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ABSTRACT Geophysical modelling and data inversion are important tools for interpreting the physical
properties of Earth’s subsurface. Solving the inverse problem involves several computational steps and is
generally a time consuming task. Artificial neural networks have the potential to speed up large computations.
Such networks provide the means to model the relationship between the inputs and outputs without
needing to know the physical model of the underlying problem. There are two main aspects that affect
the performance of neural networks: optimization of network architecture and pre-processing of data. In this
article, we investigate several traditional pre-processing techniques including the min-max scaling, z-score
scaling, and the logarithmic transform scaling, and propose some novel data pre-processing approaches for
the 1-D forward modelling of time-domain electromagnetic data based on signal characteristics. We evaluate
the performance of the conventional and the proposed pre-processing methods against a 3% relative error
metric, which corresponds to the typical data uncertainty, to show that forward data pre-processing has
significant effect on the performance of neural networks. The proposed gate-wise min-max scaling achieves
the best performance with 96% of gates within a 3% relative error, while the commonly used logarithmic
transform results only in 75% of gates within a 3% relative error. We provide insights into how various
pre-processing methods affect the performance of these networks and recommend optimal pre-processing
strategies that may be used where similar data content is encountered to achieve superior performance.
Finally, we show the effect of forward modelling accuracy in inverse modelling.

INDEX TERMS Data normalization, data pre-processing, forward modelling, inverse modelling, neural
networks.

I. INTRODUCTION
Geophysics is an important tool for guiding predictions about
the geology of the subsurface of the Earth. The geophysical
workflow begins with the collection of data and ends with a
model of subsurface properties. The process of translating the
observed data into a parameterized model of the subsurface
is often referred to as inversion and is a challenging problem.
Solving an inverse problem usually requires probabilistic or
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deterministic methodologies that are computationally expen-
sive and require extensive processing power for large surveys.

In order to speed up the inversion process, neural networks
can be used for two different mechanisms: (a) as a fast emu-
lator for the forward problem, (b) as a mechanism to directly
estimate a resistivity model given data. Such networks pro-
vide the means to model the relationship between the inputs
and the target outputs without needing to know the under-
lying principle of the physical model. During an inversion,
forward modelling, predicting data from a proposed model,
is computed repeatedly, hence a speed-up in this process can
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have significant impact on the overall performance of the
inversion process. Therefore, neural networks have been used
for the simulation of, e.g., forward modelling for borehole
resistivity measurements [1], electromagnetic induction data
[2], [3], and seismic waveform inversion [4]. To avoid the
heavy repetitive process of computing forwards during inver-
sion, neural networks have also been used directly for seis-
mic impedance inversion [5], electrical resistivity imaging
inversion [6], inversion of electromagnetic data [7]–[9], and
magneto-telluric inversion [10].

Many of these previous works have achieved promising
results. However, they have mainly focused on the neural
network’s architecture and its configuration, including type
of network, number of neurons, convolution kernel size,
loss function, activation function, the depth of network, etc.
In order to surrogate a physics-based model, it is imperative
to extract maximum precision from the network. Errors in the
network’s output will propagate to the inversion process and
culminate in more or less erroneous models.

Several studies on the effect of data pre-processing, also
referred to as data normalization, for various applications
outside geophysics show that it substantially affects the net-
work’s performance [11]–[15]. Data pre-processing is essen-
tial for geophysical data where the numerical data values may
span several orders of magnitude. One particular example
dealt with here is TEM data, where the dynamic range of the
data easily spans four to six orders of magnitude [16]. TEM
data is used tomap the spatial variation of electrical resistivity
of the subsurface, which reflects variation in the geological
structures.

