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ABSTRACT

Airborne time-domain electromagnetic surveys produce
extremely large data sets with thousands of line kilometers of data
and millions of possible models to explain the data. Inversion of
such data sets to obtain the resistivity structures of the subsurface
is computationally intensive and involves calculation of a signifi-
cant number of forward and derivative responses for solving the
least-squares inverse problem. The flight altitude of the airborne
system needs to be included in the modeling, which adds further
complexity. We propose to integrate neural networks in a damped
iterative least-squares inversion framework to expedite the inver-
sion process. We train two separate neural networks to predict the
forward responses and partial derivatives independently for a
broad range of resistivity structures and flight altitudes. Data in-
version is not only used for producing the final subsurface models
but also used during data processing, or to produce intermediate

results during a survey. With these purposes in mind, we provide
three inversion schemes with a tunable balance between computa-
tional time and modeling accuracy: (1) numerical forward
responses used initially in combination with neural network
derivatives, and the derivatives switched to a numerical solution
in final iterations, (2) numerical forward responses in combina-
tion with neural network derivatives used throughout the
inversion, and (3) only neural network forward responses and
derivatives used in inversion. Experiments on field data find that
we improve inversion speed without any loss in modeling accu-
racy with our first approach, whereas the second scheme gives a
significant speedup at the cost of minor and often acceptable de-
viations in the inversion results from the conventional nonlinear
inversion. The last approach is the fastest and captures the overall
resistivity structures quite well. Therefore, depending on the mod-
eling accuracy, inversion speedup factors of up to 50 are realized
by using the proposed schemes.

INTRODUCTION

Airborne electromagnetic (AEM)methods are extensively deployed
for the characterization of the resistivity structures of the subsurface
and are used for many applications including mineral exploration
(Guo et al., 2020), groundwater investigation (Chandra et al., 2019),
saltwater intrusion (Pedersen et al., 2017; Gottschalk et al., 2020), and
geothermal studies (Foley et al., 2020). For a more thorough introduc-
tion to AEM and its applications, refer to Auken et al. (2017) and Yin
et al. (2015). In airborne time-domain electromagnetics (ATEMs), a

primary electromagnetic field is generated at a flight altitude of up to
100 m using a transmitter coil, which is attached to an airplane or
carried as a sling load by a helicopter. The primary field generates
eddy currents in the ground and the decay of the associated magnetic
field is recorded as a voltage change in the receiver coil. The electrical
resistivity structure is then determined through a nonlinear optimiza-
tion process referred to as inversion. A simple inverse problem for the
transient electromagnetic (TEM) method can be expressed as

dobs ¼ FðmÞ; (1)

Manuscript received by the Editor 20 May 2021; revised manuscript received 17 February 2022; published ahead of production 15 March 2022; published
online 4 May 2022.

1Aarhus University, Department of Geoscience, HydroGeophysics Group (HGG), Aarhus, Denmark and Aarhus University, Department of Electrical and
Computer Engineering, Aarhus, Denmark. E-mail: rizwanasif@geo.au.dk (corresponding author).

2Aarhus University, Department of Geoscience, HydroGeophysics Group (HGG), Aarhus, Denmark. E-mail: nikolaj.foged@geo.au.dk; pradip.maurya@
geo.au.dk; denys.grombacher@geo.au.dk; anders.vest@geo.au.dk; esben.auken@geo.au.dk.

3Aarhus University, Department of Electrical and Computer Engineering, Aarhus, Denmark. E-mail: jjl@ece.au.dk.
© 2022 Society of Exploration Geophysicists. All rights reserved.

E177

GEOPHYSICS, VOL. 87, NO. 4 (JULY-AUGUST 2022); P. E177–E187, 10 FIGS., 1 TABLE.
10.1190/GEO2021-0335.1

D
ow

nl
oa

de
d 

11
/0

7/
22

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
33

5.
1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2021-0335.1&domain=pdf&date_stamp=2022-05-04


where dobs is the observed data and F is the forward operator and gives
the TEM forward response for the model parameters m based on the
physical laws of electromagnetic field propagation. For an AEM sur-
vey, dobs¼ðd1;d2;d3; :::;dMÞ and m¼ðlogðρ1Þ;logðρ2Þ;
logðρ3Þ; :::;logðρNÞ;h), where h is the flight altitude. The flight alti-
tude h is generally recorded, e.g., with a laser altimeter, and it is there-
fore known with an uncertainty for a given time instant. However, we
include it as an inversion parameter with the recorded value as a strong
prior because an erroneous measured altitude would introduce errors
in the shallow subsurface resistivity structures. Hence, if m and F are
known, calculating an AEM response is a forward problem. Con-
versely, if dobs and F are known, then obtainingm is a typical inverse
problem.
Large-scale AEM surveys are often inverted in a 1D formulation,

