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ABSTRACT
Surface nuclear magnetic resonance is a geophysical technique providing non-invasive aquifer 
characterization. Two approaches are commonly used to invert surface nuclear magnetic resonance 
data: (1) inversions involving many depth layers of fixed thickness and (2) few-layer inversions 
without predetermined layer thicknesses. The advantage of the many-layer approach is that it 
requires little a priori knowledge. However, the many-layer inversion is extremely ill-posed and 
regularisation must be used to produce a reliable result. For optimal performance, the selected 
regularisation scheme must reflect all available a priori information. The standard regularisation 
scheme for many-layer surface nuclear magnetic resonance inversions employs an L2 smoothness 
stabiliser, which results in subsurface models with smoothly varying parameters. Such a stabiliser 
struggles to reproduce sharp contrasts in subsurface properties, like those present in a layered sub-
surface (a common near-surface hydrogeological environment). To investigate if alternative stabilis-
ers can be used to improve the performance of the many-layer inversion in layered environments, 
the performance of the standard smoothness stabiliser is compared against two alternative stabilis-
ers: (1) a stabiliser employing the L1-norm and (2) a minimum gradient support stabiliser. Synthetic 
results are presented to compare the performance of the many-layer inversion for different stabi-
liser functions. The minimum gradient support stabiliser is observed to improve the performance of 
the many-layer inversion for a layered subsurface, being able to reproduce both smooth and sharp 
vertical variations of the model parameters. Implementation of the alternative stabilisers into exist-
ing surface nuclear magnetic resonance inversion software is straightforward and requires little 
modification to existing codes.

estimate the underlying spatial distribution of aquifer properties 
consistent with the observed data. This involves minimising an 
objective function that is used to penalise undesirable model 
characteristics, such as penalising models that do not closely 
reproduce the observed data.

Several inversion schemes are commonly employed in sur-
face NMR, such as the time-step inversion (Legchenko and Valla 
2002), the QT inversion that inverts the entire data cube simulta-
neously (Müller-Petke and Yaramanci 2010), joint-inversion 
schemes coupling NMR and time-domain electromagnetic 
(TEM) data (Behroozmand et al. 2012) or NMR and electrical 
resistivity (Günther and Müller-Petke 2012) data, and frequency-
domain inversions (Irons and Li 2014). In each case, the inver-
sion result is a model of the subsurface aquifer properties (such 
as depth profiles of the water content (WC) and relaxation times 
that describe the duration of the NMR signal). For the purposes 
of this discussion, we group surface NMR inversions into two 

INTRODUCTION
Surface nuclear magnetic resonance (NMR) is a non-invasive 
geophysical technique providing insight into aquifer properties. 
The measurement involves pulsing strong oscillatory currents in 
a surface coil in order to generate a measureable NMR signal at 
depth that originates from the immersion of hydrogen nuclei in 
the Earth’s magnetic field (Schirov, Legchenko and Creer 1991; 
Hertrich 2008). To gain insight into the spatial variability of 
aquifer properties, the amplitude of the pulsed current is varied 
to manipulate the spatial origin of the measured signal. This 
procedure is typically referred to as a sounding, where weak and 
strong currents produce signals from shallow and greater depths, 
respectively. The end product is a dataset containing NMR sig-
nals of differing spatial origins (although many signals have 
overlapping spatial origins). An inversion framework is used to 
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In practice, selection of a many-layer versus a few-layer 
inversion scheme in surface NMR typically depends on how 
much a priori information is available. Many-layer inversions 
are preferable given no a priori information, whereas few-layer 
inversions may be preferable if a known number of layers are 
present. Few-layer inversions are also commonly used if a well-
stratified subsurface is expected, given that many-layer inver-
sions typically result in models with smoothly varying subsur-
face parameters. However, this is not a result of the many-layer 
inversion scheme directly but a consequence that generally 
employs a smoothness stabiliser. To balance the advantages of 
both inversion strategies for layered subsurfaces (i.e., the ability 
to reproduce sharp variations in model parameters without 
requiring extensive a priori information), the performance of 
several stabiliser functions is compared against the smoothness 
stabiliser; an MGS stabiliser and a stabiliser employing an 
L

1-norm are investigated. Selecting alternative stabilisers does 
not require significant changes to existing inversions schemes. In 
this study, inversion is performed using an iteratively reweighted 
least-squares approach (Farquharson and Oldenburg 1998), 
where a Taylor expansion of the objective function is used to 
form the model update. Within this framework, alternative stabi-
liser functions are implemented by reweighting the roughness 
matrix within an L2-norm (Fiandaca et al. 2015; Vignoli et al. 
2015).