In this article, we specifically focus on the 1-D forward
data pre-processing and investigate several schemes preced-
ing the approximation of forward responses of a TEM system
using artificial neural networks. We show that the choice of
data pre-processing significantly affects the performance of
a neural network and a substantial improvement in accuracy
can be achieved if optimal pre-processing strategy is used.
This investigation is based on data from the towed TEM
instrument, called tTEM [17] and 1-D Earth model is con-
sidered. The network input is the subsurface 1-D resistivity
model and the distance between the transmitter and receiver
coil. The target output of the network is the numerically com-
puted magnitude of the forward response produced for a step-
response TEM calculation, i.e., the B-field. We compare the
accuracy performance of the trained neural network for the
different pre-processing methods and provide insights into
how these methods affect the performance of the neural net-
work forward responses. We show that more variation in data
curves consequently results in better performance. We also
show that a significant speed-up can be achieved by using
the neural network based forward modelling with insignifi-
cant loss of accuracy. We also present the effects of forward
modelling accuracy in inverse modelling. Although, we have
used the data from the tTEM system, the proposed approaches
could be used for any TEM system, airborne or ground-based,
yielding similar data.

The rest of the article is structured as follows. We present
the investigated pre-processing schemes and the deployed
neural network configuration in Section II. In Section III,
we discuss the results and provide insights into how the pre-
sented pre-processingmethods affect the performance of neu-
ral networks. We also show the effect of forward modelling
accuracy in inverse modelling in Section III. In Section IV,
we discuss the limitations and prospects. Lastly, in Section V,
we give the concluding remarks.

II. PROPOSED METHODOLOGY
TEM methods are used to image the spatial variation of the
electrical resistivity, or equivalently the conductivity, of the
subsurface, where electrical patterns typically reflect geolog-
ical structures. The tTEM system is a system specifically
designed for detailed geophysical mapping of the shallow
subsurface, which is required for many applications includ-
ing aquifer vulnerability mapping [18], assessing locations
of artificial recharge sites [19], and nitrate retention map-
ping [20]. It uses a 2 m × 4 m transmitter coil and a
z-component receiver coil in an offset configuration. The
distance between the receiver and transmitter coil is usually
fixed around 9 m, but this may vary when the system is
re-configured or re-deployed. The system is towed by an all-
terrain vehicle.

During the forward modelling, a predicted TEM response
of a given resistivity model is calculated using a numerical
algorithm. On the contrary, inverse modelling starts with
the observed geophysical data and aims to produce a model
in agreement with those data. The inversion is an iterative
refining of an initial subsurface model until an optimal model
is realized. The iterative procedure is continued until the
predicted data from the forward response of the subsurface
model and the observed data agree within some threshold
values. This iterative process is computationally intensive,
and most of the time is spent during the computation of
the Jacobian matrix, where a significant number of forward
responses are computed.

In order to examine the effects of data pre-processing on
the performance of neural networks, we choose to investigate
the relationship from 1-Dmodel to data space, i.e. the forward
modelling.While it is possible to use neural networks directly
for transforming measured data to a model, it would require
training on the data affected by the transmitter waveform and
receiver coil characteristics, which may vary between sur-
veys, and re-training would be required. However, the effect
of the system response can be applied as a convolution.
Therefore, by applying the neural network for the forward
response directly from step-response, we can make the pro-
cess widely applicable, and use the well investigated inver-
sion algorithms [21].

A. DATA PRE-PROCESSING
It is challenging to achieve the desired performance with-
out normalizing or pre-processing the geophysical response
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FIGURE 1. Visualization of un-processed and processed B-fields of a subset of data used in this study. (a) Raw target outputs. (b) Raw target outputs in
log space. (c) Standard min-max curve scaling (SMMCS). (d) Z-score curve scaling (ZCS). (e) Logarithmic transform min-max curve scaling (LTMMCS).
(f) Gate-wise min-max scaling (GWMMS). (g) Time based curve scaling (TCS). (h) Kth root curve scaling (KRCS).

prior to training the neural network. The raw data amplitudes
span several orders of magnitude and the larger data values
would have a larger impact in the loss function than smaller
values [22]. Hence, the distribution of data is significant as
it can directly affect the performance of neural networks.
Therefore, it is necessary to perform data pre-processing, also
known as data normalization or standardization, when neural
networks are deployed [13]. For the case of tTEM, the inputs
consist of the distance between the transmitter and receiver
coil and 30-layer 1-D resistivity models with logarithmically
increasing thicknesses with a top layer thickness of 1 m and a
depth to last layer boundary at 120 m. The layer thicknesses
are fixed and not considered as input parameters.

