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4 ÍSOR, Iceland GeoSurvey, Grensásvegur 9, 108 Reykjavik, 108 , Iceland
5Engineering Geology, Lunds Tekniska Högskola, Lund University, 221 00, Sweden
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S U M M A R Y
Transient electromagnetic (TEM) is an efficient non-invasive method to map electrical con-
ductivity distribution in the subsurface. This paper presents an inversion scheme for 3-D TEM
time-lapse (TL) data using a generalized minimum support (MS) norm and its application to
monitoring conductivity changes over time. In particular, two challenges for TL TEM applica-
tions are addressed: (i) the survey repetition with slightly different acquisition position, that is,
because systems are not installed and (ii) non-optimal data coverage above the TL anomalies,
for instance, due to the presence of infrastructure that limits the acquisition layout because of
coupling. To address these issues, we developed a new TEM TL inversion scheme with the
following features: (1) a multimesh approach for model definition and forward computations,
which allows for seamless integration of data sets with different acquisition layouts; (2) 3-D
sensitivity calculation during the inversion, which allows retrieving conductivity changes in-
between TEM soundings and (3) simultaneous inversion of two data sets at once, imposing TL
constraints defined in terms of a generalized MS norm, which ensures compact TL changes.
We assess the relevance of our implementations through a synthetic example and a field ex-
ample. In the synthetic example, we study the capability of the inversion scheme to retrieve
compact time-lapse changes despite slight changes in the acquisition layout and the effect of
data coverage on the retrieval of TL changes. Results from the synthetic tests are used for
interpreting field data, which consists of two TEM data sets collected in 2019 and 2020 at
the Nesjavellir high-temperature geothermal site (Iceland) within a monitoring project of H2S
sequestration. Furthermore, the field example illustrates the effect of the trade-off between
data misfit and TL constraints in the inversion objective function, using the tuning settings
of the generalized MS norm. Based on the results from both the synthetic and field cases,
we show that our implementation of 3-D TL inversion has a robust performance for TEM
monitoring.

Key words: Hydrogeophysics; Controlled source electromagnetics (CSEM); Inverse theory;
Time-lapse inversion; Time-domain electromagnetic.

I N T RO D U C T I O N

Time-lapse (TL) inversion of resistivity has been used for infer-
ring temporal changes in the subsurface for different environ-
mental and engineering problems such as groundwater mapping
(Doetsch et al. 2012; Singha et al. 2015), seawater intrusion de-
lineation (Falgàs et al. 2009; Ogilvy et al. 2009; Vann et al.
2020), soil moisture assessment (Blanchy et al. 2020; Farzamian
et al. 2021), gas sequestration (Doetsch et al. 2015; Auken et al.

2014), geothermal system monitoring (Peacock et al. 2013; Her-
mans et al. 2015) and oil production (Orange et al. 2009; Shantsev
et al. 2020).

TL strategies can be roughly divided into three categories: (i)
difference inversion (LaBrecque and Yang 2001; Ajo-Franklin et
al. 2007; Carbajal et al. 2012; Bretaudeau et al. 2021) and ratio
inversion (Daily et al. 1992), which take the difference/ratio of the
observed data as data input and invert for model differences, allow-
ing an efficient suppression of the systematic noise and lowering
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of the computational dimensionality; (ii) cascaded inversion (Old-
enborger et al. 2007; Miller et al. 2008; McLachlan et al. 2020),
which inverts the data sets sequentially based on the previous inver-
sion result and (iii) simultaneous inversion of two (or multiple) data
sets with constrained models (Kim et al. 2009; Hayley et al. 2011).

Results of difference/ratio and cascaded inversions are highly
influenced by the reference model, and inversion artefacts can
easily propagate through subsequent inversions. Furthermore, dif-
ference/ratio inversion requires a rigorously matching acquisition
setup, which is not always achievable due to budget reasons (instru-
ment cost) or the risk of instrument damage by weather and animals.
On the contrary, simultaneous inversion treats all time steps in the
inversion equivalently, so it is less prone to artefact propagation
from one model to another, and the instrument setup may vary
among acquisitions. Furthermore, in iterative inversion schemes, it
allows the models of the time steps to ‘communicate’ after each
iteration and avoids models being updated in significantly different
inversion paths. However, the computational expense is multiplied
since the size of data space and model space are proportional to the
number of TL steps.

TL inversion strategies differ significantly also because of the
different regularization schemes applicable to the TL constraints.
In this regard, Carbajal et al. (2012) compared the performance
of the classic L2 norm for TL constraints, which penalizes the
squares of parameter variations between TL steps, to the minimum
support (MS) norm (Portniaguine and Zhdanov, 1999, Zhdanov
et al. 2006b), which penalizes the number of inversion cells that
vary, regardless of the magnitude of parameter variations. However,
MS norms are usually challenging to tune, which led Fiandaca
et al. (2015) to develop two generalizations of the MS norm for TL
inversion, the symmetric and asymmetric generalized MS norms,
which give good performance in focusing TL changes with easy-
to-tune norm settings.