The MGS stabiliser (also referred to as focused or sharp 
inversion) provides the benefits of the many-layer inversion but 
while maintaining the ability to produce models with sharp con-
trasts in properties (Portniaguine and Zhdanov 1999). Briefly, 
the MGS stabiliser penalises the number of sharp contrasts in the 
model regardless of their magnitude, allowing the production of 
models with sharp interfaces between layers of relatively homog-
enous properties. The MGS stabiliser has been demonstrated to 
improve image sharpness for many-layer inversion schemes in 
magnetic (Portniaguine and Zhdanov 1999), gravity (Portniaguine 
and Zhdanov 1999), TEM (Vignoli et al. 2015), electrical resis-
tivity tomography (Pagliara and Vignoli 2006), magnetotellurics 
(Zhdanov and Tolstaya 2004), seismic (Zhdanov, Vignoli and 
Ueda 2006), and induced polarisation (Blaschek, Hordt and 
Kemna 2008) studies. An additional stabiliser, employing an 
L

1-norm (instead of the L2-norm present in the smoothness stabi-
liser), is also investigated. The L1-norm penalises the absolute 
value of the variation in model parameters. This allows for 
sharper contrasts in model parameters compared with the 
smoothness stabiliser (Loke et al. 2003) but not as readily as the 
MGS stabiliser. Mohnke and Yaramanci (2002) found that sur-
face NMR inversions that use an L1 stabiliser are better suited to 
producing models with sharp contrasts compared with those that 
use the smoothness stabiliser. The L1-norm is included in this 
comparison to compare its performance with that of the MGS 
stabiliser because of its ease of use. Synthetic results are pre-
sented to investigate the performance of each stabiliser for sur-
face NMR inversion in the presence of a layered subsurface. 

categories: (1) inversions that use model domains consisting of 
many depth layers of fixed depths and thickness (referred to as 
many-layer inversions) and (2) inversions involving relatively 
small model domains with few depth layers, where the inversion 
determines the thickness of each layer (referred to as few-layer 
inversions). Each of the previously mentioned surface NMR 
inversion schemes may be implemented using either a many-
layer or a few-layer model domain.

In many-layer inversions, the number of model parameters is 
generally quite large (when compared with few-layer inversions) 
and a regularisation term must be included in the objective func-
tion to stabilise the ill-posed inversion (Tikhonov and Arsenin 
1977). The model that minimises the objective function thus 
balances satisfactory data fit with the magnitude of the regulari-
sation term, which is controlled by the stabiliser function and the 
characteristics of the model. For optimal results, the selected 
stabiliser function should (1) return small values for the regu-
larisation term when the model exhibits features consistent with 
a priori knowledge about the site and (2) return large values for 
models with characteristics inconsistent with a priori informa-
tion about the site. The standard stabiliser in surface NMR is the 
L

2 smoothness stabiliser, which penalises the square of the vari-
ation between neighbouring model parameters. For a 1D depth 
sounding (the standard surface NMR experiment), this results in 
models that vary smoothly with depth. A limitation of such an 
approach is that the inversion struggles to reproduce sharp vari-
ations in WCs and relaxation times that may be present at the 
interface between lithologic layers of contrasting properties. To 
address this concern, an alternative stabiliser may be employed, 
such as the minimum support (Last and Kubik 1983), minimum 
gradient support (MGS) (Portniaguine and Zhdanov 1999), or 
stabilisers based on L1-norms (e.g., Ellis and Oldenburg 1994; 
Loke, Acworth and Dahlin 2003). Mohnke and Yaramanci (2002) 
demonstrated the use of an L1 stabiliser in surface NMR, but to 
our knowledge, the smoothness stabiliser remains the standard in 
surface NMR.

For few-layer inversions, a predetermined amount of layers is 
set and the inverted parameters are layer thicknesses, WCs, and 
relaxation times (Guillen and Legchenko 2002; Mohnke and 
Yaramanci 2002; Weichman et al. 2002). Due to the reduced 
number of model parameters (compared with the many-layer 
inversion), no regularisation term is included in the objective 
function. As a result, few-layer inversions are well suited to pro-
duce models with sharp contrasts in WC and relaxation times 
between neighbouring layers. An advantage of few-layer inver-
sions is that uncertainty in the estimated profiles can be readily 
quantified using Bayesian approaches such as Markov chain 
Monte Carlo (Guillen and Legchenko 2002; Weichman et al. 
2002) or simulated annealing (Mohnke and Yaramanci 2002). A 
limitation of few-layer inversions is that they struggle to repro-
duce smoothly varying subsurface parameters and can exhibit 
strong sensitivity to the initial starting model (i.e., the a priori 
specification of the number of layers and layer properties).
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and is necessary to stabilise the ill-posed inversion by penalising 
models that exhibit undesired traits. QR is a matrix used to 
weight the relative importance of the stabiliser function for each 
model constraint; , where CR is a matrix containing 
the variances of the constraints. The R matrix is called the rough-
ness matrix and is used to calculate the first-order difference 
between the model parameters in neighbouring depth layers. The  
η parameter corresponds to the norm used by the stabiliser (L2 or 
L1 or MGS). In this study, the different norms are implemented 
using a reweighting matrix W(m) and an L2-norm, where the 
stabiliser function is given by

� (4b)

The form of W(m) corresponds to the specific norm desired and 
can be determined by equating equation (4b) with the equations 
describing the stabilisers in the following section. Equation (4b) 
indicates that selection of a norm different than L2 (the smooth-
ness case) does not require significant modifications to existing 
inversion codes; it only requires the inclusion of an additional 
weighting matrix within the stabiliser.