The target outputs are the predicted TEM forward
responses for the corresponding resistivity models, i.e., mag-
nitude of the secondary magnetic field, the B-field, produced
from a step-response. A well-known code [21] is used to cal-
culate the numerical responses. The 1-D forward responses
are generated at 86 discrete time intervals or ‘‘time gates’’
from 30 ns till 30 ms with logarithmically increasing gate
widths sampled at 14 gates/decade. Although the typical
TEM data range is narrow, a wider range is considered in
order to obtain an accurate response after convolution with
the system response.

1) NEURAL NETWORK INPUT PRE-PROCESSING
It is practical to consider logarithmic variations in resistivity,
as the response of the forward model does not vary lin-
early with resistivity. For example, a resistivity change from
10 �·m to 20 �·m would affect the data space more than a
change from 110 �·m to 120 �·m. Therefore, we apply the
logarithmic transform on the resistivity model before scaling

it between [a, b] using (1).

Rn = a+
(b− a)

(
log10 (R)− log10 (Rmin)

)
log10 (Rmax)− log10 (Rmin)

(1)

where Rn is the normalized resistivity model of R, Rmin and
Rmax denotes the global minimum and maximum resistivity
values, both obtained from the training dataset.

The distance between the transmitter and receiver coil is
usually fixed for a particular survey. It is normalized by the
standard min-max scaling as in (2).

dn = a+
(b− a) (d − dmin)

dmax − dmin
(2)

where dn and d are the normalized and actual distance
between the transmitter and receiver respectively, while
dmin and dmax are the minimum and maximum possible dis-
tances with values, i.e., between 7 m and 10 m in our case.

Therefore, the input to the network becomes as in (3):

In =
[
dn
Rn

]
(3)

2) TARGET OUTPUT PRE-PROCESSING
The network target output, i.e. the B-field, has a dynamic
range spanning several orders of magnitude. The gate values
of the B-field are close to zero at late times. This is shown
in Fig. 1(a) where the forward responses of 5978 resistivity
models acquired from a survey are displayed. At late times,
the amplitudes are close to zero and would contribute very
little when the network is trained, unless special precautions
are considered during pre-processing or in the loss func-
tion. Only small changes are observed in the curves after
10 µs, the changes being almost indistinguishable in linear
space. Differences between curves are readily apparent in
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logarithmic space, shown in Fig. 1(b), where the logarithm of
absolute data values are plotted. This suggests an advantage
of using the logarithmic transform. However, it may have its
disadvantages especially for systems with an offset config-
uration where data containing sign changes will be present.
The performance of neural networks for TEM data is not only
affected by the changes within a data curve, but also by the
degree of variation between the observed data curves. There-
fore, the un-processed or the standard pre-processing tech-
niques may not perform well with geophysical data. Hence,
in this section, we discuss several pre-processing techniques
for the B-field and describe how one pre-processing may be
better than the others for data-driven models based on TEM
data.

3) STANDARD MIN-MAX CURVE SCALING (SMMCS)
A common machine learning pre-processing technique is the
min-max scaling, which maps the data values between a
specified range, ranging from the minimum value a to the
maximum value b. This technique is often used with neural
networks.

BSMMCS (t) = a+
(b− a) (B(t)− Bmin)

Bmax − Bmin
(4)

where BSMMCS (t) are the normalized gate values for B(t)
while Bmin and Bmax are the global minimum and maximum
value of the B-field.

4) Z-SCORE CURVE SCALING (ZCS)
Another standard machine learning data pre-processing tech-
nique is the z-score pre-processing where the observed data
points are transformed to a common scale. This is achieved
by subtracting the mean of each gate with the observed gate
value and dividing it by the standard deviation of each gate as
in (5). The transformed data values are then mapped between
the desired range [a, b] using (6).

BZC (t) =
B(t)− Bm(t)

Bs(t)
(5)

BZCS (t) = a+
(b− a) (BZS (t)− BZS min)

BZS max − BZS min
(6)

Here BZCS (t) are the scaled gate values of the z-score nor-
malized B-field BZS (t). The mean and standard deviation at
each gate time t are represented by Bm(t) and Bs(t) obtained
from the training data curves, and BZSmin and BZSmax are the
global minimum and maximum gate values observed at any
gate time in the training set.

