared the MCMC
inversion method of synthetic and laboratory FDIP data to a Gauss–
Newton deterministic method and points out the advances of the
MCMC approach to quantify uncertainties from probability distri-
butions.

We have developed a 1-D MCMC algorithm to invert TDIP data,
which uses the forward algorithm described by Fiandaca et al.
(2012) taking into account the full IP decay. We use the advantages
of the MCMC method to study non-linearized parameter uncertain-
ties and parameter correlations in order to understand to what degree
the spectral Cole–Cole parameters can be retrieved from TDIP data.
The following work investigates the influence of different factors on
the model sensitivity: current duty cycle, acquisition range and pa-
rameter values. Several examples with both synthetic data and field
data are investigated, and the results are also compared to Ghorbani
et al. (2007) findings. Additionally, the MCMC inversion results
are compared to results gained from a gradient-based linearized
inversion approach.

2 I N V E R S I O N M E T H O D O L O G Y

2.1 Data space and noise model

The data space, dobs, of the MCMC analysis of this study consists of
apparent resistivity and full-decay chargeability values, which are
log-transformed to enhance the linearity of the forward mapping:

dobs = {
log (ρi ) , log(Mi, j )

}
;

i = 1 : Nquads; j = 1 : Ngates, (1)

where the apparent resistivity, ρi , is given for each quadrupole
measurement, i , and the chargeability, Mi, j , is computed in each
time gate, j , of the TDIP signal. For layered models, the synthetic
data are generated from a vertical sounding with 20 quadrupoles,
with |AB| = 7.5 − 500 m and |MN| = 2.5 − 65 m (Table 1), which
limits the geometric factor to 3000 m. For homogenous half-spaces,
a single quadrupole with electrode spacing |AB| = 37.5 m and |MN|
= 2.5 m is used (quadrupole 7 in Table 1). Based on experience,
each IP decay is divided into seven log-distributed time gates per
time decade. If fewer gates are used, parts of the signal will not be
modelled, and adding more gates does not change the uncertainty,
because no more information is retrieved from the signal.

Both 50 per cent and the 100 per cent duty cycle waveform have
been used together with the noise model described in Olsson et al.
(2015). This noise model models a uniform noise and a random
noise that depends on the signal level. A total standard deviation,
STDtotal, is computed for each gate, j , by summing the quadrature
of the uniform term, STDuni, and a voltage-dependent term, STDvth:

STD2
total ( j) = STD2

uni ( j) + STD2
vth ( j) , (2)

where, STDvth, is controlled by a voltage noise threshold VTH and
is given as

STDvth ( j) = VTH

VIP ( j)
·

√
Dnorm√
D ( j)

· 1√
Nstacks

, (3)

where VIP( j), D( j), and Nstacks represent the voltage level, the inte-
gration time and the stack size of the jth gate. Dnorm is the nominal
integration time of the voltage noise threshold VTH. For all the tests
in this study, STDuni = 5 per cent and STDuni = 2 per cent have
been used for IP and DC data, respectively, with VTH = 0.1 mV
(for Dnorm = 0.01 s) and Nstacks = 3, which resemble the noise ex-
pected in the field when neglecting background drift as justified by
Gazoty et al. (2013). Fig. 1 shows the standard deviations derived
from the noise model on two representative IP decays.
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Table 1. Electrode spacing of the 20 quadrupoles used for generation of synthetic vertical soundings.

Quadrupole 1 2 3 4 5 6 7 8 9 10

|AB| (m) 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5
|MN| (m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Quadrupole 11 12 13 14 15 16 17 18 19 20

|AB| (m) 57.5 72.5 92.5 117.5 147.5 192.5 240 305 390 500
|MN| (m) 2.5 2.5 2.5 15 15 15 15 65 65 65
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Figure 1. Forward response and data uncertainty (two standard deviations)
of a Cole–Cole model with the parameters: ρ = 100 �m, m0 = 200 mV,
τ = 1 s and C = 0.6. The data uncertainty is shown for two values of the
geometrical factor K, that is, (a) K = 440 m and (b) K = 3000 m, which
corresponds to quadrupoles 7 and 20 in Table 1, respectively.

2.2 Cole–Cole parametrization

The spectral content of the IP data is parametrized in terms of the
Cole–Cole model (Cole & Cole 1941; Pelton et al. 1978). Despite
being phenomenological, the model is often applied to field and
laboratory data measured in both TD (e.g. Yuval & Oldenburg 1997;
Hönig & Tezkan 2007; Fiandaca et al. 2012) and FD (e.g. Yoshioka
& Zhdanov 2005; Loke et al. 2006). The complex resistivity is given
as