To find the model m that minimises equation (2), an itera-
tively reweighted least-squares approach is used (Farquharson 
and Oldenburg 1998), where the Taylor expansion of the objec-
tive function is used to determine the model update. This 
involves updating the estimated model iteratively, ultimately 
converging on a model that minimises the objective function. 
Details about the inversion scheme employed in this manuscript 
are given in Auken and Christiansen (2004), Vignoli et al. 
(2015), and Fiandaca et al. (2015). Note that the objective func-
tion (equation (2)) does not contain a trade-off parameter that can 
be used to weight the relative importance of the fd and fs terms 
(the trade-off parameter is typically denoted by λ). The inversion 
scheme used in this study weighs these terms equally, where the 
importance of the stabiliser term is controlled through the QR 
matrix that weighs the relative importance of the stabiliser for 
each model parameter.

Selecting a stabiliser function
The stabiliser function stabilises the inversion and allows the 
production of models with a desired property. This is done by 
penalising models that exhibit an undesired trait. Equations (5a), 
(5b), and (5c) illustrate the equations for a smoothness (L2) sta-
biliser (the standard stabiliser in surface NMR inversions), the L1 
stabiliser, and the minimum-gradient support stabiliser, respec-
tively:

� (5a)

� (5b)

Results of the many-layer inversions are also compared against 
those of a few-layer inversion. Discussion about the implementa-
tion of alternative stabilisers into existing inversion packages and 
guidelines for the use of the MGS stabiliser are also given.

BACKGROUND
The surface nuclear magnetic resonance inverse problem
The standard measurement in surface NMR is the free induction 
decay (FID), which involves measurement of the NMR signal 
following a single-current pulse. To investigate the spatial vari-
ability of aquifer properties, the amplitude of the current pulse is 
altered to manipulate the spatial origin of the measured signal. 
The forward model is given by

� (1)

where d is a vector containing the measured NMR decays (for all 
current amplitudes for all time samples) and m is a vector con-
taining the model parameters (WCs and T2* in each depth layer). 
For a many-layer inversion, the number of depth layers and their 
thicknesses are predetermined. For a few-layer inversion, the 
model m also contains the layer thicknesses. The g function 
describes the physics of the forward problem; it contains: (1) 
information about the expected spatial origin of the measured 
signal corresponding to the excitation pulse type, current ampli-
tude, and pulse duration; (2) a spatial weighting based on the 
receiver sensitivity at each location in the subsurface; (3) the 
impact of a conductive subsurface on depth penetration and sig-
nal phase; and (4) a scaling parameter to estimate the magnitude 
of the equilibrium magnetisation given the local magnetic field 
strength (local Earth’s field strength) and aquifer temperature. e 
is a vector of the noise present in the data. Detailed derivation of 
the surface NMR forward model is given in Weichman, Lavely 
and Ritzwoller (2000).

To estimate the spatial distribution of aquifer properties, an 
inversion is used to predict the model that balances satisfactory 
data fit with the magnitude of the regularisation term. To deter-
mine this model, an objective function Φ(m), described by

� (2)

is minimised. The f
d
(m) term describes the L2-norm misfit 

between the predicted data (g(m)) and the observed data (nor-
malised by the data uncertainty), whereas f

s
 (m) is the stabiliser 

function that determines the magnitude of the regularisation term 
for the current model m. The f

d
(m) term is given by

� (3)

where , i.e., the inverse of the data covariance matrix. 
The stabiliser function is described by

� (4a)
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the difference in model parameters. In the  regime, 
 
there is little penalisation and the contribution to fs(m) is small. 
This indicates that the MGS stabiliser will not severely penalise 
models containing sharp transitions but will search for models 
with as few sharp transitions as possible with relatively homog-
enous properties between these sharp transitions (Portniaguine 
and Zhdanov 1999). σk and b effectively control the extent of 
homogeneity within a layer and the number of sharp transitions 
present in the final model, respectively. The value of b does not 
directly control the number of sharp transitions present in the 
estimated model, but its magnitude does influence the number of 
transitions present. Models corresponding to large values of b 
have more transitions than models with small b.

Implementation of each norm in this study is done using the 
weighting matrix W(m), determined by equating equation (4b) 
with equations (5a), (5b), or (5c). Note that, for the L1 and MGS 
stabilisers, W(m) depends on the current model, requiring that 
W(m) be recalculated every iteration. The computational cost of 
updating W(m) is not significant, and each inversion proceeds at 
similar speeds in the case of a 1D surface NMR sounding. The 
stabiliser can also take other forms to describe different a priori 
conditions. In this manuscript, the L1 and MGS stabilisers are 
selected based on their less severe penalisation of models contain-
ing sharp transitions in model parameters compared with the 
smoothness stabiliser.