ZCS results in considerable variation in the data curves as
shown in Fig. 1(d), and is expected to perform better as com-
pared to SMMCS. This pre-processing technique changes
the pattern of the original data curves, but results in smooth
outputs.

5) LOGARITHMIC TRANSFORM MIN-MAX CURVE
SCALING (LTMMCS)
Due to the minuscule change in late times in the raw data
curves (see Fig. 1a), the logarithmic transform is used to

visualize the data. This stretches the data and increases the
emphasis on small values while decreasing the emphasis
on large values. However, the logarithmic transform is not
well-suited to data containing sign changes, which are often
encountered in offset transmitter-receiver geometries or in the
presence of induced polarization effects. As tTEM has an off-
set configuration, we consider this transformation on absolute
data values as in (7) where the B-field is transformed into
logarithmic space and then mapped to the desired range [a, b]
using (8).

BLT (t) = log10 (|B (t)|) (7)

BLTMMCS (t) = a+
(b− a) (BLT (t)− BLT min)

BLT max − BLT min
(8)

where BLTMMCS (t) are the normalized gate values of BLT (t),
while BLTmin and BLTmax are the minimum and maximum
value encountered in BLT (t) at any gate time t .

The prediction error is expected to rise after post-
processing, when data values are reverse transformed to raw
values as this transform effectively stretches the dynamic
range of the small values, while shrinking the dynamic range
of large values. For simplicity, we use the absolute data values
for comparison. If this transform is to be used, one or several
additional parameters corresponding to the zero-crossings
need to be added as output variables during training in order
to be able to reverse transform the prediction data with sign
changes.

6) GATE-WISE MIN-MAX SCALING (GWMMS)
To ensure variation in the data curves, we also propose to
scale each gate value of the B-field between [a, b] according
to the maximum and minimum value of each respective gate
in the entire set of training data curves using (9).

BGWMMS (t) = a+
(b− a) (B(t)− Bmin(t))

Bmax(t)− Bmin(t)
(9)

Here BGWMMS (t) are the normalized gate values, while
Bmin(t) and Bmax(t) are the minimum and maximum gate
values for each gate time t respectively obtained from the
training data.

Gate-wise scaling ensures that each gate value is weighted
equally and contributes equally during the training of the
network. However, Fig. 1(f) shows that this transform distorts
the shape of the data curve, especially after 10 µs.

7) TIME-BASED CURVE SCALING (TCS)
In order to incorporate more variation in the data at late times,
we use (10) to transform the target output, which also results
in a smooth curve. Then, the transformed curve is scaled in
the specified range using (11) for training.

BT (t) = B(t)× t (10)

BTCS (t) = a+
(b− a) (BT (t)− BT min)

BT max − BT min
(11)

where BTCS (t) is the transformed target output while BTmin
and BTmax are the global minimum and maximum value
encountered in BT (t) at any gate time t .
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TCS results in significant variation in the data curves simi-
lar to ZCS as shown in Fig. 1(g) and Fig. 1(d). In comparison
with ZCS, the variation from TCS is less at early times and
is slightly more from 1 µs to 1 ms and results in smoother
curves.

8) K-ROOT CURVE SCALING (KRCS)
We also transform the B-field curves by applying the kth root
as in (12). To keep the negative data while transforming the
original curve, only odd values of k are considered. The root
transformed curve is then scaled to the desired range by (13).

BR(t) =
k
√
B(t) (12)

BKRCS (t) = a+
(b− a) (BR(t)− BRmin)

BRmax − BRmin
(13)

where BR(t) is the root transformed data curve while BKRCS
is the kth root scaled curve. The parameters BRmin and BRmax
are the minimum and maximum values encountered in BR(t)
at any gate time t in the training set. Essentially, the scaled
output for any odd root results in a similar pattern. Hence,
we consider KRCS for k = 5.
The transformed curve shown in Fig. 1(h) results in

larger variation at early times as compared to the original
curves while keeping the smoothness. However, less range
is encountered at late times.