TL inversion, with different inversion strategies and regulariza-
tions, has been actively studied and applied in the field of elec-
trical resistivity tomography (ERT) for more than two decades
(LaBrecque and Yang 2001; Kim et al. 2009; Karaoulis et al.
2014; Lesparre et al. 2017; McLachlan et al. 2017; Bièvre et al.
2021). In addition, similar approaches have been gradually applied
in inductive methods such as magnetotelluric (Carbajal et al. 2012;
Rosas-Carbajal et al. 2015) and controlled source electromagnetic
method (Shantsev et al. 2020; Bretaudeau et al. 2021; Hoversten and
Schwarzbach 2021), which show superior sensitivity to conductive
structures.

Nonetheless, to the best of our knowledge, TL inversion has
never been applied to transient electromagnetic (TEM) data, even
though the TEM method is widely used in near-surface resistivity
distribution mapping (e.g. Auken et al. 2017). This is probably due
to the specific challenges associated with TEM TL inversions: (i)
data collection with consistent acquisition layouts (geometries, lo-
cations, etc.) is complicated with a moving measurement such as
in airborne EM, but also with ground-based EM where the exact
geometry and location of the transmitter loop can be cumbersome to
reproduce identically without leaving the setup at the site; (ii) TEM
surveys may result in different data density due to the unexpected
coupling to infrastructure in different TL acquisition steps, or limi-
tations in accessibility and (iii) 3-D TEM inversion, best suited for
retrieving localized TL changes, requires intensive computational
capacity in terms of both time consumption and memory cost.

We address these issues with the development of a new TEM TL
inversion scheme in which: (i) forward and Jacobian computations
are carried out in 3-D through the octree-based finite-element (FE)

method (Xiao et al. 2022); (ii) the multimesh approach (Zhang et al.
2021) is used to decouple the forward/Jacobian mesh and inversion
mesh so that the same inversion mesh can be used at different
TL steps despite possible variations in acquisition layouts; (iii) the
calculation burden in the modelling process is effectively alleviated
owing to the domain decomposition strategy (Yang et al. 2013),
which uses a local mesh for individual soundings and (iv) data sets
acquired at different TL steps are inverted simultaneously, using the
asymmetric generalized MS norm for TL constraints (Fiandaca et
al. 2015), to obtain compact TL changes, that is, the smallest model
variations compatible with the data.

The following sections of the paper are organized as follows: the
principle of the TEM forward and inverse problems are described,
together with the asymmetric MS norm. Then, we present a syn-
thetic model, designed with complexity equivalent to the field case,
to illustrate the relevance of our implementation compared to an
independent inversion. This section also discusses the impact of
data density on both independent and TL inversion performance.
The following section describes the application of the new inver-
sion algorithm to a field example. The field example consists of two
TEM data sets collected with a one-year interval; the purpose of
the surveys was to build a baseline model before a monitoring ex-
periment of H2S sequestration at the Nesjavellir geothermal power
plant in Iceland. This sequestration experiment is part of the GEM-
GAS (Geo-Electrical Monitoring of H2S Gas Sequestration) project
(Lévy et al. 2020).

T H E O RY

Forward response

The time-domain forward problem is formulated as a boundary-
value problem, deriving from Maxwell’s equations:

∇ × e (r, t) = −μ0
∂h (r, t)

∂t
(1)

and

∇ × h (r, t) − ∂D (r, t)

∂t
= j (r, t) + js (t) . (2)

where the electric field e(r, t), magnetic field intensity h(r, t), the
dielectric displacement D(r, t), and the current density j(r, t) are
functions of space, r(r ∈ �), and time, t ∈ (0, T ), μ0 is the magnetic
permeability of free space and js denotes the current source.

With the quasi-static approximation (displacement currents ∂D
∂t =

0), the use of Ohm’s law for current density (j = σE, where σ rep-
resents the electric conductivity), and the assumption that the media
is isotropic and non-magnetizable and that electrical properties are
independent on time (so induced polarization is neglected), the elec-
trical field e(r, t) obeys a diffusion equation:

∇ × ∇ × e (r, t) + μ0σ (r)
∂e (r, t)

∂t
= − ∂js (t)

∂t
(3)

We solve eq. (3) following the method proposed by Xiao et al.
(2022), where the equation is discretized in the time domain using
the second-order backward Euler method (Butcher and Goodwin,
2008) and in the space domain using the FE method (Jin 2015).

Furthermore, the multimesh approach introduced by Zhang et al.
(2021) is applied for decoupling the forward/Jacobian meshes
and inversion mesh (Fig. 1). Individual meshes are used for each
sounding as local meshes for forward/Jacobian calculations (octree
meshes in this study, while tetrahedral meshes are used in Zhang
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586 Xiao et al.

Figure 1. Multimesh approach illustration: local octree mesh (black) is
used for forward response and Jacobian calculation at each sounding, and
structured mesh (grey) is used for inversion model update.

et al. 2021), while a full-scale regular mesh that covers all the sound-
ings is used as the inversion mesh. The model nodes in the regular
inversion mesh are defined on the mesh nodes with uniform node
spacing in the horizontal direction and log-increasing node spacing
in the vertical direction (Christensen et al. 2017). The resistivity
values in the cells of the forward meshes are obtained from the
values of the inversion mesh through interpolation with an inverse
distance weighting method (Madsen et al. 2020). The log-increasing
node spacing in the vertical direction helps balance the sensitivity
of deep and shallow areas of the model to avoid favouring shallow
TL changes, as would happen with linear vertical node spacing.