ζ (ω) = ρ

[
1 − m0

(
1 − 1

1 + (iωτ )C

)]
, (4)

where ρ is the DC resistivity, m0 is the (model space) chargeability
as defined by Seigel (1959), τ is the relaxation time (or time con-
stant), C is the frequency exponent, ω is the angular frequency and
i is the imaginary unit. The 1-D model space can thus be defined as

m = {
log (ρi ) , log (m0i ) , log (τi ) , log (Ci ) , log

(
thk j

)}
;

i = 1 : Nlayers; j = 1 : Nlayers − 1, (5)

where thk represents the layer thickness.
The chargeability, which is given in mV V−1, describes the mag-

nitude of the polarization of the subsurface and thus depends on
the quantity of polarizable elements (Pelton et al. 1978). In this
way, knowledge of the chargeability helps to distinguish between
lithotypes, which otherwise have identical resistivity responses. The
dimensionless frequency exponent depends on the size distribution
of the polarizable elements with small values expected for inho-

mogeneous grain sizes (Luo & Zhang 1998). The range of the
frequency exponent is between 0.1 and 0.6 (e.g. Pelton et al. 1978;
Luo & Zhang 1998). The relaxation time is strongly controlled by
pore sizes and short relaxation times can be expected in materials
with small pore throats (e.g. Binley et al. 2005; Titov et al. 2010;
Revil et al. 2014). The relaxation time varies over a large interval
with typical values in the range 10−3−103 (e.g. Revil et al. 2014).

Due to the logarithmic transform applied on data and model pa-
rameters (eqs 1 and 5), the uncertainties on the model parameters are
given as standard deviation factors (STDFs), where the 68 per cent
confidence interval for the parameter p lies between

p

STDF
< p < p · STDF. (6)

A perfect resolution will give a STDF = 1. Using the terminology
of Auken et al. (2005), a STDF < 1.2 is a well-resolved parameter,
1.2 < STDF < 1.5 is a moderately resolved parameter, 1.5 < STDF
< 2 is a poorly resolved parameter and an STDF > 2 is an unresolved
parameter.

2.3 Forward modelling

Given a layered model of the subsurface, the TDIP forward re-
sponse is computed using the algorithm described by Fiandaca
et al. (2012). The algorithm computes the TD forward response
via a Hankel transform of the FD response. Once a complex re-
sistivity, σ ∗, is defined in each layer in terms of the Cole–Cole
parameters, it is possible to compute the system transfer function,
K ∗(σ ∗(ω, m), q), were q is an arbitrary quadrupole. The TD step
response can then be computed from the Fourier transform of the
kernel, K ∗(σ ∗(ω, m), q)/ iω, i being the imaginary unit. The trans-
form is implemented in terms of the Hankel transform described by
Johansen & Sørensen (1979). Fiandaca et al. (2012) also address the
issue of modelling the effects of the transmitted current waveform,
stacking of measurements and the effect of low-pass filters in the
receiver instrument, which are all accounted for in the algorithm.
However, the code does not take into account inductive effects from
the ground nor from inductance among cables.

2.4 MCMC inversion

The probabilistic formulation of inversion problems is widely
treated in connection with geophysical problems (e.g. Tarantola
& Valette 1982; Mosegaard & Tarantola 1995; Malinverno 2002;
Tarantola 2005). The posterior probability distribution, Ppost, of the
model m can be computed as (Tarantola 2005)

Ppost (m) = k Pprior (m) Plike (dobs|m) , (7)

where Pprior(m) is the prior probability distribution given by the
prior information and Plike(m) is the likelihood function describing
the degree of fit between the observed data, dobs, and the forward
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response, g(m). k is a normalization constant. The objective of the
inversion is to describe the posterior probability distribution. With
a MCMC inversion scheme, it is possible to sample the posterior
probability distribution without knowing the exact prior probability
distribution.

We apply a Metropolis–Hastings sampling algorithm (Metropolis
et al. 1953; Hastings 1970), where a random walk samples models
from the model space based on likelihood. The algorithm takes two
steps. (1) A model is proposed. (2) The model is either accepted
or rejected based on the likelihood of the model compared to the
likelihood of the last accepted model. In this way, the model mi only
depends on mi−1 and none of the previous accepted models. The
steps are repeated 5000–5000 000 times depending on the complex-
ity of the model and a sequence of models is sampled (a Markov
Chain of models). As models with high probability will be sampled
more frequently, this chain will converge toward the posterior prob-
ability distribution and thus map the probability density for each
Cole–Cole parameter.

The implementation of the 1-D TDIP MCMC inversion algorithm
is described in the Appendix.

3 R E S U LT S

In the following, the MCMC inversion results of synthetic and field
data are shown. All the synthetic tests have been carried out with
both 50 per cent and 100 per cent duty cycles, always with equiv-

alent results. For this reason, only the results obtained with the
100 per cent duty cycle are explicitly presented.

3.1 Effect of acquisition range

We show here how crucial the acquisition range is for resolving
the spectral Cole–Cole parameters from TDIP data. A homogenous
half-space model is inverted with the MCMC algorithm using dif-
ferent acquisition ranges. The model is given with the following
parameters: ρ = 100 �m, m0 = 200 mV V−1, τ = 1 s and C = 0.6.