B. NEURAL NETWORK CONFIGURATION
The purpose of this study is to evaluate the comparative
performance between various pre-processing techniques and
not to realize the optimal network configuration. Therefore,
we deploy a simple network topology consisting of a single
fully-connected hidden layer as shown in Fig. 2. We train
several networks by logarithmically grid-searching the num-
ber of neurons n in the hidden layer to evaluate various pre-
processing techniques.

FIGURE 2. Neural network configuration with one hidden layer.

We have not considered the use of the state-of-the-art
convolutional neural networks (CNNs) as they are primarily
intended for data having a spatial relationship. The neural
network configuration we have used is well-suited for pre-
dicting or mapping a real-valued quantity for a given set

of inputs. This is in accordance with the universal approx-
imation theorem [23], which states that a single fully con-
nected hidden layer within the network containing a finite
number of neurons can approximate any function under mild
assumptions on the activation function. Additionally, CNNs
are relatively more computationally expensive [24].

The input layer for the neural network consists of the
normalized distance dn between transmitter and receiver coil,
and the 30 layer normalized resistivity model Rn as in (3).
The output from the last fully-connected layer relates to
the B-field having 86 outputs corresponding to each time
gate. The range of [a, b] for the inputs and the outputs is
selected as [−1, 1], and the hyperbolic tangent is considered
as the activation function that also lies within the same range.
It approaches −1 as the range goes to −∞ and 1 when it
goes to +∞. Instead of randomly initializing the weights
of the network, we deploy the Nguyen-Widrow initialization
algorithm [25]. It approximately distributes the active region
of each neuron in the layer evenly across the input space [26].
Small numbers of random values are assigned in the Nguyen-
Widrow initialization prior to backpropagation, which helps
reduce the time it takes to train a network [27]. The loss
function in the regression layer is defined as the sum of
squared errors (SSE) as in (14).

E =
∑N

i=1

(
xi −

_x i
)2

(14)

where xi is the target output,
_x i is the predicted output and N

is the number of samples.
The scaled conjugate gradient algorithm is used to update

the network’s weights and biases as it has no critical user-
dependent parameters [28]. The only two required param-
eters are selected as σ = 5 × 10−5 that determines the
change in weight for the second derivative approximation and
λ = 5× 10−7 that regulates the indefiniteness of the Hessian.

To avoid overfitting, which is very common in fully-
connected networks, we apply an early stopping criterion.
This ensures that the training is stopped when the valida-
tion loss starts to increase while the training loss may still
be decreasing. We choose the validation check count to be
5000 epochs, which means that the training stops if the vali-
dation loss does not go lower than the best validation perfor-
mance for the succeeding 5000 epochs. It is also explained in
detail at a later stage in this article.

III. RESULTS
We have used MATLAB 2019b on a system with an Intel
Xeon Gold 6132 CPU with 2.6GHz and four NVIDIA
GeForce RTX 2080Ti GPUs. The training input comprises
of randomly selected 100,000 resistivity models acquired
from various tTEM surveys spread across Denmark. The
model space covers a wide range of possible Danish geo-
logical environments. The validation and the test set, are
comprised of two entirely different surveys conducted in
Søften and Gedved, in central Denmark, containing a total
of 697 and 5,978 resistivity models, respectively.
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FIGURE 3. Density plots of resistivity models for training, validation and test sets (a) Training set. (b) Validation set i.e. the Søften survey models.
(c) Test set, i.e. gedved survey models.

The validation and testing on different surveys provide a
good measure of assessing the generalization of the network
as those models are not encountered in the training set.
However, it is important that they lie within the range of the
training model space. The target test outputs, i.e., the for-
ward responses, for the corresponding resistivity models are
computed numerically. Figure 3 shows the range of resistivity
values for the models used in this study. However, it does not
show the variation of resistivity within each model.

The predicted outputs from the trained neural networks
using the different pre-processing techniques are post-
processed by reversing the corresponding pre-processing
methodologies to transform the data back to the raw values
for comparison with the numerical forward responses. For
log-based pre-processing methods, we consider the results on
absolute values of the B-field to reduce complexity.