The advantage of this method is threefold for TL TEM inver-
sions. First, the computational complexity is minimized while the
forward accuracy is maintained, owing to the domain decomposi-
tion. Secondly, it eases the process of enforcing spatial constraints
for the inversion or incorporating prior knowledge, thanks to the
regularity of the inversion mesh. Lastly, it overcomes the challenge
of data repetition with matching layouts, providing the flexibility
that surveys at different TL steps can be carried out at different
locations within the research area.

Inversion

In the TL inversion scheme adopted in this study, two data sets
d1 and d2 are inverted simultaneously to obtain the corresponding
models m1 and m2 by constraining the model difference δm =
m2 − m1 (while d1 and d2 may differ in size, m1 and m2 are
defined on identical meshes and have the same size, such that the
difference in model parameters can be determined). Furthermore,
in addition to the roughness constraint on individual models m1 and
m2, roughness constraints are also applied to the model difference
δm. Defining the whole inversion data and model vectors d and m in

terms of the concatenation of individual vectors as d =
[

d1

d2

]
and

m =
[

m1

m2

]
. The objective function � in our TL inversion scheme

consists of four terms:

� = �d (δd) + �T L (δm) + �Rm (r) + �Ru (δr) (4)

where:

(1) �d , �T L , �Rm and �Ru represent the measures of the data
difference, model update, roughness of model and roughness of
model update, respectively. The last three terms represent the model
regularizations of the inversion (�T L , �Rm , �Ru): in particular, the
TL term �T L measures and minimizes the distance between m1

and m2, that is, the model update in the TL inversion; the model
roughness term �Rm minimizes the roughness of individual models
and the measure �Ru minimizes the roughness of the model updates.

(2) δd = d − dobs represents the difference between the forward
response d and the observed data dobs; δm = m2 − m1 symbolizes
the model update between two models, that is, model temporal
variations; r = −Rmm represents the model roughness through

the roughness matrix Rm =
[

Rm1 0
0 Rm2

]
andδr = −Ruδm is the

roughness of the model update.

The TL inversion is performed iteratively by following the prac-
tice established in AarhusInv (Auken et al. 2015). The approach is
based on the Levenberg–Marquardt adaptive minimization scheme
(Hanke 1997; Menke 2018), a weighted combination of the gradi-
ent descent method and the Gauss–Newton (GN) method. Norms
different from L2 in eq. (4) are implemented through the iteratively
reweighted least-squares (IRLS) approach following (Farquharson
and Oldenburg 1998). The model vector m is updated at the n + 1th
iterative step:

mn+1 = mn +
[
G∗T

(n)C
∗−1
(n) G∗

(n) + λ(n)I
]−1

·
[
G∗T

(n)C
∗−1
(n) δd∗

(n)

]
(5)

Here, the damping parameter, λ(n), iteratively reweights the gra-
dient descent approach and the GN method by scaling the iden-
tity matrix I, G∗

(n) includes the Jacobian matrix of different partial
derivatives, the vector update δd∗

(n) contains data, model roughness,

and model difference; and C∗−1
(n) is the covariance matrix of data

uncertainty and model roughness, as follows:

G∗
(n) =

⎡
⎢⎢⎣

G(n)

I
Rm

Ru

⎤
⎥⎥⎦ (6)

δd∗
(n) =

⎡
⎢⎢⎣

δd(n)

δm(n)

r(n)

δr(n)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d(n) − dobs

m2(n) − m1(n)

−Rmm(n)

−Ruδm(n)

⎤
⎥⎥⎦ (7)

C∗−1
(n) =

⎡
⎢⎢⎢⎣

C−1
obs 0 0 0
0 W

′T −1
T L(n)C

−1
T L W′

T L(n) 0 0

0 0 W
′T −1
Rm (n)C

−1
Rm

W′
Rm (n) 0

0 0 0 W
′T −1
Ru (n)C

−1
Ru

W′
Ru (n)

⎤
⎥⎥⎥⎦

(8)

In eq. (6), G(n) =
[

G1(n) 0
0 G2(n)

]
represents the Jacobian of the

two acquisitions, translated from the forward mesh to the inversion
mesh following Madsen et al. (2020) and Zhang et al. (2021); I
is the identity matrix and Rm and Ru are the roughness matrices
on model and model update. In eq. (7), the data vector update
δd∗

(n) includes the distance δd(n)between the nth forward response
d(n) and the observed data dobs, the distance δm(n) between the
two models at the nth iteration, the roughness of the nth model
vector r(n) = − Rmm(n) and the roughness of the model difference
nth model vector δ r(n) = − Ruδm(n). In eq. (8), the covariance
matrix C∗ is defined in terms of the covariance on the observed
data Cobs, the TL covariance on the model difference CTL and the
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covariance on the roughness constraints CRm and CRu . The elements
of Cobs indicates the noise level in the data, while the elements of
CT L , CRm and CRu control the constraint strength from the model
side. All four matrices are diagonal, thus, the data errors are assumed
uncorrelated. In eq. (8), the matrices W′

T L(n)
, W′

Rm (n) and W′
Ru (n) are

the IRLS reweighting matrices that allows to define norms in the
objective function different from the L2. In particular, for a given
model vector x (equal to either δm, r or δr) and a given measure
functional,

� (x) =
size(X)∑

i=1

ϕ (xi ) (9)

the matrices W′
η (where η = T L or Rm or Ru) are linked to the

measure � and the covariance matrices Cη following (Farquharson
and Oldenburg 1998):

W
′
ηi,i

=
√√

Cηi,i

2xi
ϕ′ (xi ) (10)

The stopping criterion of the iterative procedure in eq. (4) is
implemented on the total misfit χ , defined as:

χ =
(

�d (δd) + �T L (δm) + �Rm (r) + �Ru (δr)

Nd + NT L + NRm + NRu

) 1
2

=
(

Ndχ
2
d + NT Lχ 2

T L + NRm χ 2
Rm

+ NRu χ
2
Ru

Nd + NT L + NRm + NRu

) 1
2

(11)

In which:

(1) Nd , NT L , NRm , NRu represent the number of data points, the
number of TL constraints and the number of roughness constraints
on model and model update.