RESULTS
Three synthetic surveys are presented to compare the utility of the 
L1 and MGS stabilisers against the smoothness stabiliser for many-
layer surface NMR inversions. Each stabiliser is also compared 
against the results of a few-layer inversion. Forward modelling and 
inversion of the synthetic data is performed using the AarhusInv 
software package (Auken et al. 2015), following the Behroozmand 
et al. (2012) forward implementation. Inversion is performed using 
the amplitudes of the NMR signals (i.e., the in and out of phase 
components of the data are not treated separately). The inversion 
also bounds the estimated WCs to fall between 0.1% and 100%, 
whereas the relaxation times are bound between 5 ms and 1.5 s. In 
each case, FID measurements are simulated using a coincident 
transmit/receive 100-m square loop, a 30-ms on-resonance excita-
tion pulse, and 16 pulse moments sampled on the interval from 0.7 
to 8.5 As. The selected pulse moments are chosen to span a range 
typical of surface NMR field experiments. The subsurface resistiv-
ity is 1000 Wm in each case and is fixed during the inversion. This 
is equivalent to the inversions having a priori knowledge of the 
exact subsurface resistivity structure; a simple resistive subsurface 
is chosen to focus the comparison on the ability to estimate the 
subsurface parameters common to all surface NMR inversions 
(WC and relaxation times). In practice, it is common for non-joint 
NMR-TEM inversion schemes to treat the subsurface resistivity 
structure (estimated from a separate TEM or other electrical sur-
veys) as fixed during the inversion. The Larmor frequency is set to 

� (5c)

The (∆m)k term corresponds to the first-order difference of the 
constrained parameters for the kth constraint, i.e., (∆m)k= mj(k)-
mi(k), where j(k) and i(k) represent the indices in the model 
vector of the parameters linked through the kth constraint. For 
the L2 and L1 stabilisers, the σ

k
 term represents the strength of 

the constraint because it controls the relative importance in the 
stabiliser function for the kth constraint. Equation (5a) indi-
cates that the smoothness fs(m) increases proportional to the 
square of the difference between neighbouring model param-
eters. As such, sharp variations result in larger fs(m) and 
larger Φ(m). The minimisation will therefore return smoothly 
varying models, as models with sharp transitions will be 
penalised. The L1 stabiliser (equation (5b)) penalises the abso-
lute value of the difference in model parameters instead of the 
square of difference. As a result, smoothly varying models are 
still favoured by the L1-norm, but sharp variations are penal-
ised much less compared with the smoothness stabiliser. For 
both the L2 and L1 stabilisers, selection of σk controls the 
smoothness of the final model; large σk places little impor-
tance on the smoothness, allowing more erratic profiles to be 
produced in order to further minimise fd(m), whereas small σk 
places more importance on model smoothness at the expense 
of a larger data misfit.

If a priori knowledge suggests sharp transitions are likely at 
a particular site, selection of a smoothness stabiliser is subopti-
mal given that it penalises models with characteristics expected 
to be representative of the local hydrogeology. In this case, an 
alternative stabiliser may provide improved performance. For 
example, the MGS stabiliser (Portniaguine and Zhdanov 1999) 
presents a more efficient implementation of a priori knowledge 
of blocky structures. In this case, fs(m) is given by equation (5c); 
the form of the MGS stabiliser in equation (5c) is chosen to be 
consistent with Vignoli et al. 2015. This form of the MGS stabi-
liser presents a parameterisation allowing a simple understand-
ing of the physical meaning of b and σk. Consider the effect of 
 
the MGS stabiliser in three regimes. In the  1 limit,  
 
which describes the sharp change in model parameters at the 
interface between layers of contrasting properties, the contribu-
tion to fs(m) approaches 1/b. Therefore, the presence of a sharp 
transition in the model parameters is not penalised based on the 
magnitude of the model variation (as in the smoothness case) but  
 
penalised a fixed amount. In the  regime, the 
 
contribution to fs(m) scales approximately with the square of  
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given in Behroozmand et al. (2012). Note that the layer boundaries 
for the synthetic subsurface models occur at the same depths as 
layer interfaces in the model discretisation. In practice, the depth 
discretisation is unlikely to coincide with the true layer boundaries; 
in this case, it would cause either smearing between two layers or 
an error in identifying exact depth of the interface.

In each example, 200 noisy datasets are produced by adding 
different noise realisations to the same noise-free dataset. For the 
first three examples, the noise level is 20 nV (i.e., the standard 
deviation of the Gaussian used to randomly generate noise for the 
first time gate is 20 nV). Although the signal-to-noise ratio (SNR) 
in each case depends on the subsurface model, this level of noise 
produces an SNR of ~50–80 for the three examples. For each 
noisy dataset, a WC and a T2* profile are estimated using a many-
layer inversion with a smoothness stabiliser, a many-layer inver-
sion with an L1 stabiliser, a many-layer inversion with an MGS 
stabiliser, and a few-layer inversion. The 200 estimated WC and 
T2* profiles produced by each inversion scheme are used to form 
histograms of the WC and T2* values in each depth layer. The top 
two rows of Figure  1 illustrate several examples of how the  