As a 3% relative error is a typical data uncertainty in
TEM systems, we use this as the metric for performance
evaluation. Figure 4(a) shows the performance of different
pre-processing methods versus the number of neurons for the
test set. For most of the pre-processing approaches, the peak
performance for a single hidden layer network is observed at
n = 384. Therefore, Fig. 4(b) shows the cumulative percent-
age of gates with respect to the relative error for n = 384.
We do not show the results of the validation set as it is only
used to initiate the early stopping criterion. Figure 4(a) shows
that the GWMMS achieves the best performance with 95.9%
gates within the 3% relative error for n = 384. However,
if the B-field curves are to be used to calculate the time
derivative, dB/dt, errors will propagate and enlarge if the
predicted curves are not smooth. Therefore, if the network
target outputs are not smooth itself, the optimal performance
may not be realized, and additional post-processing stepsmay
be necessary.

It can be seen from Fig. 1(f) and Fig. 5(b) that the pre-
processed target output for GWMMS does not result in a
smooth curve and may require additional processing steps
after post-processing back to raw data values. Nevertheless,
this pre-processing strategy results in the best performance

FIGURE 4. Performance of neural network for the test set (a) Percentage
of gates within 3% relative error for different number of neurons in the
hidden layer. (b) Cumulative sum of percentage gates with respect to
relative error (%) for 384 neurons in the hidden layer.

and could be used depending on the type of application.
To increase the smoothness of the network output, one way is
to incorporate an L2 regularization term in the loss function.
This term forces the network to have smaller weights and
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FIGURE 5. Gate-wise accuracy within 3% relative error of SMMCS, GWMMS, ZCS and TCS for n = 384 for the validation set showing the effect of variation
of data curves on performance (a) Target outputs for SMMCS. (b) Curves for GWMMS. (c) Target outputs for ZCS. (d) Curves for TCS. (e) Percentage gates
within 3% relative error for SMMCS (f) Gate-wise performance for GWMMS. (g) Percentage gates within 3% relative error for ZCS. (h) Gate-wise
performance for TCS.

biases, which results in a smoother network response and
most likely achieve a better generalization. An alternative
way is to use the radial basis function network that results
in smoother approximations [29], [30].

TCS and ZCS have almost identical overall performances
and achieve the second-best accuracies resulting in 87.3%
of all gates within the 3% relative error for n = 384.
Figure 1(d) and Fig. 1(g) show that the pre-processed curves
result in smooth outputs, which may have its advantages.
The pre-processing based on the commonly used logarith-
mic transform in geophysics, i.e. the LTMMCS, results only
in 75.0% of gates within a 3% relative error for n = 512
and 73.5% for n = 384. The error is reduced from 25% to
4.1% when the pre-processing is switched from LTMMCS to
GWMMS and is dropped from 12.7% to 4.1%when switched
from ZCS or TCS. Additionally, Fig. 4(b) also shows that
GWMMS, ZCS and TCS pre-processing outperform the
LTMMCSwith a considerable margin. It can also be seen that
SMMCS and KRCS give the worst accuracy performance.
We ascribe this to the reduced variation in the curves at late
times.

To illustrate the effect of data variation on the network’s
performance, we show the gate-wise accuracy for SMMCS
and GWMMS within the 3% relative error in Fig. 5. It can
be seen in Fig. 5(a) that the data variation of SMMCS is
insignificant after 10 µs which consequently results in a
poor performance for the gate times after 10 µs as shown
in Fig. 5(e). Similarly, the GWMMS data variation starts
to decrease after 1 ms as in Fig. 5(b), which correspond-
ingly results in declined accuracy at late times as evident
from Fig. 5(f).

As the overall accuracy of ZCS and TCS at n = 384 is
found to be identical, we also show their gate-wise perfor-
mance in Fig. 5. It can be seen from Fig. 5(c) and Fig. 5(d)
that ZCS results in more variation in early times, therefore,
resulting in better accuracy at early gates (see Fig. 5(g)
and Fig. 5(h)). Similarly, more variation in TCS curves is
observed from ∼1 µs to ∼2 ms and consequently, superior
gate-wise performance is observed for TCS in that time range.
Lastly, ZCS performs better for late times after∼2ms asmore
variation is seen.