(2) χd =
(

δdT C−1
obsδd

Nd

) 1
2

represents the data misfit.

(3) χT L =
(

δmT WT
T L C−1

T L WT L δm
NT L

) 1
2

represents the TL model

penalty.

(4) χRm =
(

rT WT
Rm

C−1
Rm

WRm r

NRm

) 1
2

represents the roughness model

penalty.

(5) χRu =
(

δrT WT
Ru

C−1
Ru

WRu δr

NRu

) 1
2

represents the roughness model

difference penalty.

The matrices Wη (where η = T L or Rm or Ru) are linked to the
measure � and the covariance matrices Cη as:

Wηi,i =
√

Cηi,i

x2
i

ϕ (xi ) (12)

The inversion is carried out in logarithmic data and model spaces.
The forward response d(n) of eq. (3) and the Jacobian calculation
G(n) are computed for 3-D TEM data following the routine devised
by Xiao et al. (2022). The inversion process is terminated when the
variation of the total misfit between two consecutive iterations is
smaller than a defined threshold (e.g. 1 per cent).

Asymmetric minimum support norm for time-lapse model
difference

In this study, the measure of the model difference �T L (δm) in the
objective function of eq. (4) is defined in terms of an MS function

instead of the classical L2 norm. While the L2 measure penal-
izes the sum of the squared difference of the components of the
vector δm = m2 − m1, the MS functional penalizes the number
of components δ mi = m2,i − m1,i that differ ‘significantly’ favour
compact TL changes. Researchers have proposed different solu-
tions for defining the significance of parameter differences in MS
functionals for their applications (Last and Kubik 1983; Zhdanov
and Tolstaya 2004; Zhdanov et al. 2006a; Ajo-Franklin et al. 2007;
Kim and Cho 2011; Carbajal et al. 2012; Vignoli et al. 2012; Fian-
daca et al. 2015). In particular, Fiandaca et al. (2015) proposed a
definition of generalized asymmetric MS, which is an easy-to-tune
regulation to find globally optimal compatibility between data and
model variation. The analytical expression of the ith component of
the functional in eq. (9) is expressed as:

ϕM S (xi ) = α−1

[
(1 − β) ·

(
x2

i /σ 2
i

)p1(
x2

i /σ 2
i

)p1 + 1
+ β ·

(
x2

i /σ 2
i

)p2(
x2

i /σ 2
i

)p2 + 1

]
(13)

β =
(
x2

i /σ
2
i

)max(p1,p2)

(
x2

i /σ
2
i

)max(p1,p2) + 1
(14)

where xi = δmi represents the difference of the ith component of
the model difference and α, p1, p2 and σi represent the MS settings.

The norm settings have the following meaning:

(1) The setting σi symbolizes the threshold value that defines the
‘significance’ of a parameter change because σi represents the tran-
sition point in the MS functional: δmi � σi gives a zero penalty in
the objective function, that is, ϕM S (δmi ) = 0; δmi � σi gives the
maximum penalty ϕM S (δmi ) = α−1 ; δ mi = σi represent the tran-
sition point at which half penalty ϕM S (δmi ) = 0.5 · α−1 is reached.
It is expressed typically as a fixed fraction (10 per cent–30 per cent)
of the expected relative parameter (e.g. resistivity) variation, which
can be estimated from either prior information of underlying tem-
poral changes or a standard (e.g. L2) TL inversion.

(2) The setting α controls the maximum penalty, and hence the
relative weight of data and model measures in the objective function
affects the size of TL changes. Ntransitions is defined as the expected
number of model parameters that differ ‘significantly’ (i.e. above the
transition point δ mi = σi ) in TL inversion. Fiandaca et al. (2015)
suggest using α values bigger than α = Ntransitions

NT L
, such that in eq.

(11) χT L < 1.
(3) The settings p1 and p2 control the shape of ϕM S before and

after the transition point δ mi = σi (the sharpness of the transition
increases with p), and determine how the focus depends on the other
settings σ and α. Fiandaca et al. (2015) showed that p1 = 1.35 and
p2 = 2 give the weakest overall dependance of the inversion results
on the σ and α settings.

A complete study of the 3-D TEM TL effects on the four MS
tuning settings is beyond the scope of this study, but it is worthy
of future investigation. Instead, the novelty of this work relies not
only on the use of the old MS TL regularization but also on the
application of TEM data with 3-D modelling. For this reason, only
the results with the optimal p1 and p2 suggested by Fiandaca et al.
(2015) are presented (i.e. p1 = 1.35 and p2 = 2), and only one
value for σi is used (i.e. a relative value of σi = 0.1), for both
synthetic and field data. This σi value was chosen, as suggested by
Fiandaca et al. (2015), by starting from a classic independent and
smooth (L2) TL inversion of the field data, which shows resistivity
variations above 10 per cent (the traditional L2 time-TL results are
not shown in this work for brevity).