where each sounding curve is deterministically inverted to a 1D re-
sistivity model. Modern AEM surveys can hold hundreds of thou-
sands of soundings; hence, there are millions of model parameters.
Therefore, inversion of such large-scale surveys becomes computa-
tionally expensive, mainly due to the repeated calculation of data
using the forward model and the partial derivatives that are part
of the optimization process. To avoid this computationally intensive
process, artificial neural networks (ANNs) can be used to model
the relationship between the observed sounding data dobs and
model parameters m directly. ANNs, inspired by biological neural
networks, are computing systems that aim to loosely mimic the
processing characteristics of a human brain. Such networks learn
to perform tasks by considering examples, without needing to know
the physical model of the underlying problem (Chen et al., 2019).
ANNs are composed of multiple layers of perceptrons with the per-
ceptrons organized in interconnected layers of neurons commonly
known as hidden layers. The input layer gathers input parameters,
and the output layer predicts the output signals to which input pat-
terns may map. This is achieved by tuning the weights of the neu-
rons, e.g., by backpropagation (Rumelhart et al., 1985), until the
loss function is minimized. ANNs are effective in approximating
any arbitrary function to good accuracy (Heaton, 2008; Wu et al.,
2020) and have been thoroughly discussed in the literature (Liu
et al., 2017; Abiodun et al., 2018, 2019).
AEM data have been directly inverted using shallow feed-for-

ward neural networks (Zhu et al., 2012; Li et al., 2019, 2020b), deep
neural networks (Bai et al., 2020; Feng et al., 2020; Noh et al.,
2020), convolutional neural networks (Puzyrev and Swidinsky,
2021), and long short-term memory networks (Li et al., 2020a). Dif-
ferent from the above-mentioned approaches that are extremely fast
in producing inversion results, we focus on using neural networks to
calculate the forward model data and partial derivatives used in the
least-squares inversion framework for an AEM setup while taking
the flight altitude of the airborne system into account. This allows us
to build on well-established inversion algorithms (Auken et al.,
2015) and make use of hybrid framework (Christiansen et al.,
2016), which both benefit from the existing regularization schemes,
e.g., laterally constrained regularization (Auken and Christiansen,
2004; Auken et al., 2005) or spatially constrained regularization
(Viezzoli et al., 2008). The approach described here could of course
be implemented in any other existing inversion scheme that relies
on the computation of forward responses and derivatives.
Although neural networks can be sufficiently accurate in predict-

ing forward responses (Asif et al., 2021a; Bording et al., 2021), the
uncertainty is random. Therefore, the neural network forward data

predictions cannot be used directly to compute reliable derivatives
for layer resistivities. Hence, we train two independent neural net-
works to compute forward responses and partial derivatives, respec-
tively, and investigate the performance benefits on predicting ATEM
data from the SkyTEM system (Sørensen and Auken, 2004).
This work extends Asif et al. (2021b), who use neural networks

to calculate the partial derivatives for the inversion of ground-based
TEM data in a standard deterministic way. Here, we specifically
deal with the added complexities associated with the effects of flight
altitude in airborne systems where the flight altitude needs to be
considered during data modeling. The flight altitude also needs
to be taken into account during the inversion to deal with erroneous
measured altitudes. In addition, the vastly increased dynamic data
range due to the varying amplitude of AEM data to flight height
causes additional complications.
In this study, we consider the effects of flight altitude while pre-

dicting the forward responses and partial derivatives for an airborne
setup using neural networks. We also consider the flight altitude as
an inversion parameter with the recorded value as a strong prior and
model its partial derivative using a neural network during an iter-
ative least-squares inversion to deal with erroneous measured alti-
tudes. To deal with the varying dynamic range in AEM forward
modeling due to the effect of flight altitude, an appropriate normali-
zation is chosen to achieve satisfactory accuracy, which ensures
high performance in an AEM setup. To improve the performance
of neural networks, we propose a novel approach to generate a com-
prehensive database of resistivity models with realistic subsurface
patterns, which is essential to obtain improved inversion results.
The rest of this paper is structured in the following order. First,

we discuss the mathematical formulation of the least-squares in-
verse problem and the details of our neural networks for approxi-
mate forward modeling and calculation of partial derivatives, which
we term as forwardNet (fNet) and derivativeNet (dNet). Then, we
evaluate the performance of our networks and present inversion re-
sults on field data by integrating fNet and dNet in the least-squares
method. Then, we discuss the limitations and prospects of the pro-
posed schemes. Finally, we give concluding remarks.