Fig. 2 shows the resulting marginal posterior probability distribu-
tions of the four Cole–Cole parameters for three different acquisi-
tion ranges. In Fig. 2(a), an acquisition range of one decade running
from 100 to 1000 ms (seven time gates) is applied. This acquisi-
tion range does not resolve the spectral Cole–Cole parameters. The
small amount of data points results in a non-uniqueness, where the
marginal distribution of ρ has more than one maximum. Further-
more, the distribution of m0 and τ are strongly skewed and the
correlations between the parameters are found to be strongly non-
linear, which also gives rise to the poor resolution where STDF > 1.5
for the IP parameters. The STDFs are all listed together with the
distributions in the figure.

By increasing the acquisition range to two decades (10–1000 ms,
14 time gates), the parameters become better resolved (Fig. 2b).
However, the marginal posterior probability distributions are still
wide and slightly skewed and the IP parameters are moderately
resolved or unresolved.

(a)

(b)

(c)

Figure 2. Marginal posterior probability distributions for the four Cole–Cole parameters determined from inversion with an MCMC inversion algorithm.
Three different acquisition ranges have been applied for computation of synthetic data: (a) 100–1000 ms, (b) 10–1000 ms and (c) 2.5–4000 ms. The decays
have been divided into seven time gates per decade. The true model values (ρ = 100 �m, m0 = 200 mV V−1, τ = 1 s and C = 0.6) are shown in red. The
standard deviation factors (STDFs) of each marginal distribution are shown together with each distribution. If a distribution has not converged, the STDF is
put to 3 in the figure. Note that the plots of τ are scaled wider than the other Cole–Cole parameters.
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Figure 3. MCMC inversion results for the model with the Cole–Cole parameters: ρ = 100 �m, m0 = 200 mV V−1, τ = 1 s and C = 0.6. The diagonal plots
show the marginal posterior probability distributions of the four Cole–Cole parameters and the off-diagonal plots show the cross-correlations of the parameters
(with zoom-in in the insets). The red colour indicates the true model value.

Acquisition ranges of three decades (1–1000 ms, 21 time gates),
four decades (1–10 000 ms, 28 time gates) and combinations in
between have been examined as well. We see that as the acquisi-
tion range increases, the resolution of the Cole–Cole parameters
increases as well. The skewness almost disappears and the marginal
posterior probability distributions become bell-shaped, when the
acquisition range gets above three decades.

In the following, the acquisition range 2.5–4000 ms (22 time
gates) is applied. A delay of 2.5 ms is sufficient for retrieving good
IP data in the field when harmonic de-noising is performed (Olsson
et al. 2016), and by measuring up to 4000 ms a bell-shaped prob-
ability distribution is obtained. With the model shown in Fig. 2(c),
all the Cole–Cole parameters are well resolved (STDF< 1.2) for
this acquisition range.

3.2 Parameter values, resolution and correlations

Fig. 3 shows MCMC inversion results of the model described pre-
viously (ρ = 100 �m, m0 = 200 mV V−1, τ = 1 s and C = 0.6),
which was inverted with the 2.5–4000 ms acquisition range. Here,
the diagonal plots show the histograms of the marginal posterior
probability distributions of the Cole–Cole parameters and the off-
diagonal plots show the cross-correlations between the parameters.

The distributions are all approximately bell-shaped with a max-
imum at the true model value. The cross-plots show that the DC
resistivity is roughly uncorrelated to the IP parameters. There is
a strong negative correlation between m0 and C. Minor correla-
tions are also visible between m0 and τ and between τ and C. The
observed correlations are all linear in log-space. However, if the
resolution of the model is decreased, e.g. if the signal-to-noise level
is decreased, the linearity slowly breaks down.

The negative m0 − C correlation can be explained by studying
the influence of the IP parameter values on the shape of the TD and
FD IP forward response. Fig. 4(a) shows that increasing/decreasing
m0 shifts the TD response up/down relative to the chargeability.
The same is the case when C is increasing/decreasing. In FD,
the maximum phase is increased/decreased when m0 or C is in-
creased/decreased (Fig. 4b).

In Fig. 5, the value of the frequency exponent, C, is decreased
from C = 0.6 to 0.3. The FD responses in Fig 4(a) show that
when C is decreased, the phase peak will become less pronounce
and it will therefore be more difficult to determine the peak fre-
quency and thereby also more difficult to resolve the value of τ .
In Fig. 5, we see that the reduction in C decreases the resolu-
tion of all the IP parameters. A secondary maximum appears in
ρ, m0, and C. A secondary maximum can ‘trap’ a linearized in-
version. However, in the linearized inversion approach applied for
this study (see Appendix), boundary values are given to all the
parameters and for C the minimum value is 0.1. In this way, the
iterative procedure of the linearized inversion does not reach this
secondary maximum. Secondary maxima have also been observed
in other poorly resolved models in association with very low C
values.

The strong linear m0–C correlation observed in Fig. 3 is also
present in Fig. 5 and has been observed in all tested models. The
correlations between the Cole–Cole parameters are no longer linear
when C = 0.3 (Fig. 5). The correlations, except the m0–C, are found
to change sign and magnitude from model to model.