However, for both synthetic and field data, the inversion results
are shown for various values of the setting α, which is the setting
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588 Xiao et al.

with the most considerable influence on TL results. This is because,
contrary to Fiandaca et al. (2015), in this study, the number of
TL constraints NT L is much bigger than the number of data Nd

(NT L � Nd ), and the risk of over-regularizing the inversion through
the TL constraint is significant. Consequently, both synthetic and
field data are analysed for different α values to explicitly study
the dependence of inversion results on the balance between TL
constraints and data misfit in the objective function.

N U M E R I C A L E X P E R I M E N T S

To investigate the transition resolution of the implementation and
the dependence on data density given by the 3-D sensitivity, we de-
signed two sets of synthetic examples: coarse and dense acquisition
layouts, with xy sounding distances of 300 and 150 m, respectively.
The resistive background media is an idealized two-layered model
with a 1000 � · m top layer (with a thickness of 50 m) underlain
by a 100 � · m homogeneous half-space, following the resistivity
background values of the field case illustrated in the next section.

A 3-D conductive anomaly with a resistivity of 4 � · m and a
thickness of 50 m is embedded in the second layer. Its horizon-
tal extent grows from 320 m x 300 m in the first measurement to
460 m x 300 m in the second measurement (black and grey dashed
lines in Fig. 2) to simulate the TL changes. The 300 m sounding
interval in the x- and y-directions of the coarse acquisition results
in 16 soundings to cover the anomaly adequately. The dense ac-
quisition halves the distance and requires 35 soundings, as shown
in Fig. 2. In addition, since it is challenging to ensure soundings
from different surveys meet the same positions, we simulate the
soundings with slight xy displacements (black and grey solid lines
in Fig. 2 indicate the TEM transmitter positions).

We modelled a central-loop WalkTEM system (Nyboe et al.
2010) with a 50 × 50 m2 transmitter coil, convolving the impulse
response with the waveform, bandwidth of the receiver coil and low
pass filter of the electronics. Two system moments, with low mo-
ment gate centre times from 9.19 × 10−6 to 6.78 × 10−4 s and high
moment gate centre times from 2.07 × 10−5 to 1.22 × 10−2 s, were
simulated with different shapes of the transmitted waveforms, in or-
der to obtain both shallow imaging and deep penetration (Auken et
al. 2019). We used the 3-D FE solver from Xiao et al. (2022) to gen-
erate the forward response. The model space, using octree meshes, is
refined locally close to the transmitter and receiver, where the elec-
tric fields change rapidly. The forward domain was decomposed
with one local mesh for each transmitter–receiver system (Xiao et
al. 2022). The input data were contaminated with 3 per cent of
relative Gaussian noise for all time gates.

The stopping criterion for all inversions is based on the total misfit
variation, the variation in the squared root of the objective function
(eq. 11), which must be smaller than 1 per cent in our case. The
same starting model was used for all inversions, a homogeneous
100 � m half-space. We conducted inversions for each acquisition
layout: two independent inversions (i.e. Models 1 and 2) and TL
inversions, varying the α MS tuning setting (eq. 13), that is, the
weight of the TL constraints in the objective function. The number
of iterations and the final data misfit of the inversion jobs are listed
in Table 1 (the TL results are listed only for α = 3). The inversions
converged with similar data misfits and iteration numbers.

Inversion results are shown along a W-E section at the middle
of the models (as shown by the red in Fig. 2). Figs 3 and 4 show
the inversion results with α = 3 along the section for the coarse

and dense acquisition layouts, respectively: the true resistivity dis-
tribution of the two model sections (a and d), the corresponding
independent inversions (b and e) and TL inversion sections (c and
f); the third figure columns (g–i) are the resistivity ratios of the two
model parameter vectors (m2/ m1) at the section. The dotted white
lines symbolize the anomaly position. Fig. 5 shows the TL inversion
results for three different α-values (3, 30 and 300) for both coarse
and dense layouts.

The inversion results in Fig. 3, that is, with the coarse acquisition
layout, show that the conductive body grows more extensive over
time. Still, it is hard to delineate the shape of the anomaly, especially
for Model 1. This behaviour is better evidenced in the resistivity ratio
sections: both independent and TL inversion reveal the increasing
conductive body in the right-hand part of the anomaly but have
difficulty resolving the changes in the left-hand region. In addition,
the connecting conductive (blue) changes in between are artefacts.
The missing resolution in the left-hand region is mainly caused by
the poor data coverage compared to the size of the anomaly in Model
1, in which the conductive anomaly has no complete coverage by
the soundings. However, the TL inversion retrieves a more focused
TL image with fewer inversion artefacts.

The resolution of the model anomaly improves significantly when
we halve the sounding distance. In Fig. 4, the two models are recov-
ered to a satisfactory level in both the independent inversions and
the TL inversion. However, the resistivity ratio highlights the lower
quality of the independent inversions. Together with the two con-
ductive blocky changes (blue), a resistivity increase and decrease
are present all around the section. The ratio image of the TL in-
version has much clearer background, and the anomaly boundary is
sharper.