PROPOSED METHODOLOGY

The inversion is formulated to obtain a set of model parametersm
that minimizes the cost function ϕ(m) as

ϕðmÞ ¼ kQdðdobs − FðmÞÞk2L2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
datamisfit

þ kQpRpmk2L2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
smoothness constraints

; (2)

where Qd is a matrix where the diagonals are the inverse of the data
variance and Qp is a matrix where the diagonals are the inverse of
the variance associated with the constraints given by the roughness
matrix Rp that constrain the model parameters m in neighboring
depth layers. Here, it is assumed that there is no correlated noise,
meaning that there are no off-diagonal elements in Qd. The corre-
lation between neighboring models is enforced through Rp. Other
approaches to the inversion setup as in equation 2 are possible, for
instance, as recently proposed by Bai et al. (2021), where estimates
of the modeling errors are included in the inversion scheme without
implying smoothness constraints.
To minimize equation 2, we update the model parameters m

iteratively with a Levenberg-Marquardt method:
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mnþ1 ¼ mn þ ½GT
nC−1

obsGn þ RT
pC−1

c Rp þ λI�−1
·½GT

nC−1
obsðdobs − FðmnÞÞ þ RT

pC−1
c ð−RpmnÞ�; (3)

where Gn is the Jacobian matrix for the nth model, C−1
obs ¼ QT

dQd is
the covariance matrix holding the data uncertainties, C−1

c ¼ QT
pQp

defines the strength of the smoothness constraints, λ is the damping
parameter, and I is the identity matrix. For more details on equa-
tions 2 and 3, the readers are referred to Auken and Christiansen
(2004) and Xue et al. (2020).
The ith column in the Jacobian matrix G, equation 4, is con-

structed by computing partial derivatives in logarithmic space for
the model vector m having t parameters:

Gi ¼
∂ logðdÞ
∂ logðmiÞ

¼ mi

d
∂d
∂mi

; i ¼ 1; 2; : : : ; t; (4)

where ∂d is the partial derivative vector computed as symmetric
differences between two forward responses separated by a small
perturbation for the ith element in model vector m.
If the matrix inverse in equation 3 is formulated numerically

efficiently (Kirkegaard et al., 2015), it is evident that most of the com-
putation time during a least-squares inversion lies within the calcula-
tion of FðmÞ and in particular G. Ifm has t parameters, t + 1 forward
computations are required to construct G using single-sided deriva-
tives. For symmetric (double-sided) derivatives, 2tþ 1 forward com-
putations are required. To avoid the above described computationally
intensive process, we deploy neural networks to predict TEM forward
responses FðmÞ and the partial derivatives forG to be used within the
least-squares inversion framework. In the following sections, we dis-
cuss the details of our neural networks that have been trained on an
Intel Xeon Gold 6132 central processing unit (CPU) at 2.60 GHz with
two NVIDIA GeForce RTX 2080 Ti graphics processing units
(GPUs) using MATLAB 2019b with the deep learning toolbox.

ForwardNet

The fNet input layer consists of 31 parameters. The first 30 input
parameters correspond to the layer resistivities ρ in the model vector
m. Inversions with predefined layer thicknesses, often called multi-
layer or smooth inversions, are common in TEM. Therefore, the layer
thicknesses are fixed and are not considered as an input parameter.
The flight altitude h has a large influence on the TEM forward re-
sponse, and it is crucial to include this as an input parameter.
The output of fNet is the impulse response, i.e., ∂B∕∂t, for the

corresponding inputs. The responses are generated at 108 discrete
time gates from 1 ns to 37 ms with exponentially increasing gate
widths sampled at 14 gates/decade. Although the actual ATEM data
span a narrower time interval, a wider range is used to obtain ac-
curate responses after system-response convolution.
Figure 1 shows the influence of flight altitude on representative

TEM responses. We observe that the impact of flight altitude on the
TEM response decreases with time and has a larger impact in the
conductive case than the resistive case.
Prior to network training, it is advantageous to normalize the in-

puts and target outputs (Sola and Sevilla, 1997; Theodoridis and
Koutroumbas, 2009; Abiodun et al., 2018). Because the forward
response does not vary linearly with resistivity, we consider the log-
arithmic variations to normalize the layer resistivities ρ which are
then scaled between [a, b] as

ρN ¼ aþ ðb − aÞðlog10ðρÞ − log10ðρminÞÞ
log10ðρmaxÞ − log10ðρminÞ

; (5)

where ρN is the normalized resistivity model of ρ and ρmin and ρmax

refer to the minimum and maximum resistivity values in the training
data set, respectively.
The flight altitude above the ground h is normalized by

hN ¼ aþ ðb − aÞðh − hminÞ
hmax − hmin

; (6)

where hN and h are the normalized and actual flight altitude, respec-
tively; a and b are the same as equation 5; and hmin and hmax are the
minimum and maximum flight altitude in the training set, respectively.
The network input for fNet for a common scale of [−1, 1] is

defined as a 31 × 1 vector:

XfNet ¼
�
ρN
hN

�
: (7)

The target outputs, a vector of 108 ∂B∕∂t data points, are nor-
malized as

YfNet ¼
∂B
∂t − μ
σ

; (8)

where μ and σ are the gate-wise mean and standard deviation of the
amplitudes of ∂B∕∂t over the training data set, respectively. This
normalization results in positive and negative values, and ensures
that each time gate is treated equally. The target outputs are not