To test the limit of parameter resolution, a number of models
were inverted with different values for C. The STDFs were com-
puted for each Cole–Cole parameter for each inversion and plotted
in Fig. 6(a). The figure illustrates that the parameter resolution de-
creases as C is decreased. Equivalent sensitivity analyses have been
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Figure 4. Variations of (a) time-domain and (b) frequency-domain forward
responses with variations of the model parameters m0 and C. The reference
model (black line) has the model parameters: ρ = 100 �m, m0 = 200 mV
V−1, τ = 1 s and C = 0.3.

Moderately resolved 

Figure 6. (a) Standard deviation factors (STDFs) of the four Cole–Cole
parameters of the model: ρ = 100 �m, m0 = 200 mV V−1, τ = 1 s and
C = [0.1–0.6]. (b) STDFs of the four Cole–Cole parameters of the model:
ρ = 100 �m, m0 = 200 mV V−1, τ = [10−3–101] s and C = 0.6. If an
STDF is above 3, it is put to 3 in the figure.

Figure 5. MCMC inversion results for the model with the Cole–Cole parameters: ρ = 100 �m, m0 = 200 mV V−1, τ = 1 s and C = 0.3. The diagonal plots
show the marginal posterior probability distribution of the four Cole–Cole parameters and the off-diagonal plots are the cross-correlations of the parameters
(with zoom-in in the insets). The red colour indicates the true model value.
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(d) (e) (f)

Figure 7. MCMC inversion results of a model previous studied by Ghorbani et al. (2007): m0 = 200 mV V−1, τ = 0.01 s and C = 0.25. Subfigures (a)–(c)
show cross-plots of the IP parameters accepted by the MCMC algorithm (with zoom-in in the insets) and the true model (red crosses). The layout of the plots
is comparable with the one used by Ghorbani et al. (2007). Subfigures (d)–(f) show the marginal posterior probability distributions.

carried out for changing values of ρ, m0 and τ . When ρ is decreased,
the resolution of all the parameters decrease due to the decreased
signal-to-noise ratio. Similarly, when m0 is decreased, the IP decay
is parallel shifted downwards, which again means that the signal-to-
noise ratio is decreased. Furthermore, it was found that the parame-
ters are best resolved when τ is in the range 0.01–1 s, which means
that the best resolution is gained when τ is inside the acquisition
range (Fig. 6b).

3.3 Comparison with previous publication

Ghorbani et al. (2007) have previously applied a Bayesian approach
to invert TDIP data. From studies of homogenous half-spaces, they
found it difficult to resolve the spectral Cole–Cole parameters from
synthetic data. Their resulting posterior probability distributions
showed multiple maxima and strong non-linear correlations. Based
on the observed non-linearity, they concluded that it is almost im-
possible to resolve the spectral Cole–Cole parameters from TDIP
data with a linearized inversion approach.

In this study, we have tried to replicate the results from Ghorbani
et al. (2007), but without success. The same settings have been
applied for the forward computation: 50 per cent duty cycle, two-
decade acquisition range (20–2000 ms) with a total of 20 gates and
DC resistivity independent on the IP parameters.

The model shown in Fig. 7 has the following parameters: m0 =
200 mV V−1, τ = 0.01 s and C = 0.25. In Figs 7(a)–(c), the
Cole–Cole parameters are plotted against each other with the same
layout as in Ghorbani et al. (2007), allowing for a direct compar-
ison. In Figs 7(d)–(f), the marginal posterior probability distribu-
tions are shown. Contrary to results of Ghorbani et al. (2007), the
posterior probability has only one maximum and the marginal dis-
tributions are approximately bell-shaped in the logarithmic space,

which means that the forward problem is linearizable (Mosegaard
& Tarantola 2002). The same can be concluded for all the remaining
models studied in Ghorbani et al. (2007) except for models were τ

is far from the acquisition range. In these models, the distributions
can show a skewness.

3.4 Three-layer model

The resolution and the correlation of the Cole–Cole parameters have
also been studied for layered models. Here, we show the results of
a three-layer model, which is characterized by a highly chargeable
middle layer. The true model parameters are: ρ = [20, 20, 20] �m,
m0 = [5, 300, 5] mV V−1, τ = [0.08, 8, 1] s, C = [0.6, 0.6, 0.6] and
thk = [7, 7, −] m.

The MCMC inversion results are shown in Fig. 8 and the STDFs
are listed in Table 2. In the first two layers, all the Cole–Cole pa-
rameters, including the layer thicknesses, are well to moderately
resolved, and the maxima of the MCMC posterior probability dis-
tributions (yellow dashed line) agree very well with the true model
(red line). In the bottom layer, m0 and τ are unresolved. In gen-
eral, it is observed that the resolution decreases significantly below
chargeable layers.