Fig. 5 shows the TL inversion results as a function of α: the
resistivity ratios of the TL inversions present no resistivity overesti-
mation (red areas) with α = 3. At the same time, artefacts outside
the anomaly outlines appear for higher values (α = 30 and 300).
The missing resolution in the left-hand region of the coarse layout
diminishes with α > 3, but almost no distinction appears between
the true anomalies and the connecting conductive (blue) changes in
between. The TL results with dense coverage maintain the capabil-
ity of resolving the true conductive anomalies regardless of the α

value, but resistive artefacts grow with α.
Overall, the 3-D sensitivity of the TEM measurements allows

us to retrieve TL changes with an acquisition layout that does not
entirely cover the conductive anomaly. However, significantly better
results are achieved with increased data coverage. Furthermore, the
focusing scheme significantly improves the retrieval of TL changes,
with sharper anomaly boundaries and a more homogenous back-
ground. With coarse coverage, the capability of resolving the true
TL differences is more affected by the value of the MS tuning setting
α.

F I E L D E X A M P L E

Geothermal gas re-injection is becoming a critical step in mitigat-
ing air pollution caused by geothermal exploitation. Re-injected
acid gases (mostly CO2 and H2S) are expected to mineralize, but
monitoring such mineralization processes in the subsurface is chal-
lenging. The GEMGAS project aims to test the capability of several
geophysical methods, including TEM, to monitor the sequestration
of a small-scale H2S injection at the Nesjavellir power plant in
Southwest Iceland (Lévy et al. 2020). H2S injection is expected to
trigger basaltic glass dissolution, resulting in the precipitation of
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3D time-lapse TEM inversion 589

Figure 2. Coarse and dense acquisition layouts. The black rectangles represent the layout in the first measurement, and the grey ones represent the second
measurement. The dashed lines symbolize the top view of the 3-D anomaly in the first (black) and second (grey) measurement. The red lines represent the
position of the profile along which the inversion results are shown.

Table 1. The number of iterations/data misfits of the independent (Ind-) and time-lapse (TL-)
inversions with coarse and dense measurement layout.

Layout /
Inversion Ind-Model 1 Ind-Model 2 TL-Total TL-Model 1 TL-Model2

Coarse 10 / 1.01 10 / 1.00 10 / 1.26 − / 1.24 − / 1.27
Dense 12 / 1.04 11 / 1.20 9 / 1.26 − / 1.18 − / 1.33

Figure 3. Model sections and resistivity ratios of independent and TL inversion results using the coarse acquisition layout. Black dots on the top sections
represent the sounding positions. White dashed lines represent the outlines of the true conductive anomalies.

pyrite and clay minerals, which should be reflected by changes in
the electrical properties of the subsurface (Lévy et al. 2018, 2019,
Prikryl et al. 2018). Before the H2S injection in 2021 January, two
sets of TEM and ERT data were collected in 2019 and 2020 to
obtain a baseline model and evaluate the resistivity variability at
the site (either natural or caused by power plant operations). TL
inversion of these baseline data sets is the focus of this section,
while post-injection monitoring are not addressed further in this
paper.

The ground-based TEM data acquisition used the WalkTEM sys-
tem, with a 50 × 50 m2 transmitter coil. Data were acquired with
two magnetic dipole moments, with low moment gate center times
from 9.19 × 10−6 to 6.78 × 10−4 s and high moment gate centre
times from 2.07 × 10−5 to 1.22 × 10−2 s. The same starting model,
homogeneous 100 �·m half-space, and stopping criterion, the total
misfit variation smaller than 1 per cent, are used for all inversions.
The same spatial constraints are applied to both TL and independent
inversions.
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590 Xiao et al.

Figure 4. Model sections and resistivity ratios of independent and TL inversion results using the dense acquisition layout. Black dots on the top sections
represent the sounding positions. White dashed lines represent the outlines of the true conductive anomalies.

Figure 5. Resistivity ratios of TL inversion results using different values for the MS setting α (eq. 13): top row α = 3; middle row α = 30; bottom row
α = 300; left-hand column, coarse acquisition layout and right-hand column, dense acquisition layout. White dashed lines represent the outlines of the true
conductive anomalies.

Fig. 6 shows the acquisition layout, with 20 soundings acquired
in 2019 and 15 soundings in 2020, with no data coverage in the
vicinity of the power plant infrastructure (yellow lines). The differ-
ent number of soundings is due to the additional inductive coupling
evidenced in the 2020 TEM data, with more soundings completely
removed during data processing in 2020. The coupling was caused
not only by the power plant infrastructure but also by metal fences
present in the area and not shown on the map. Unfortunately, the
area affected by coupling is also where H2S injection is taking
place. In the following, the inversion models will be shown in
3-D view and along with two profiles, shown in Fig. 6: the pro-
file indicated by the red line, running close to the TEM sound-
ings; the profile indicated by the dashed black line, along which

ERT data have been acquired in 2020 (with an electrode distance
of 10 m).