Figure 1. The TEM impulse responses for three different flight al-
titudes (30, 60, and 90 m). The blue curves represent the 1000 Ωm
half-space model and the red curves represent the 10 Ωm half-space
model.
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scaled between fixed limits [a, b] to allow for the effect of varying
dynamic range of the forward responses because of the sensitivity to
flight altitude.
Our fNet consists of four layers. The first layer consists of 31

neurons and corresponds to the input variables. The next two layers,
i.e., the hidden layers, have 384 neurons each. The depth of the
network, i.e., the number of hidden layers, and the number of neu-
rons in each of the hidden layers are selected based on the grid-
search method (Liashchynskyi and Liashchynskyi, 2019). The final
layer corresponds to the impulse response data points and consists
of 108 neurons. The neurons in the hidden layers are interconnected
by weights w and biases b, which are learnable parameters that con-
trol the strength of the connection between neurons.
As our normalized input and output vectors can take positive and

negative values, we use the hyperbolic tangent function as the ac-
tivation function. The hyperbolic tangent function has a wide acti-
vation range, and a continuous and steep derivative, which helps in
faster learning (Feng and Lu, 2019).
As the goal of fNet is to minimize the error between the numeri-

cal forward data Y and the predicted forward data Ŷ, we define the
loss function C as the sum of the squares error (SSE). However, fNet
uses the fully connected feed-forward neural network, which is
prone to overfitting. To avoid overfitting, we introduce a regulari-
zation term that causes the network weights w and biases b to have
smaller values, which forces the network to result in smoother out-
puts and is less likely to overfit on training data. Hence, the loss
function for the training of the neural network is

C¼ð1− γÞ
XN
i¼1

ðYi− ŶiÞ2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

networkerrors

þ γ

�
1

n

Xn
j¼1

w2
j þ

1

n

Xn
j¼1

b2j

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regularization term

: (9)

The first term in equation 9 is the sum of the squares error (SSEs),
whereas the second term is a regularization term controlled by the
performance ratio γ. If γ is too big, the network will not fit the training
data adequately. If it is too small, the network may be prone to over-
fitting. Empirical analysis shows that γ ¼ 10−4 results in good per-
formance for the problem at hand. The scaled conjugate gradient
algorithm (Møller, 1993) with full-batch update (Zheng et al.,
2016) is used for backpropagation to minimize the loss function with
an early stopping criterion to avoid overfitting.

DerivativeNet

Our dNet input layer consists of 32 parameters. The first 31 input
parameters are the same as fNet. We include another parameter,
i.e., the layer index i for the layer resistivities ρ, at which the pertur-
bation is to be applied as shown in equation 4 which is equivalent to
the ith column in the Jacobian matrix. The layer index i is normalized
in the same way as shown in equation 6, where imin and imax are the
minimum andmaximum layer in the layer resistivities ρ, respectively.
The 32 × 1 input vector for dNet is defined as

XdNet ¼
2
4 ρN
hN
iN

3
5: (10)

The output of dNet is the partial derivative on a logarithmic scale
with respect to the ith resistivity layer in ρ. The partial derivatives
are generated as symmetric differences between two forward re-
sponses by perturbing the ith resistivity layer for flight altitude h.
The target outputs for dNet, a vector of 108 partial derivative data

points, are normalized as

YdNet ¼
Gt − μG

σG
; (11)

where μG and σG are the global mean and standard deviation of the
amplitudes of partial derivatives in the training set, respectively.
Due to the varying sensitivity of partial derivatives when different
layers in a resistivity model are perturbed, the gate-wise mean and
standard deviation of the amplitudes of partial derivatives of the
training set have not been used as it may affect the smoothness
of the normalized partial derivatives.
Because the complexity of dNet is higher than fNet, hyperpara-

meter optimization by the grid-search method reveals that a five-
layer deep network having three hidden layers is required to
map the partial derivatives with good accuracy. In these five layers,
the first layer consists of 32 neurons, which correspond to the input
parameters. The next three hidden layers consist of 384 neurons
each. The final regression layer, similar to fNet, consists of 108 neu-
rons corresponding to the data points for partial derivatives. The
depth of the dNet architecture and the number of neurons in each
of the hidden layers of dNet also are selected by the grid-search
approach. All other settings for the training of dNet are kept the
same as fNet. It is very likely that some other parameterization
of the network architecture would yield similar results.