2138 Hz. Each inversion begins with a starting model correspond-
ing to a half-space of 15% WC and T2* of 150 ms. The data are 
binned into 12 time gates of logarithmically increasing width. The 
earliest and latest time gates are centred at 41 and 445 ms, respec-
tively. Gaussian white noise is added to the time-gated data. To 
account for the varying widths of the time gates, the noise added to 
each time gate is scaled by the square root of the ratio of the time 
gate’s width compared with the width of the first time gate. The 
stated noise levels refer to the standard deviation of the Gaussian 
used to generate the noise in the first time gate (the width of the first 
time gate is 7.1 ms). The subsurface is discretised into 25 depths of 
increasing thickness to a depth of 110 m. The shallowest layers 
have thicknesses of 1.5 m and increase to a thickness of ~10 m 
(layer thicknesses increase roughly logarithmically). Below 110 m, 
the subsurface is treated as a half-space. A model discretisation 
consisting of 25 depth layers was chosen to balance the opportu-
nity to capture smoothly varying parameters without dramatically 
over-parameterising the subsurface. Increasing the number of depth 
layers places more importance upon the regularisation. Further 
discussion about the approach used to discretise the subsurface is 

Figure  1 Histograms showing 

(top row) the WC and (middle 

row) T2* profiles estimated from 

the inversion of 200 independent 

noisy datasets. The bottom row 

illustrates a histogram of c2 for all 

200 inversions. The dashed red 

line shows the true model (a 

three-layer system with a single 

aquifer). Dark and white colours 

indicate bins with many and no 

counts, respectively. Columns left 

to right show the results for a 

many-layer inversion using a 

smoothness stabiliser, a many-

layer inversion using an L1 stabi-

liser, a many-layer inversion 

using an MGS stabiliser, and a 

few-layer inversion with three 

layers. The noise level is 20 nV. 

Black and white bins have 70 and 

0 counts, respectively.
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cates the number of counts present in each bin (black indicates a 
high number of counts and white indicates no counts). The WC 

histograms will be illustrated. The y-axes correspond to depth, the 
x-axes correspond to either WC or T2*, and the colour scale indi-

Figure 2 (A) One of the 200 noisy data-

sets produced by the subsurface model in 

Figure  1. (B) An example of the data 

residual produced by the many-layer 

inversion using the MGS stabiliser. This 

data residual corresponds to a c2 of 1.02 

and is representative of that produced by 

other inversions with similar c2.

Figure  3 Histograms showing the 

(top row) WC and (middle row) T2* 

profiles estimated from the inver-

sion of 200 independent noisy data-

sets. The bottom row illustrates a 

histogram of c2 for all 200 inver-

sions. The dashed red line shows 

the true model (a four-layer system 

consisting of two aquifers). Dark 

and white colours indicate bins 

with many and no counts, respec-

tively. Columns left to right show 

the results for a many-layer inver-

sion using a smoothness stabiliser, 

a many-layer inversion using an L1 

stabiliser, a many-layer inversion 

using an MGS stabiliser, and a few-

layer inversion with three layers. 

The noise level is 20 nV. Black and 

white bins have 70 and 0 counts, 

respectively.
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from the log-transformed upper limit of its confidence interval, 
i.e., s

k
 becomes  Therefore, the  

 
penalty  of equations (5a)–(5c) can be expressed in  
 
terms of s

rel
 as 

 . � (6)

 
For example, srel = 1.1 means that model parameter variations of 
~10% are acceptable (i.e., should not be penalised severely). 
Given the noise level of 20 nV, s

rel 
= 1.5 was used for the smooth-

ness and L1 stabilisers, whereas for the MGS stabiliser, s
rel 

= 1.1 
and b = 50. Note that for each stabiliser, the WCs and T2* param-
eters are given the same constraint strengths. Further discussion 
about the selection of the MGS stabiliser parameters is given in 
the discussion section.

and T2* bins are 0.5% and 5 ms wide, respectively. The histograms 
allow the uncertainty of the resulting profiles to be estimated by 
examining the distribution of WCs and T2* values within each 
depth layer. Low and high uncertainty correspond to depth layers 
with narrow black distributions and wide light grey distributions, 
respectively. Note that the histograms do not illustrate the full 
range of equivalent solutions as each inversion begins with the 
same starting model. However, the histograms remain a useful tool 
to provide insight into the uncertainty in the estimated profiles. For 
each stabiliser, the results for single regularisation strength are 
shown. The strength of the regularisation is selected to produce the 
smoothest model that fits the data within error. The constraint 
strengths s

k
 used in this study are relative to the magnitude of the 

model parameter mi(k), i.e., the constraint strength is effectively 
controlled by a parameter denoted srel, where s

k
=(srelm i(k)- mi(k)). 