Overall, GWMMS achieves a superior performance as
compared to other pre-processing techniques investigated in
this study. However, as mentioned earlier, it may not be
a viable solution if a smooth output is required from the
network. In scenarios where a smooth output is required,
deploying TCS may be a better strategy as its performance
is superior to ZCS within usable gate times. The usable gate
times typically begin from 5 µs to 100 µs and end around
1 ms to 3 ms for ground-based TEM systems.

We also show the loss function progress of GWMMS for
n = 384 in Fig. 6, since it achieves the best performance.
The best validation performance is achieved at epoch =
189,808 with an error of 0.2644. The validation loss does not
decrease more than the best validation performance for the
next consecutive 5000 epochs as shown in the inset of Fig. 6.
This initiates the early stopping criterion and the network
weights and biases are reset with the ones for which the
best validation performance is achieved before the training
is stopped. Since the number of samples in the training set is
significantly larger than the validation set, the accumulation
of errors for the training loss is higher than the validation loss.
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FIGURE 6. Loss function progress for the neural network with GWMMS
for n = 384. Inset shows the validation loss progress for the last
6000 epochs that shows how early stopping criterion is applied.

However, if the error is normalized, the training loss is lower
than the validation loss.

The main motivation of this study is to speed-up the TEM
forward modelling. Therefore, we compare the computation
time of the neural network with GWMMS for n = 384
with two established geophysical modellingmethods, namely
AarhusInv [21] and AirBeo [31]. Both of these methods are
implemented in FORTRAN, therefore, we perform the com-
putational analysis on the same platform. It should be noted
here that the computation time is evaluated on a single CPU
core without any parallelization. Table 1 shows the compar-
ison of the processing time of neural network based forward
modelling with the typical modelling methods [21], [31].
Evident from Table 1, the neural network based approach is
400 times faster when compared to AarhusInv and almost
600 times faster when compared with AirBeo.

TABLE 1. Computation Time Comparison

We also show the trend of computation time and memory
consumption for n number of neurons with GWMMS for the
network configuration we have used in this study (see Fig. 7).
It can be seen that the computation time increases with the
increase in the number of neurons. Additionally, the memory
usage also increases. It should be noted here that the opti-
mal network configuration may require a different network
configuration, which would increase the computational time
and memory usage for the proposed approach. However, it is
still expected to perform significantly faster than the stan-
dard 1-D forward modelling codes. Hence, depending on the
application, the pre-processing techniques achieving superior

FIGURE 7. Computation time and memory consumption comparison for n
number of neurons in a single layer feed forward neural network with
GWMMS.

accuracy may be deployed for practical use after realizing the
optimal network configuration for maximum performance.

We also exemplify the effects of data pre-processing on
neural networks in inversemodellingwith a genetic algorithm
(GA) based inversion method [32]. We adapt the successfully
deployed GA [33] for our case with the fitness function
as in (15).

φ (R) =

(
log10

(
dsyn

)
− log10 (F (R))

)2(
log10 (1+ σ)

)2 (15)

where R is the resistivity model, F is the neural network
forward operator, dsyn is the data vector to be fitted, and σ is
the noise level which is set to 3%.

Figure 8 shows an example of inversion on data of a
synthetic model by using forwards generated from neural net-
works trained with SMMCS, GWMMS, ZCS and SMMCS
for n = 384. Forward data from 5 µs to 3 ms is used
which is the typical ground-based TEM time range. The
model retrieved by using the forwards from the neural net-
work trained on SMMCS, as shown in Fig. 8(a), significantly
diverges from the synthetic model. This is due to the fact
that the performance of SMMCS is satisfactory only from
5 µs to 10 µs (see Fig. 5(e)). These early times correspond to
shallow information where the inverted model agrees fairly
well with the synthetic model (down to 10-15 m in our
case). In case of the forwards from the network trained using
GWMMS, the invertedmodel agreeswith the syntheticmodel
down to 80-90 m (see Fig. 8(b)). This is in agreement with
the forward accuracy of GWMMS where satisfactory perfor-
mance is achieved from 5 µs to 1 ms as shown in Fig. 5(f).
For the forwards from the network trained using ZCS, the
inverted model agrees with the synthetic model down to
70-80 m as shown in Fig. 8(c). However, higher divergence
is observed for deeper layers compared to GWMMS. This is
expected since the forward accuracy of ZCS is lower at late
times within usable gate times in comparison to GWMMS
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FIGURE 8. Inversion and the corresponding forward response (from 5 µs to 3 ms) comparison of neural network trained on different pre-processing
techniques with the numerical solution for a synthetic model. (a) Inversion using neural network trained by SMMCS. (b) GWMMS inversion. (c) Inversion
by ZCS. (d) TCS inversion. (e) Comparison of numerical and neural network forward response for the inverted model from neural network trained using
GWMMS where inset shows the forward response comparison from 1 ms to 2 ms. (f) GWMMS forward response comparison, inset shows forwards from
1 ms to 2 ms. (g) Forward response comparison of inverted model by ZCS. (h) TCS forward response comparison.