The correlations between the Cole–Cole parameters in the three-
layer model (Fig. 8) are shown in the correlation matrix in Fig. 9. The
degree of correlation is given as Persons’s correlation coefficient
(Upton & Cook 2008):

PCCx,y = cov (x, y)

STDx STDy
. (8)

This is a simple normalization of the covariance of the model
parameters x and y. PCC = 1 is a total positive correlation, PCC = 0
is no correlation and PCC = −1 is a total negative correlation
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Figure 8. MCMC inversion results of a three-layer model: ρ = [20, 20, 20] �m, m0 = [5, 300, 5] mV V−1, τ = [0.08, 8, 1] s, C = [0.6, 0.6, 0.6] and thk =
[7, 7, –] m. The density of the black lines illustrates the probability of the models. The true model is shown with the red lines and the most probable model is
shown with the dashed yellow line.

Table 2. Standard deviation factors (STDFs) describing the uncertainty of the Cole–Cole parameters of the three-layer model presented in Fig. 8.

Layer STDF (ρ) STDF (mo) STDF (τ ) STDF (C) STDF (thk)

MCMC Lin. MCMC Lin. MCMC Lin. MCMC Lin. MCMC Lin.

1 1.01 1.01 1.08 1.07 1.26 1.21 1.07 1.06 1.02 1.02
2 1.03 1.03 1.07 1.06 1.19 1.18 1.03 1.03 1.06 1.06
3 1.01 1.01 2.00 1.20 3.00 1.25 1.81 1.19

Notes: The STDFs are computed from the mean of the marginal posterior probability distribution found with the MCMC inversion approach (MCMC). The
STDFs determined from a linearized analysis of the true model (Lin.) are listed as well.

(anticorrelation). The correlation matrix shows the same strong
negative correlation between m0 and C in all three layers as was
observed for homogenous half-spaces (Figs 3 and 5). Other strong
correlations can be observed within each individual layer.

Figure 9. Persons’s correlation coefficients for the model presented in
Fig. 8.

The results of a linearized uncertainty analysis of the true model
are listed together with the uncertainties computed from the MCMC
in Table 2. The two methods agree very well in the first two layers.
In the bottom layer, the MCMC method finds the IP parameters to
be poorly resolved or unresolved, and the linearized approach finds
the parameters well resolved. The explanation of this inconsistency
is the presence of a secondary maximum found for m0 in layer three
as shown clearly by the marginal posterior probability in Fig. 10.
The MCMC approach sees both maxima and therefore computes a
higher STDF than the linearized approach, which only sees one of
the maxima and computes a local uncertainty.

3.5 Field example

Today, TDIP field data are often acquired in 2-D or 3-D. However,
due to the time required to carry out a MCMC inversion of full-decay
2-D/3-D IP data, it is not realistic to apply the MCMC approach
as a standard inversion tool for such surveys. Here, we instead
present MCMC inversion results of a 1-D TDIP sounding in order
to investigate the uncertainty and the correlation of the Cole–Cole
parameters retrieved from field measurements. These results will
also be valid for 2-D and 3-D inversions in general.

The 1-D sounding is extracted from a larger 3-D data set,
which was acquired in Grindsted, Denmark, in connection with
an environmental survey carried out by the project GEOCON
(www.geocon.env.dtu.dk). TD DCIP data were collected with a
100 per cent duty cycle and a current on time of 4000 ms. A to-
tal of 21 quadrupoles were used with electrode spacing in the
range: |AB| = 18–119 m and |MN| = 2–16 m. In the data
processing, one restively data point was silenced along with the
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Figure 10. Marginal posterior probability distribution of the chargeability,
m0, in layer three of the model shown in Fig. 8. The distribution has two
maxima: a global maximum close to the true model (red line) and a secondary
maximum at a higher chargeability.

first gates of the IP decays due to coupling effects. The field data are
shown in Fig. 11. The data were inverted with a three-layer model
and the inversion was started from a homogenous half-space model
(ρ = 200 �m, m0 = 10 mV V−1, τ = 0.1 s and C = 0.5).

The MCMC inversion results are shown in Fig. 12 together with
a log of lithotypes determined from a borehole (DGU 114.2507)
drilled close to the sounding. The uncertainties of the model pa-
rameters are listed in Table 3 and the correlation matrix is shown in
Fig. 13.

The posterior probability distribution of the Cole–Cole parame-
ters shows a well-resolved top layer with a thickness and resistivity
of approximately 9 m and 90 �m, which fit well with the sand layer
from the borehole. In the second layer, the restively is low (63 �m)
and the chargeability is high (501 mV V−1), which is expected for
lignite and for silty sand layers. The thickness and the restively of
the second layer are strongly correlated (Fig. 13), which indicates
a minor equivalence problem (Fitterman et al. 1988). However, the
Cole–Cole parameters of the layer are all resolved except for the
time constant (Table 3). The low value of C in the second layer can
be explained by the strong negative m0 − C correlation (Fig. 13).
The third layer is very poorly resolved, because it is below the focus
depth of the survey (Fig. 11).

We have compared the MCMC inversion results to results of
the gradient-based linearized inversion approach described in the
Appendix. The linearized results (Fig. 11, blue line) agree well with
the MCMC probability maximum (yellow dashed line) in the top
layer (Table 3). In the second layer, the two inversions find different

values for m0 and C , which could be due to the correlation between
the two parameters, but the values for ρ and for τ agree very well.