The inversion in this study is carried out in a logarithmic model 
space; therefore, (Dm)

k becomes  
and sk is estimated by subtracting the log-transformed parameter 

Figure  4 Histograms showing 

(top row) the WC and (middle 

row) T2* profiles estimated from 

the inversion of 200 independent 

noisy datasets. The bottom row 

illustrates a histogram of c2 for all 

200 inversions. The dashed red 

line shows the true model (a 

smoothly increasing WC profile 

with a homogenous T2*). Dark 

and white colours indicate bins 

with many and no counts, respec-

tively. Columns left to right show 

the results for a many-layer inver-

sion using a smoothness stabilis-

er, a many-layer inversion using 

an L1 stabiliser, a many-layer 

inversion using an MGS stabilis-

er, and a few-layer inversion with 

three layers. The noise level is 

20 nV. Black and white bins have 

70 and 0 counts, respectively.
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The first example (Figure 1) is a three-layer system contain-
ing a single aquifer. The aquifer is 14 m thick (from 11- to 25-m 
depths) with a WC of 40% and T2* = 200 ms. The layers above 
and below this aquifer have reduced WC (5%) and faster T2* 
(50  ms). The smoothness inversion (left column) accurately 
resolves the increased WC and T2* layer, producing reliable 
estimates of the WC and T2* magnitudes in all three layers. The 
large contrast at the upper boundary is well resolved by the 
smoothness stabiliser, whereas the lower boundary is smoothed 
over a larger depth range. The L1 stabiliser (column 2) resolves 
the properties of all three layers well, capturing the sharp con-
trast at the upper layer boundary while also estimating a sharper 
transition to low WC and T2* at the lower layer boundary com-

Figures 1, 3, and 4 contrast the performance of each stabiliser. 
The top row in each figure illustrates the estimated WC profiles, 
the middle row illustrates the estimated T2* profiles, and the bot-
tom row shows a histogram of the resulting c2 in each case. c2 is 
unitless, as the data misfit (nV) is normalised by the data uncer-
tainty (nV). c2 histograms clustered around 1 indicate good data 
fit (c2 is close to 1 because it is normalised by the number of data 
points). Columns one to three correspond to many-layer inver-
sions that use a smoothness stabiliser, an L1 stabiliser, and an 
MGS stabiliser, respectively. Column four illustrates the results 
of the few-layer inversion that is given the correct number of 
layers. The true WC and T2* profiles in each case are illustrated 
by the red dashed lines.

Figure 5 Histograms showing the 

influence of srel, and b on the 

estimated WC profile for the 

MGS stabiliser. The histograms 

are formed of the WC profiles 

resulting from the same 200 noisy 

datasets as in Figure 3. Each row 

and column corresponds to a par-

ticular srel, and b, respectively. 

Dark and white colours indicate 

bins with many and no counts, 

respectively. The top left and bot-

tom right represent the strongest 

and weakest regularisations, 

respectively. The noise level is 

20 nV. Black and white bins have 

70 and 0 counts, respectively.
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liser. The residual shows no structure (i.e., no large areas with 
consistent sign) and has a magnitude consistent with the noise 
level. The c2 in this example is 1.02. Figure 2B is representative 
of the residual produced by inversions resulting in similar mag-
nitude c2.

The second example (Figure 3) is a slightly more complicated 
four-layer system containing two aquifers. The two aquifers (lay-
ers 1 and 3) have WC of 30% and T2* = 200 ms. The layer sepa-
rating these aquifers and the bottom layer have reduced WC 
(5%) and T2* (50 ms). In this case, the smoothness inversion (left 
column) produces a smoothed version of the layered subsurface. 
The WC and T2* are well estimated in each layer, but it is diffi-
cult to identify the layer boundaries given the smooth variations. 
For example, the upper and lower layer boundaries for layer 3 
(the lower aquifer) are both spread over a 5- to 10-m-depth 
range. The L1 inversion also reproduces the WC and T2* magni-
tudes well while better identifying the boundaries between the 
upper three layers. The MGS stabiliser produces similar results 
as the L1 stabiliser but with the lower boundary between layers 3 
and 4 being more sharply resolved. The WC and T2* values esti-
mated within layers 1 and 3 are also more homogenous than the 
L1 stabiliser (observed by narrower darker histograms for the 
MGS case compared with the L1 case). Both the L1 and MGS 
stabilisers struggle to resolve the magnitude of T2* in the second 
layer. This is a consequence of the low WC at these depths, 
which reduces the ability to resolve the magnitude of T2*. For the 
few-layer inversion, which is given the correct number of layers, 
the true model is well reproduced. The estimated T2* value in 
layer 2 also has a higher uncertainty (noted by the wide histo-
gram). Overall, the few-layer result is quite similar to that pro-
duced by the MGS stabiliser, with each layer boundary being 
well resolved. The L1 and smoothness inversions are less able to 
capture the large contrast in properties at the lower boundary 
between layers 3 and 4. The bottom row of Figure 3 indicates 
that each inversion provides a similar level of data fit.