TRAINING AND TESTING DATA SETS

For a neural network that must generalize to a broad range
of geologic settings, the training data set having resistivity models
should cover the model space with realistic subsurface patterns
(Asif et al., 2021a). Initially, we use broadbanded von Kármán
covariance functions (Møller et al., 2001; Christiansen and Auken,
2003) to create various 1D resistivity models with geologically real-
istic structures by varying resistivities, spatial distances, correlation
lengths, and amplitudes. Furthermore, shape layering is imposed by
stitching together two to five randomly selected depth intervals of
the generated von Kármán models. The suite of von Kármán models
will contain some resistivity variations and patterns that are unlikely
to be resolved due to the resolution limits of the TEM method. In
practice, these highly complex resistivity structures often produce
TEM data that can be well fitted by significantly simpler resistivity
models. Therefore, inclusion of highly complex models, which are
unlikely to be resolved and produce data consistent with simpler
resistivity structures, would decrease the quality of the training data
set.
To improve the quality of the training data set and include

the resistivity models having a high degree of ATEM resolvable
structures, we first calculate ATEM forward responses of the von
Kármán models and then invert the forward responses back to a
resistivity model. The obtained resistivity models will primarily
hold the structures of the von Kármán models that are evident
in the forward data. The von Kármán models are discretized to
90 layers to ensure finer subsurface patterns relative to the reso-
lution of TEM data. However, the inversion is carried out with
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a smooth 30-layered model, which is a feasible inversion model
setup for ATEM data. The AarhusInv inversion code (Auken et al.,
2015) is used for forward and inversion calculations and a 3%
uniform data uncertainty is assumed prior to the inversion.
Four model examples are shown in Figure 2, displaying the
von Kármán model (blue line) and the corresponding training
model (red line).
In total, 700,000 1D training models are generated, spanning the

resistivity domain from 1 to 1000 Ωm. Out of the 700,000 training
models (Figure 3a), 650,000 are used for the training of the network
and 50,000 are used as the validation set. Because the validation set
is representative of the training set, a small percentage of 1D train-
ing models is used. The corresponding forward responses and par-
tial derivatives also are computed by AarhusInv (Auken et al.,
2015), where the flight altitude for each training model is uniformly
chosen between 10 and 120 m. As shown in Figure 3a, the resis-
tivity distribution for the training models is not perfectly uniform,
which is caused by the inversion process in the training model
generation. It takes approximately 2 days to generate the training
models, the corresponding forward responses, and the partial deriv-
atives. In addition, it takes approximately 5 h each to train fNet and
dNet. However, this process needs to be done only once for a given
TEM system, which in our case is the SkyTEM system. Once the
network is trained, the proposed schemes can be put into practice
indefinitely to invert one or more 3D volume data sets for the Sky-
TEM system.
To evaluate the performance of our neural networks independently,

we use the standard inverted resistivity models from two Danish
ATEM surveys conducted in Skovby (Figure 3b) and Gribskov (Fig-
ure 3c) consisting of approximately 10,000 resistivity models having
recorded flight altitudes between 15 and 96 m. However, the final
assessment is obtained from the inversion results when the networks
are integrated into the least-squares inversion framework where the
model parameters are iteratively updated for the Skovby and Grib-
skov survey data.

RESULTS

ForwardNet

To evaluate the performance of fNet, we use a 3% relative error
metric based on a pragmatic imposed minimum data uncertainty for
TEM systems. For 801 inverted models from the Skovby survey data
set, all (100%) of the data points of the forward responses from fNet
are evaluated to be within a 3% error of the numerical forward re-
sponses. For 9219 resistivity models in the Gribskov survey, the per-
centage of gates within a 3% relative error is evaluated to be 99.5%.
A comparison example of the numerical and the fNet predicted for-
ward responses for the given flight altitude is shown in Figure 4.
The performance of our neural network is affected by the degree of

variation between the forward data curves, and more variability in
these curves results in better performance (Asif et al., 2021a). The
variation in the forward data curves decreases by the increase in
resistivity in the model parameters as the sensitivity of the data de-
creases for high-resistivity layers. Therefore, it can be seen in Figure 4
that the fNet errors rise with the increase in resistivity of the subsur-
face models. In terms of time comparison, the fNet computes at least
1180 forward responses per second and the conventional method
only computes approximately 10 forward responses per second.
Therefore, a speedup factor of more than 100 is realized in calculating
the forward responses when fNet is used.

DerivativeNet

Although fNet achieves high precision in predicting forward re-
sponses, it cannot be used directly to compute reliable derivatives
for layer resistivites ρ. The reason for this is that the change in
response to a small perturbation of a layer resistivity is small. As
the error (despite its being small) on the individual data points is un-
correlated, a high numerical inaccuracy on the difference is inevitable.

Figure 2. Some examples of 90-layer von Kármán models (blue
line) and the corresponding 30-layered training models (red line).