4 D I S C U S S I O N

In this study, we have used the advantages of the MCMC inversion
approach to obtain a non-linearized sensitive analysis of spectral
Cole–Cole parameters retrieved from TDIP data. The method has
been applied to show to what degree the posterior probability distri-
butions of the Cole–Cole parameters are bell-shaped and unimodal,
that is, to what degree the inversion problem is linearizeable as
discussed by Mosegaard & Tarantola (2002) and Tarantola (2005).
Compared to gradient-based inversion methods, the MCMC ap-
proach has an advantage when it comes to quantifying parameter
uncertainties and correlation as shown with the results. Further-
more, it was found that the MCMC approach is largely insensitivity
to the start model of the inversion as long as a satisfying number of
iterations are used. This is in contrast to gradient-based inversions
where the stating model often has a large influence on the model
result.

However, this study does not suggest MCMC as a general scheme
for inversion of 2-D/3-D IP field or laboratory data. Inversion of a
2-D data set can be done in a few hours using classic gradient-
based inversion, but will takes days using the MCMC approach.
Furthermore, the results of this study indicate that it is justified to
apply a linearization of the TDIP inversion problem and that the
spectral Cole–Cole parameters can be retrieved using a gradient-
based inversion approach as long as a proper acquisition time has
been used in the data acquisition.

5 C O N C LU S I O N S

A 1-D MCMC inversion algorithm has been implemented to eval-
uate the spectral Cole–Cole parameters retrieved from TDIP data.
Furthermore, the effect of acquisition time and parameter values
on model resolution has been studied. The MCMC algorithm was
applied to both synthetic data and field data and the results show
that it is possible to resolve the Cole–Cole parameters from TDIP
data.

It was found that the acquisition range of the IP signal is a
very important factor controlling the resolution of the Cole–Cole
parameters. Between two and three decades in time are necessary
for resolving the IP parameters. With only two decades or less,

Figure 11. (a) Apparent resistivity data from a 1-D sounding acquired in Grindsted, Denmark. (b) Examples of measured IP decays corresponding to the
resistivity measurements marked with circles in (a).
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Figure 12. Results of an MCMC inversion with three layers of a 1-D sounding from Grindsted in Denmark (data shown in Fig. 11). The density of the black
lines shows the probability distribution of the Cole–Cole parameters and the yellow dashed lines show their maximum. The blue lines are the result of a
linearized inversion of the data. A log of lithotypes determined from a borehole drilling close to the sounding is show to the right. Note that the plot of τ is
scaled wider to capture the entire parameter range.

Table 3. The parameter values and the standard deviation factors (STDFs) of the three-layer inversion result of field data from Grindsted, Denmark.

(a) Resulting Cole–Cole parameter values
Layer ρ (�m) m0 (mV V) τ (s) C (−) thk (m)

MCMC Lin. MCMC Lin. MCMC Lin. MCMC Lin. MCMC Lin.

1 90.8 90.8 69.0 36.5 1.0 × 10−3 2.1 × 10−2 0.33 0.43 9.1 8.3
2 63.1 55.2 501.2 137.5 3.6 × 10−1 3.6 × 10−1 0.83 0.31 9.5 13.8
3 114.8 130.6 – 18.3 – 1.3 × 10−1 – 0.45

(b) Uncertainty analysis
Layer STDF (ρ) STDF (m0) STDF (τ ) STDF (C) STDF (thk)

MCMC Lin. MCMC Lin. MCMC Lin. MCMC Lin. MCMC Lin.

1 1.00 1.01 1.15 1.19 1.28 1.67 1.14 1.12 1.07 1.15
2 1.05 1.22 1.11 1.94 – – 1.37 1.98 1.30 1.75
3 1.06 1.30 – – – – – –

Notes: The results are listed for an MCMC inversion (MCMC) and a linearized gradient-based inversion (Lin.) of the data. Non-values indicate unresolved
parameters.

the parameters are poorly resolved and the linearity of the problem
breaks down. This is seen as non-linear correlations between the
model parameters and as posterior probability distributions with
more than one maximum.

The resolution of the Cole–Cole parameters also depends strongly
on the value of the parameters themselves. The inversion linearity
breaks down also when the frequency exponent, C, approaches zero.
As the chargeability, m0, and/or the resistivity, ρ, decrease, the
noise increases making it more difficult to resolve the parameters.
Furthermore, the time constant, τ , must be within the acquisition
range for being well resolved.

The posterior probability distributions and the parameter cor-
relations were studied for homogenous half-spaces and layered
models. For resolved models, the distributions are approximately
bell-shaped with a single maximum at the true model value. In gen-
eral, this means that the problem can be linearized. Results from

a linearized inversion approach were compared to the results from
the MCMC inversion. The comparison showed that, for resolved
models, the linearized inversion finds the model with the highest
probability. It also showed that generally the linearized uncertainty
analysis approximates the MCMC uncertainty well, as long as no
multiple maxima are present in the MCMC results.
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Figure 13. Persons’s correlation coefficients of the Cole–Cole model pa-
rameters determined from an MCMC inversion of TDIP field data (data
shown in Fig. 11).