The third example (Figure  4) tests the performance of each 
stabiliser given a subsurface containing a smooth variation in WC. 
In this case, the WC is 10% at the shallowest depth and increases 
roughly linearly to 40% at 37-m depth; T2* is equal to 100 ms at all 
depths. Below 37 m, a homogenous 40% WC layer is present. The 
smoothness inversion (left column) accurately captures the slowly 
increasing WC profile while estimating a smooth transition to 
lower WC at depth (below ~37 m). The L1 stabiliser produces 
similar results as the smoothness case, capturing the smoothly 
increasing WC profile while better predicting a homogeneous WC 
below 37 m (narrow dark histograms). The MGS stabiliser also 
reproduces the true model well, with a similar prediction of the 
homogeneity below 37 m as the L1 stabiliser. The T2* profile is well 
resolved in all cases, except at the shallowest depths. The system-
atic bias towards underestimated T2* at the shallowest depths likely 
results from the T2* at these depths having little impact on the 
overall data fit (given that these depths correspond to the lowest 
WCs). For the few-layer inversion results, where the inversion is 

pared with the smoothness stabiliser. The MGS stabiliser (col-
umn 3) produces similar results as the L1 stabiliser and resolves 
both layer boundaries well. The estimated WCs and T2* within 
the aquifer (layer 2) show less variation for the MGS case than 
the L1 and smoothness stabiliser cases (darker narrower histo-
grams). The few-layer inversion, which was given the correct 
number of layers a priori, accurately reproduces the true model. 
In this example, the blocky true model is reproduced with high 
precision by the L1, MGS, and few-layer inversions, whereas the 
smoothness results make the identification of the lower layer 
boundary more difficult. The bottom column of Figure 1 indi-
cates that each inversion approach was able to fit the data to 
similar levels, with the data residual norms clustered around 1. 
To give an example of the noisy data and quality of data fit, 
Figure 2 illustrates the first of the 200 noisy datasets (left panel) 
and the data residual (right panel) produced by the MGS stabi-

Figure 6 Histograms showing the performance of the MGS stabiliser at 

varying noise levels. Each column corresponds to a particular noise level. 

The top and middle rows show histograms of the WC and T2*, respec-

tively, following the inversion of 200 noisy datasets. The bottom row 

illustrates a histogram of c2 for all 200 inversions. The dashed red line 

shows the true model (same as in Figure  3). Dark and white colours 

indicate bins with many and no counts, respectively. Black and white 

bins have 70 and 0 counts, respectively.
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each stabiliser represent equally likely models. Similarly, few-
layer inversions providing similar data fits as the many-layer inver-
sion also provide equally likely models. To decide between the 
potential models, additional geologic information should be con-
sidered, such as the depositional environment, which may help 
inform whether a layered or smoothly varying subsurface is more 
likely. The advantages of the L1 and MGS stabilisers is that they 
provide a means for the many-layer inversion to more readily 
produce sharp contrasts in properties.

Practical considerations for using the minimum gradient 
support stabiliser in surface nuclear magnetic resonance
We now focus on the MGS stabiliser given that it provides the 
best ability to reproduce a layered subsurface when using a 
many-layer inversion. The contribution of the MGS stabiliser to 
the objective function is controlled by two parameters, s

k
 and 

b. In contrast, the smoothness and L1 stabilisers are controlled 
by a single parameter sk. The additional parameter for the MGS 
stabiliser complicates the decision as to how the regularisation 
strength should be selected. For the smoothness and L1 cases, 
the general rule for selection of the regularisation strength is 
that the smoothest model producing satisfactory data fit should 
be selected; otherwise, the inversion may introduce spurious 
features into the estimated profiles in an attempt to overfit the 
data. For the MGS stabiliser, selection of sk and b requires 
balancing the desired level of homogeneity within a layer with 
the number of sharp contrasts present in the estimated models. 
To illustrate the impact of each parameter on the performance 
of the MGS stabiliser, Figure 5 shows the WC profiles for MGS 
inversions performed with different combinations of srel and b 
given the same suite of 200 noisy datasets used to form 
Figure 3 (the two-aquifer system). Each row and column cor-
responds to a particular srel and b, respectively. The top middle 
panel is a reproduction of the MGS WC profiles from Figure 3. 
For small srel (top row), the intralayer homogeneity is high, 
noted by dark narrow histograms. For larger srel (rows 2 and 3), 
the intralayer homogeneity is reduced (wider light grey histo-
grams) and the results begin to more closely resemble the 
smoothness WC profile in Figure 3. For increasing b (left col-
umn to right column), the likelihood of additional sharp con-
trasts is increased. In this example, this results in a blurring of 
the layer boundaries due to the reduced penalisation of addi-
tional sharp contrasts in the final model. At this noise level (20 
nV), each level of regularisation fits the data to similar levels, 
except for the top left panel that produces a slightly poorer data 
fit. Given that the motivation to use an MGS stabiliser is to 
improve the ability of the many-layer inversion to reproduce a 
layered subsurface, we recommend selecting a lowsrel value 
(e.g., fixing srel to 1.1). This ensures that relatively homogene-
ous layers are produced and effectively allows the regularisa-
tion strength to be controlled by specifying a b value. The 
selected b should be as small as possible while still providing 
satisfactory data fit. For the depth discretisation and noise lev-

given five layers, a blocky stepwise increasing WC is predicted, 
with the overall structure in the WC being captured. The WCs at 
depths above ~37 m are more uncertain for the few-layer inversion 
compared with those for the many-layer inversions (wide light grey 
histograms). Below 37 m, the few-layer inversion accurately esti-
mates the WC. The bottom row of Figure  4 indicates that each 
inversion scheme produces similar levels of data fit. For some noise 
realisations, c2 is large (> ~1.3) and the data fit is reduced. While 
increasing the number of layers for the few-layer inversion will 
improve its ability to capture the smooth change in WC, the five-
layer model is shown, given the preference for the model contain-
ing the fewest number of layers that provides satisfactory data fit.