Figure 3. The resistivity models for the training and testing of the
network. (a) Distribution of training models; (b) distribution of the
Skovby survey, standard inverted models; and (c) distribution of the
Gribskov survey, standard inversion models.
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Therefore, dNet is used to predict partial derivatives with respect to
layer resistivities only. To test the performance of dNet, we generate
the partial derivatives by using the numerical forward response to
compare it with the output of dNet. To construct the Jacobian matrix
G for one 30-layer model, as shown in equation 4, fNet is evaluated
twice to calculate the partial derivative with respect to the flight alti-
tude h, and dNet is evaluated 30 times for layer resistivities ρ. Note
that the differences between two fNet calculations when calculating
the derivatives for the flight altitude is possible because the sensitivity
of the forward response to this parameter is high. Therefore, the errors
on individual data points are insignificant when forming the dif-
ference.
The sign of partial derivatives in the Jacobian matrix determines

the direction of the model update. Therefore, we use the sign of the
partial derivative data points as the primary metric for performance
evaluation. The sign accuracy of partial derivatives on the Skovby
and Gribskov survey resistivity models is evaluated to be 97.4%
and 96.7%, respectively. We also present a visual comparison (Fig-
ure 5) of partial derivatives constructed by numerical forward re-
sponses and the proposed approach for four inverted models from
the Gribskov survey. As shown in Figure 5, the derivatives from neu-
ral network show a similar pattern and magnitude as the numerically
computed derivatives. We also show the absolute relative error of the
partial derivatives computed by the two approaches. As for computa-
tional efficiency, the dNet achieves a speedup factor of at least 70 by
producing more than 1000 derivatives per second in comparison with

the 14 derivatives per second by numerical forward responses for
different flight altitudes.
The decisive criterion for the goodness of performance lies in the

inversion results. Therefore, in the next section, we evaluate if the
accuracy from fNet and dNet is sufficient to achieve a stable iterative
solution and similar inversion results as for the standard fully non-
linear least-squares inversion solution. For that purpose, similar to
Christiansen et al. (2016) and Asif et al. (2021b), we use four iterative
least-squares inversion schemes differing in the calculation of for-
ward responses and partial derivatives:

1) Full nonlinear inversion: full nonlinear numerical forward
response (fFull) + full nonlinear numerical derivatives (dFull)
for all iterations (benchmark inversion).

2) Hybrid inversion: fFull + dNet for several iterations until a
certain misfit is met, then switching to fFull + dFull for
the last iterations.

3) dNet inversion: fFull + dNet for all iterations.
4) Full neural network inversion: fNet + dNet for all iterations.

Field data inversion

We invert the data from a small Skovby survey (Figure 6a) con-
sisting of approximately 25 km of data and a larger Gribskov survey
(Figure 6b) with approximately 300 km of data using a smooth spa-
tially constrained setup (Viezzoli et al., 2008). Both surveys have

been conducted in Denmark, where the subsurface
is generally composed of glacial sediments (sands,
gravels, and clay tills) that sit atop prequaternary
deposits. In Skovby, the prequaternary unit under-
lying the glacial sediments is Paleogene clay. In
the Gribskov case, the depth to the prequaternary
limestone is approximately 80 m. As shown in the
resistivity distributions (Figure 3b and 3c), the top
approximately 150 m is less resistive in the
Skovby case compared with Gribskov. Deeper
parts of the Gribskov survey show very low resis-
tivities due to the intrusion of saltwater. We have
chosen these two surveys with their distinct differ-
ent resistivity regimes to demonstrate that the
trained network covers a wide range of resistivity
models.
Figure 7 shows the inversion results of the four

different schemes masked below the depth of in-
vestigation (Christiansen and Auken, 2012) for the
cross section marked in Figure 6a. All inversions
shown in Figure 7 begin with 30 Ωm half-space
models and the data residual (data misfit) for each
model is shown. The data residual is calculated as
a least-squares difference between the observed
data and modeled data in logarithmic space nor-
malized with the data uncertainties. Hence, a data
residual of one corresponds to a fit to within one
standard deviation of the data uncertainty. The data
residual for all of the schemes is computed using
fFull to reflect the actual misfit. Visually, all
four inversion results in Figure 7 are very similar
and would lead to similar geologic interpretation.
We also show the ratio (log difference) of the

Figure 4. For four resistivity models (a, d, g, and j) from the Gribskov survey, a com-
parison of the numerical and fNet forward responses (b, e, h, and k) with the relative
error of each (c, f, i, and l), respectively. The flight altitude is also shown for each model.
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three inversion schemes with respect to the full nonlinear inversion in
Figure 8. Quantitatively, the hybrid inversion shown in Figure 7b has a
geometric mean of resistivity difference of 1.6% in comparison with
the full nonlinear inversion, which is shown in Figure 7a. The dNet
inversion (Figure 7c) deviates 0.8%, whereas the neural network in-
version (Figure 7d) diverges 2.1% from the full nonlinear inversion.
The resistivity differences for the three inversion schemes against the
full nonlinear inversion are unbiased.
In Figure 9, we present the noise-normalized data misfits (resid-