Research Foundation) and SBUF (The Development Fund of the
Swedish Construction Industry) within the Geoinfra-TRUST frame-
work (Transparent Underground Structure, www.trust-geoinfra.se,
last accessed 1 September 2017).

R E F E R E N C E S

Auken, E., Christiansen, A.V., Jacobsen, B.H., Foged, N. & Sørensen, K.I.,
2005. Piecewise 1D laterally constrained inversion of resistivity data,
Geophys. Prospect., 53, 497–506.

Binley, A., Slater, L.D., Fukes, M. & Cassiani, G., 2005. Relationship be-
tween spectral induced polarization and hydraulic properties of saturated
and unsaturated sandstone, Water Resour. Res., 41, 1–13.

Chen, J., Kemna, A. & Hubbard, S.S., 2008. A comparison between Gauss-
Newton and Markov-chain Monte Carlo-based methods for inverting
spectral induced-polarization data for Cole-Cole parameters, Geophysics,
73, F247–F259.

Chongo, M., Christiansen, A.V., Fiandaca, G., Nyambe, I.A., Larsen, F.
& Bauer-Gottwein, P., 2015. Mapping localised freshwater anomalies in
the brackish paleo-lake sediments of the Machile-Zambezi Basin with
transient electromagnetic sounding, geoelectrical imaging and induced
polarisation, J. appl. Geophys., 2015, 81–92.

Cole, K.S. & Cole, R.H., 1941. Dispersion and absorption in dielectrics, J.
Chem. Phys., 9, 341–351.

Doetsch, J., Fiandaca, G., Auken, E., Christiansen, A.V., Cahill, A.G. &
Jacobsen, J.D., 2015a. Field scale time-domain spectral induced polariza-
tion monitoring of geochemical changes induced by injected CO2 in a
shallow aquifer, Geophysics, 80, WA113–WA126.

Doetsch, J., Ingemann-Nielsen, T., Christiansen, A.V., Fiandaca, G., Auken,
E. & Elberling, B., 2015b. Direct current (DC) resistivity and induced
polarization (IP) monitoring of active layer dynamics at high temporal
resolution, Cold Reg. Sci. Technol., 119, 16–28.

Fiandaca, G., Auken, E., Gazoty, A. & Christiansen, A.V., 2012. Time-
domain induced polarization: full-decay forward modeling and 1D lat-

erally constrained inversion of Cole-Cole parameters, Geophysics, 77,
E213–E225.

Fiandaca, G., Ramm, J., Binley, A., Gazoty, A., Christiansen, A.V. & Auken,
E., 2013. Resolving spectral information from time domain induced
polarization data through 2-D inversion, Geophys. J. Int., 192, 631–
646.

Fiandaca, G., Doetsch, J., Vignoli, G. & Auken, E., 2015. Generalized
focusing of time-lapse changes with applications to direct current and
time-domain induced polarization inversions, Geophys. J. Int., 203, 1101–
1112.

Fitterman, D.V., Meekes, J.A.C. & Ritsema, I.L., 1988. Equivalence be-
havior of three electrical sounding methods as applied to hydrogeological
problems, in 50th Annual meeting of EAEG, The Hague, The Netherlands.

Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E. & Christiansen, A.V.,
2012a. Mapping of landfills using time-domain spectral induced po-
larization data: the Eskelund case study, Near Surf. Geophys., 10,
575–586.

Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., Christiansen, A.V. &
Pedersen, J.K., 2012b. Application of time domain induced polarization
to the mapping of lithotypes in a landfill site, Hydrol. Earth Syst. Sci., 16,
1793–1804.

Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E. & Christiansen, A.V., 2013.
Data repeatability and acquisition techniques for Time-Domain spectral
Induced Polarization, Near Surf. Geophys., 11, 391–406.

Gelman, A., Roberts, G.O. & Gilks, W.R., 1996. Efficient Metropolis jump-
ing rules, Bayesian statistics, 5, 599-608, 42.

Ghorbani, A., Camerlynck, C., Florsch, N., Cosenza, P. & Revil, A.,
2007. Bayesian inference of the Cole-Cole parameters from time- and
frequency-domain induced polarization, Geophys. Prospect., 55, 589–
605.

Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains
and their applications, Biometrika, 57, 97–109.

Hönig, M. & Tezkan, B., 2007. 1D and 2D Cole-Cole-inversion of time-
domain induced-polarization data, Geophys. Prospect., 55, 117–133.
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A P P E N D I X : I M P L E M E N TAT I O N S

A1 Gradient-based inversion and uncertainties

In this study, we have compared the results of a gradient-based
linearized inversion approach to results of a MCMC inversion. Fur-
thermore, the linearized approach has been integrated in the MCMC
algorithm to determine a start model and scale the model pertur-
bation as described below. The gradient-based inversion scheme
follows Fiandaca et al. (2012), where a first term Taylor expansion
is used for linearization of the non-linear forward problem. A lin-

Table A1. Implementation of 1-D MCMC inversion algorithm.