Figures 1, 3, and 4 illustrate that the smoothness stabiliser is 
suboptimal when sharp layer boundaries are expected, and the 
selection of an alternative stabiliser can improve the performance 
of the many-layer inversion in the presence of a layered subsur-
face. Comparing the L1 and MGS results indicates that the MGS 
stabiliser provides the best ability to reproduce a blocky subsur-
face structure when using a many-layer inversion. Even in a 
smoothly varying subsurface, the MGS stabiliser produces a 
reliable result. The benefit of the MGS stabiliser is that it is able 
to resolve blocky structures without requiring knowledge of the 
number of layers a priori; the MGS results even provide similar 
performance to a few-layer inversion given the correct number of 
layers. Note that for the depth discretisation and noise levels 
used in these examples, a fixed level of regularisation for the 
MGS stabiliser can be expected to provide flexible performance 
capable of resolving both smoothly varying and blocky subsur-
face structures. The few-layer inversion also performs well for a 
layered subsurface, provided that a sufficient number of layers 
are used in the inversion.

DISCUSSION
The selection of a many-layer versus a few-layer inversion scheme 
should consider the available a priori information about the site. If 
little information about the subsurface is present, such as whether 
a layered or smoothly varying subsurface is present, the many-
layer inversion offers the benefits requiring no a priori specifica-
tion about the number of layers. A preliminary many-layer inver-
sion can also be used to inform a subsequent few-layer inversion, 
where the many-layer result can be used to provide an initial 
model and helps in choosing the number of layers for the few-
layer inversion. Whether the result of the many-layer inversion is 
to be used as the final estimated model or as a starting model for a 
few-layer inversion, it is beneficial to use a stabiliser well suited to 
producing models with features consistent with the expectations of 
the subsurface. Therefore, if a layered subsurface is expected, the 
standard smoothness stabiliser is suboptimal. Both the L

1 and 
MGS stabiliser improve the ability of the many-layer inversion to 
reproduce blocky structures. However, results produced by a 
many-layer inversion that uses an L1 or MGS stabiliser are not 
necessarily more accurate than those produced by a smoothness 
stabiliser. Given equal levels of data fit, the results produced by 
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transitions in subsurface properties and is poorly suited to imaging 
layered subsurfaces. Two alternative stabilisers, an L1 stabiliser 
and a minimum-gradient support stabiliser, were found to improve 
the ability to identify sharp contrasts in layer properties. The MGS 
stabiliser is observed to greatly improve the ability of the many-
layer inversion to reproduce blocky structures. Although the 
L1-norm is observed to also provide improved performance com-
pared with the smoothness approach for layered subsurfaces, its 
improvement is less than that of the MGS stabiliser. Improving the 
utility of the many-layer inversion in a layered environment ben-
efits both the scenario where the model produced by the many-
layer inversion is used for building the conceptual model of the 
subsurface and the scenario where the many-layer inversion is 
used to build an initial model and an estimate of the number of 
layers needed for a subsequent few-layer inversion.

The form of the MGS stabiliser employed in this study pro-
vides a simple understanding of the role played by the two tunable 
parameters in the stabiliser function. The extent of WC and T2* 
homogeneity within a layer for the MGS stabiliser is controlled by 
sk (we recommend that variations greater than 10% be penalised), 
whereas the number of sharp transitions present in the final model 
is influenced by b (small and large b lead to less and more transi-
tions, respectively). Despite two tunable parameters, selection of 
appropriate inversion parameters is straightforward and a single 
set of parameters is observed to provide accurate results for a 
broad range of subsurface models. For the inversion of field data, 
we recommend selecting inversion parameters based on observa-
tions from synthetic tests with simple models (like those present in 
Figures  1–4), the same model discretisation, and similar noise 
conditions as the field data. In high-noise conditions, it may be 
preferable to use the MGS many-layer inversion to inform a few-
layer inversion, allowing the uncertainty of the estimated profiles 
to be more readily quantified. Alternatively, the standard smooth-
ness stabiliser may be preferable to the MGS stabiliser in high-
noise environments in order to limit the introduction of spurious 
sharp contrasts that may be interpreted as layer boundaries. 
However, this comes at the expense of resolving sharp contrasts. 
In summary, the MGS stabiliser provides an effective means to 
improve the flexibility of the many-layer surface NMR inversions.
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