This latter profile is shown in Fig. 7, compared to the ERT results.
A similar resistivity pattern appears in both inversions, with a strong
conductive anomaly around x = 1000 m along the profile, in the
vicinity of one of the injection well at Nesjavellir power plant (Lévy
et al. 2020), where hot water (around 100 ◦C) has been re-injected
continuously for over 10 yr. However, differences are present when
looking at the small-scale resistivity variations due to the different
data coverage and sensitivity of the ERT and TEM methods. In-
terestingly, the strong conductive anomaly lies mainly in-between
TEM soundings but is none the less retrieved by the 3-D inversion
consistently with 2-D ERT inversion.
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3D time-lapse TEM inversion 591

Figure 6. Map of Nesjavellir field site with measurement locations. Grey
circles, black triangles and the red star represent the 2019, 2020 TEM and
borehole locations, respectively. The dashed line indicates the location of an
ERT profile acquired in 2020 and used for comparison. The solid red line
represents the position of the profile along which the inversion results are
shown. The solid yellow lines indicate the power plant infrastructures at the
site.

Figure 7. SW-NE profiles of 2020 3-D TEM inversion and 2-D ERT in-
version along the black dashed line in Fig. 6, where the data sets were
both collected in 2020. Black dots on the top sections represent the TEM
sounding positions’ projection.

As shown in the synthetic example, the TL inversion results are
affected by choice of the MS tuning setting α (eq. 13), especially
with coarse data coverage. Figs 8 and 9 present the variation of
data misfit as a function of α (as overall variation and sounding by
sounding, respectively). At the same time, Figs 10 and 11 show the

Figure 8. The data misfit of the independent (Ind, dashed lines) and TL
(solid lines) inversions for 2019 data (blue lines), 2020 data (green lines)
and total data (black lines) as a function of α values (eq. 13).

inversion models in comparison with independent inversions (along
with the red profile of Fig. 6 or in 3-D view, respectively).

Fig. 8 tells us that the inversion of the 2019 data set is weakly
influenced by the weight of the TL constraints in the objective
function (i.e. by α), while a significant influence appears on the 2020
data: with increasing α, two significant drops in data misfit present
at α = 10 and 300. Fig. 9 presents the data misfit differentiated
by sounding and magnetic dipole moment for three α-values. It
highlights that the changes in data misfit occur in the 2020 high-
moment data in the vicinity of the conductive anomaly and the 2020
low-moment data in the northeast part of the survey. Again, the 2020
high-moment data in the vicinity of the anomaly are the data most
affected by the inductive coupling at the site, with some soundings
culled before inversion. Ideally, all coupled data have been culled.
Still, with a sparse data set, unique identification of coupled data is
challenging, and there might be small coupling effects remaining in
some of these soundings. This means that the misfit changes might
be due to not entirely removed coupling.

Fig. 10 presents the sections of the 2019 and 2020 inversion
models along the red line of Fig. 6 and the resistivity ratios of
the 2020/2019 inversions for both independent inversions and TL
inversions at the three different α-values (3, 30 and 300). All the
inversion results present similar resistivity patterns, with the highly
conductive body also shown in Fig. 7 lying mostly in the gap of
TEM measurements (between 800 and 1200 m along the profile).
Nonetheless, slight differences in the shape of the conductive re-
gion and the entire resistivity pattern exist among inversions ob-
tained with different settings. The resistivity ratio plots of Fig. 10
help significantly in quantifying the temporal changes over the two
models: very few variations exist between the 2019 and 2020 mod-
els with the α = 3 and 30 TL inversions, while the α = 300
TL inversion presents more differences, but always significantly
more focused than independent inversions. This is even more ev-
ident in Fig. 11, which presents the inversion ratio images in 3-D
view within two ratio thresholds: from −∞ to 0.8 for highlighting
significant resistivity reductions; from 1.25 to ∞ for highlighting
significant resistivity increases. As in Fig. 10, the TL inversions with
α = 3 and 30 present almost no variation, and the larger α results
in more changes in the inversion. However, in Fig. 11, it is shown
more clearly than in Fig. 10 that the independent inversions present
massive changes over the entire inversion volume, especially when
looking at the resistivity increases in Fig. 11(h).

Looking at all inversion results obtained by tuning the α setting,
that is, the weight of the TL constraints in the objective function
helps in the interpretation: increasing α, more and more variations in
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Figure 9. Map of data misfit at individual soundings of TL inversions with different α-values (eq. 13) and independent inversions, separate for moments (low
and high) and acquisition years (2019 and 2020).

TL inversion are allowed. So, starting from small α-values, the most
data-driven TL changes start to appear, whilst bigger TL changes
occur when releasing α, together with an increase in volume of the
anomalies already present with small α-values. Consequently, the
most data-driven TL changes are the shallow resistivity increases
in the northeast area of the survey and the resistivity increase in
the southwest area at around 150 m depth (around 1800 and 300
m in Figs 10i and j with α = 3 and 30 results). Unfortunately, no
prior or borehole information exists that can help interpret these
anomalies, which appear data-driven.

Further TL changes appear in new areas of the survey, close
to the gap between TEM soundings, only with α = 300: with
this setting, a reduction in resistivity appears at intermediate-large
depths in the 2020 model. This corresponds to a slight decrease in
the data misfit in the TEM soundings in the northeast side of the
gap, as shown in Fig. 9. Unfortunately, as already stated, this area
of the survey is the one most affected by inductive coupling (this
is actually the reason for the data gap), so a slight decrease in the
data fit is not necessarily significant, considering that there is a risk
of coupling contamination in the data. Furthermore, the synthetic
experiments have shown that inversion artefacts appear with high
α-values, and that the TL changes that occur in acquisition areas
with low sounding coverage might be misplaced.