uals) of the four inversion schemes for representative early, inter-
mediate, and late time data. It is shown that the full nonlinear,
hybrid, and dNet inversion result in similar residuals, whereas the
residual for full neural network inversion is generally on the higher
side for most cases, which is in agreement with the sounding-by-
sounding data misfit shown in Figure 7.
The four inversion results for the cross section marked in Fig-

ure 6b from the Gribskov survey are shown in Figure 10. In the
case of the Gribskov survey, an 80 Ωm half-space is used as the
starting model for all inversions. As expected, the full nonlinear

inversion (Figure 10a) and the hybrid inversion (Figure 10b) deliver
almost identical inversion results and data residuals, because they
both use the fFull + dFull combination for the final iterations. The
geometric mean of resistivity difference of the hybrid inversion to
the full nonlinear inversion is 3.9%. The dNet inversion (Figure 10c)
has similar resistivity structures and comparable data residuals to
the full nonlinear inversion with mean resistivity differences of
4.3%. The data residual for the full neural network inversion (Fig-
ure 10d) is slightly higher than the full nonlinear inversion due to
additional errors introduced by fNet for high-resistive models.
However, the full neural network deviates 5.8%, but captures the
overall resistivity structures and patterns quite well. The resistivity
differences and the individual data residuals (not shown) display
similar trends as shown in Figures 8 and 9.
The data residuals of the full surveys for the different inversion

schemes are summarized in Table 1. The data residual for the full
survey also shows the same trend as for the selected resistivity cross
sections. The full nonlinear, hybrid, and dNet inversions produce
comparable data residuals that are fully acceptable as final inversion

Figure 5. For four resistivity models (a, e, i, and m) from the Gribskov survey, visualization of the Jacobian matrix (derivatives) for the full
nonlinear solution (b, f, j, and n) and by fNet and dNet (c, g, k, and o), with the relative error of each (d, h, l, and p), respectively. The flight
altitude is shown for each model.
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results. For the full neural network inversion of the Skovby survey,
the data residual is very close to the full nonlinear inversion,
whereas the full neural network inversion for the Gribskov survey
results in a larger data residual of 1.02.

Computational time comparison

A detailed time comparison of four inversion schemes on the
Skovby and Gribskov field data is provided in Table 1, in which
the full neural network inversion scheme is the fastest and achieves
a speedup factor of approximately 50 compared with full nonlinear
inversion. Each iteration is expedited at least 65 times when fNet and
dNet are used together. The dNet inversion achieves a speedup factor
of approximately 15 during an inversion, and each inversion iteration
is accelerated approximately 17 times when a combination of fFull
and dNet is used. The hybrid inversion scheme generally uses one
additional iteration to compensate for the errors introduced by dNet.
However, it is still at least five times faster than the full nonlinear
inversion. Because the inversion process is entirely model dependent,
the number of additional iterations varies depending on the data.
It can be seen in Table 1 that the full nonlinear inversion, dNet

inversion, and the full neural network inversion take the same number
of iterations for the Skovby survey. However, the hybrid inversion
uses one additional iteration of full solution on top of the iterations
taken by the dNet inversion, resulting in a total of nine iterations. In
the case of the Gribskov survey where the data are collected in a

high-resistivity environment, the dNet inversion takes the same num-
ber of iterations as the full nonlinear inversion, whereas the hybrid
inversion uses one extra iteration of full solution on top of the 11
iterations taken by the dNet inversion. Because the errors in fNet

Figure 6. Field survey areas. (a) Skovby survey and (b) Gribskov
survey conducted close to a coastline. The survey lines are indicated
by the yellow dots and the red lines mark the locations of the cross
sections shown in Figures 7 and 8.

Figure 8. Ratio (log difference) of three inversion schemes with
respect to the full nonlinear inversion. (a) Ratio with respect to hy-
brid inversion, (b) ratio with respect to dNet inversion, and (c) ratio
with respect to full neural network inversion.

Figure 7. Inversion results of a cross section from the Skovby sur-
vey (masked below the depth of investigation) and the correspond-
ing data misfit (red line and right axis). The red hatched line
indicates a data misfit of 1.0 being the average fit within the data
uncertainty. (a) Full nonlinear inversion, (b) hybrid inversion,
(c) dNet inversion, and (d) full neural network inversion.
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are higher for high-resistivity environments, the full neural network
inversion takes two additional iterations as compared with the full
nonlinear inversion and converges in 13 iterations.