1: Set Nite, kstep

2: Run linearized inversion to determine starting model, mstart, and
the covariance matrix, Cest(mstart)

3: mcur = mstart

4: for i = 1, Nite do
5: Compute a new model proposal:

mnew = mcur + Lnkstep

6: Compute acceptance probability:

Pacc = Plike(mnew)
Plike(mcur)

7: Draw random number (α) from a uniform distribution [0:1]
8: if Pacc > α

9: mcur = mnew

10: else
11: mcur = mcur

12: end if
13: end for

earized uncertainty analyses can then be computed based on the
posterior covariance matrix (Tarantola & Valette 1982), which is
given by

Cest = (
GT CobsG

)−1
, (A1)

where G is the Jacobi matrix and Cobs is the data covariance ma-
trix holding the data uncertainties. Under the assumption that the
model parameters are normally distributed in the logarithmic space,
the standard deviation can be obtained by taking the square root
of the diagonal of Cest. Due to the logarithmic transform applied on
the parameter, a STDF of the i th parameter can then be computed
as

STDF (mi ) = exp
(√

Cest(i,i)

)
. (A2)

A2 MCMC inversion

The algorithm presented in Table A1 describes the implementa-
tion of the MCMC scheme used for inversion of TDIP data. The
algorithm is based on a Metropolis–Hastings sampling algorithm
(Metropolis et al. 1953; Hastings 1970), which applies a random
walk to sample models to a Markov Chain, which converge toward
the posterior probability distribution of the model space.

Starting model

With the MCMC sampling method, it is difficult to determine when
a sampling has converged and when all local probability maxima
have been sampled. To avoid that a walker is trapped in a local max-
imum, multiple walkers can be started independently from different
location in the model space. For the models studied here, we found
that all walkers found the same maxima as long as a sufficient num-
ber of iterations (Nite) was used. Furthermore, the step length (kstep)
constant should be chosen so the acceptance rate of models is ap-
proximately 30 per cent for homogenous half-space models, which
ensures the most effective sampling (Gelman et al. 1996; Roberts
et al. 1997). For layered models, the acceptance rate should be
40 per cent–50 per cent. We apply walkers, which are started from
the resulting model of a gradient-based inversion (Table A1, steps
2 and 3). In this way, the walker will start in a local maximum and
the burn-in phase is minimized.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/211/3/1341/4091430 by Aarhus U

niversity Library user on 28 Septem
ber 2018

http://hgg.au.dk/fileadmin/www.gfs.au.dk/DIV/Abstracts_from_Poster_Session_B.pdf
http://hgg.au.dk/fileadmin/www.gfs.au.dk/DIV/Abstracts_from_Poster_Session_B.pdf
http://www.earthdoc.org/publication/publicationdetails/?publication=77751
http://www.earthdoc.org/publication/publicationdetails/?publication=77751


MCMC analysis of TDIP data 1353

Model perturbation

For each iteration, a new model (mnew) is proposed by the algo-
rithm to be the next model in the Markov Chain (Table A1, step
5). The new model is computed by adding a model perturbation to
the current model (mcur). The perturbation is given by L, which is
a lower triangular matrix defined as the Cholesky decomposition
of Cest (determined in step 2 in Table A1) multiplied by a vector
of random numbers drawn from a Gaussian distribution (n) and
kstep. By applying this realization of Cest, the length of the model
perturbation is adapted for each model parameter individually ac-
cording to their interval range and uncertainty. The algorithm then
takes larger steps for poorly defined parameters and can thus search
the subspace faster. It was found that the application of this scaling
lets the algorithm converge over 200 times faster than a standard
Gaussian proposer.

Acceptance probability

An acceptance probability, Pacc, of the new model determines
whether the model is accepted to the Markov Chain or rejected
(Table A1, steps 6–12). Because we apply a symmetric proposal
distribution, where the probability of going from mcur to mnew

is the same as going from mnew to mcur, the acceptance prob-

ability can be computed as given by Mosegaard & Tarantola
(1995):

Pacc = min

[
1,

Plike (mnew)

Plike (mcur)

]
, (A3)

where, if the uncertainties of the model parameters are assumed to
be Gaussian, the likelihood can be computed as given by Tarantola
(2005):

Plike (d|m, I )= K ·exp

[
−1

2
( g (m)−dobs)

T Cobs
−1 ( g (m)−dobs)

]
,

(A4)

where g(m) is the forward response of the model m and K is a
normalization constant. How this is implemented can be seen in
steps 6–12 in Table A1.

No priors have been applied in the inversion except for hard
boundaries set on the model space geometry to confine the
random walk. This can be considered as a uniform distribu-
tion prior, that is, the prior probability is the same for all
models within the boundaries, why these can be neglected in
the probability calculations. The boundaries applied are: ρ =
0.1 − 20000 �m, m0 = 0.1–1000 mV V−1, τ = 10−5–105 s, C =
0.05–1 and thk = 0.1–100 m.
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