Consequently, even if it is not possible to define unequivocally,
only by TEM data and prior information, if a resistivity decrease
occurred in the conductive anomaly, that is, if the TL inversion with
α = 300 has to be preferred to the TL inversion with α = 30,

at this stage of the research the no-variation scenario is preferred.
This outcome would have been much more difficult to conclude
based on the independent inversions alone. Furthermore, the TL
inversion proposed in this study easily allows to handle a data set
with different acquisition layouts and to study the data influence on
the inversion results in detail, considerably increasing the robustness
of the interpretation.

D I S C U S S I O N

This study presents a new TL inversion scheme for TEM data based
on a multimesh approach for model definition and forward compu-
tations, 3-D sensitivity calculation during the inversion, and simul-
taneous inversion of two data sets at once, imposing TL constraints
defined in terms of a generalized MS norm, which ensures compact
TL changes. The presented synthetic and field examples highlight
the capability of the new inversion scheme in handling data rep-
etition with a non-coincident acquisition layout and the capability
of retrieving localized TL changes thanks to the 3-D forward and
Jacobian implementation also when the non-optimal data coverage
is used.

However, especially when it comes to the interpretation of field
results, the importance of the regularization of the inversion re-
sults appears. This is because, contrary to the synthetic examples
in which results can be evaluated based on the knowledge of the
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Figure 10. SW-NE inversion model sections for 2019 data (left-hand column) and 2020 data (middle column), as well as 2020/2019 resistivity ratios (right-hand
column). Rows from top to bottom show TL inversions with increasing α values (eq. 13) and independent inversions. Black dots on the top sections represent
the TEM sounding positions’ projection.

true models, the field experiments usually bear much less ground-
truthing information to judge the quality of the inversion models.
In this study, to draw our conclusions on the interpretation with-
out any direct borehole information, we focused on the analysis of
the data misfit and the analysis of the balance between data and
model regularization in the objective function, as well on the com-
parison with the synthetic results. The examples are shown in this
manuscript focus, for brevity, on the tuning of the MS setting α,
which determines the balance of data misfit and TL regularization
in the inversion. However, the tuning of the spatial smoothness
of the inversion models and the other settings of the generalized
asymmetric MS norm also determine the inversion models and
play a significant role in the interpretation, so great care is recom-
mended in the choice of all regularization settings for TL inver-
sions. Furthermore, in many TL experiments diffusive processes
are monitored, and compact TL changes do not necessarily repre-
sent the underlying physics/geochemistry. The new TL inversion
scheme for TEM data is applicable also with classic L2 TL reg-
ularization; none the less, regularizations that favour the smallest
model variation compatible with the data can be a very helpful
tool for data interpretation also when studying diffusive processes,
when used together with model measures that promote smooth
variations.

C O N C LU S I O N S

We have developed a new algorithm to carry out TL inversion of
TEM data with three features designed for improving applicability

and robustness, that is, (1) a 3-D octree-based forward and sensi-
tivity computation, which allows the algorithm to be also applied
when the sounding distances in the acquisition layout are more
significant than the horizontal extension of background resistivity
variations and TL changes; (2) a multimesh approach for forward
and inversion computations, such that the same inversion mesh is
applicable even in the presence of variations in the acquisition lay-
outs and (3) a focusing of TL changes by the use of the asymmetric
MS norm.

We tested the new algorithm on both synthetic and field data. The
synthetic experiments modelled a growing 3-D conductive anomaly
hosted in a two-layer resistive background, captured by two sets
of measurements with slight variations in the sounding positions.
Furthermore, two acquisition layouts were modelled: a dense one,
with sounding spacing closer than the horizontal extension of the
anomaly, and a coarse one, in which the sounding spacing exceeded
the anomaly extension. The results show that excellent recovery of
TL changes can be achieved with dense data coverage, and that with
coarse, non-optimal acquisition density, it is possible to identify the
occurrence of resistivity variations, but with misplacement of TL
changes. In all cases, the presented approach delivers much more
focused changes with clear background, compared to independent
inversions.

In the field example, we used two TEM data sets collected in
2019 and 2020 at the Nesjavellir power plant in Southwest Iceland
within the GEMGAS project, to establish a baseline for monitoring
an experiment of H2S sequestration, which started in 2021. Due to
the coupling from local infrastructures, only very few soundings
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Figure 11. The resistivity ratio and ratio volume within two thresholds −∞-0.8 and 1.25-∞) of TL inversions with different α value and the independent
inversion.

close to the injection area could be used. However, the 3-D sensi-
tivity of the new TL algorithm allowed reasonably clear imaging
of the subsurface resistivity distribution over the whole domain,
as confirmed by the comparison of the inversion models of the
TEM data and of the ERT data acquired at the site in 2020 within
GEMGAS.

The TL inversions of field data were carried out by varying the
weight of the TL constraints (i.e. α-value) on the inversion objec-
tive function to better interpret the role of the regularization in the
interpretation and specifically of focusing effect of the asymmetric
MS norm. All inversions carried out with the new TL algorithm
gave much more focused TL changes when compared to indepen-
dent inversions. Furthermore, the various values used in tuning
the asymmetric MS norm identified the likely data-driven model
changes between 2019 and 2020.

This new implementation will help in increasing the applicability
of TEM method in TL monitoring also in applications in which the
presence of infrastructures limits data coverage and the sounding
location cannot be repeated exactly.
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