DISCUSSION

Investigation of the inversion results of AEM data from two field
surveys possessing distinct geologies shows that the hybrid and the
dNet inversion schemes result in essentially the same inversion re-
sults as the full nonlinear inversion. However, the dNet inversion
achieves a considerable speedup as compared with the hybrid
inversion framework. The full neural network inversion is the fastest
and results in some deviations for high-resistivity regions but cap-
tures all the features of the subsurface geology quite well. It can be
deployed safely if prior knowledge about the geology of the survey
area shows it to be relatively conductive. The full neural network
solution also can be effective for applications that have some flex-
ibility in modeling accuracy and geologic interpretation.
Because higher deviation is seen in the inversion results for

neural network-based inversion schemes for high-resistivity envi-
ronments, the accuracy of fNet and dNet may be improved by using,
e.g., convolutional neural networks for complex feature mapping.
However, it may require deep network architecture and a larger
training set that would increase the computational complexity.
The computational time for the comparison of the inversion results

is calculated on a single CPU core. However, GPUs are renowned for
powerful parallel computing. Therefore, the computational perfor-
mance could drastically improve by using GPUs for fNet and dNet.
It is important to note here that the system response convolution takes
more than half of the computation time during the computation of
fNet and dNet. Therefore, the optimization of the system response
convolution would decrease the computational complexity for further
improvement in the inversion process.
Our fNet and dNet are trained on time gates ranging from 1 ns to

37 ms, which is significantly larger than the normal range of ATEM
data time gates. During an inversion, the networks’ output is interpo-
lated for the gate times at which evaluation is required for a specific
survey. Therefore, fNet and dNet require nomodification for changing
the number of gates or gate times as long as the acquisition interval is
within the gate-time range on which the networks are trained. How-
ever, our networks are trained for a resistivity range of 1–1000 Ωm. If
the resistivity range goes beyond this limit, the network may require
retraining on an improved training data set to reach the required level
of accuracy.
It is shown in Asif et al. (2021b) that training a network for for-

ward modeling and partial derivative calculations for a ground-
based TEM system on smooth 1D resistivity models results in sat-
isfactory performance if a sharp inversion scheme (Vignoli et al.,
2015) is used. Therefore, the proposed approach also is expected
to work well for such inversion schemes despite being trained
on smooth resistivity models. However, the performance accuracy
may be improved further for sharp regularization schemes if the net-
work is trained on sharp resistivity models, which is beyond the
scope of this work. Nevertheless, it might require a different net-
work parameterization that can be optimized by the grid-search
method. This also is true if the proposed approach is to be extended
for other TEM systems.
The proposed combination of two independent neural networks

within the least-squares inversion framework helps in mitigating sev-
eral limitations of existing neural network-based 1D AEM inversion

Figure 9. Data residuals for individual channels/times for represen-
tative early, intermediate, and late times of the four inversion
schemes.

Figure 10. Inversion results of a cross section from the Gribskov
survey (masked below the depth of investigation) and the corre-
sponding data residual (red line and right axis). The red hatched
line indicates a data misfit of 1.0 being the average fit within
the data uncertainty. (a) Full nonlinear inversion, (b) hybrid inver-
sion, (c) dNet inversion, and (d) full neural network inversion.
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methods. Traditional methods, which use one network to invert AEM
data directly, require network retraining when any of the system set-
tings are changed, e.g., the transmitter waveform and receiver coil
characteristics. In addition, each data sounding and the 1D resistivity
models are considered independently, which limits their adaptation
to gradient-based inversion routines that use various regularization
schemes. However, the proposed approach allows flexibility to vari-
ous regularization schemes and ATEM system characteristics without
the need of network retraining while significantly improving the com-
putational efficiency of existing inversion algorithms. Moreover, the
data uncertainly also is taken into account by keeping the least-
squares inversion framework.
One of the limitations of the proposed study is the inversion with

fixed layer thicknesses. A generalized approach would consider var-
iable model thickness in the training of the neural network, which is
to be considered in future work. Another limitation is the applicabil-
ity to 1D inversion. Therefore, the proposed approach inherits the
general limitations of 1D inversion schemes. In addition, the data
used in this study are obtained from an ATEM system where the
flight altitude is taken into account during forward and derivative
calculations and considered as an inversion parameter. However, the
proposed schemes would still be effective if the flight altitude is
excluded as an inversion parameter.

CONCLUSION

We have demonstrated the use of neural networks within a least-
squares inversion framework for an ATEM system. Neural network-
based forward modeling and partial derivative calculation opens the
possibility of faster inversions with little to no loss in inversion pre-
cision. By integrating neural networks in the well-established least-
squares inversion framework, the coherence between the inverted
models is preserved and the noise in the data is handled explicitly.
In addition, by using the impulse responses for the training of our
neural networks, retraining is avoided if system settings, e.g., the
waveform and/or receiver coil characteristics, are changed. Field
AEM data collected at different flight altitudes show that the full
nonlinear inversion, the hybrid approach, and the dNet inversion
give identical results, whereas the full neural network inversion re-
sults in some deviations in high-resistivity environments but is sig-
nificantly faster. Because these inversion schemes have different

levels of modeling inaccuracies during an inversion, a tunable bal-
ance between computational complexity and modeling accuracy
may be achieved as geophysical applications have varying degrees
of tolerance in modeling accuracy and geophysical interpretation.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be ob-
tained by contacting the corresponding author.
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