(see Fig. 5(f) and Fig. 5(g)). The inverted model obtained
by using the forwards from the network trained on TCS also
agrees with the synthetic model down to 70-80 m as shown
in Fig. 8(d). However, the lower divergence is observed at
deeper layers (after 80 m) as compared to the model retrieved
from ZCS in relation to the synthetic model. This is because
the TCS performs better than ZCS at late times, especially
from 100µs to 1 ms (see Fig. 5(h)). This behavior is observed
for other resistivity models in the data set as well. We also
show the visual comparison of numerical forward responses
with the neural network based forwards of the inverted mod-
els for SMMCS, GWMMS, ZCS and TCS in Fig. 8(e-h). The
inset in Fig. 8(e-h) shows the forward response comparison
from 1 ms to 2 ms for clear visualization of the differences
between the numerical and neural network forward responses
with the synthetic data.

A. DISCUSSION
The effect of various pre-processing techniques is evaluated
for the ground-based tTEM system in this study. Since the
tTEM has an offset configuration, the TEM signal is affected
by the distance between the transmitter and receiver coil.
Therefore, it is considered an input parameter for our neural
network which is evident from (3). For other TEM systems,
e.g. the airborne SkyTEM, the flight-height affects the signal
differently. Therefore, the same analysis needs to be repeated
based on the guidelines defined in this article.

Some pre-processing methods may achieve better perfor-
mance levels as compared to the proposed techniques, how-
ever, as long as the guidelines that are defined in this study
are followed, the efficiency and performance of the neural

network can be ensured. As one of the main takeaways of
this investigation is that increased variation in data curves
results in improved performance, one can have a substan-
tial indication of the best pre-processing method without
training networks with arbitrary pre-processing techniques.
It is shown in Fig. 1 and Fig. 5 that each pre-processing
method affects the data curves differently, and one method
can increase the variation in the curves more than the others.

It can also be observed that all the pre-processed data
curves and the network inputs are scaled in the same range
i.e. [−1, 1]. This is intended for faster approaching to global
minima at error surface. However, this might restrict the
applicability of our neural network based forward modelling
since the pre-processing ties the network and its inputs to
the resistivity values in the training set. We expect that it
would not significantly affect its extension to other geological
settings as the minimum and maximum resistivity values in
the training set are encountered to be 0.45�·m and 2275�·m
respectively. For TEM systems, it is rare to encounter very
conductive environments, i.e.< 0.5�·m. For highly resistive
subsurface structures, i.e. by and large> 1000�·m, the TEM
method suffers in resolving such layers due to inherent limita-
tions of the method itself. Nevertheless, it could be beneficial
to unbind the lower and upper bound of resistivity, whichmay
be achieved at the cost of additional training time once the
optimal network architecture is realized.

A network with a single fully-connected hidden layer that
is used in this study can approximate any function that con-
tains a continuous mapping from one finite space to another.
However, a network with two or three hidden layers may
be required to realize the optimal network configuration,
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since a network with two hidden layers can represent an
arbitrary decision boundary to arbitrary accuracy and can
approximate any smooth mapping to any accuracy [34].
As smooth mapping may be required, a network with two
hidden layers might result in better accuracy performance.
However, deciding the number of hidden layers is only a
small part of the problem. It is also essential to determine
the number of neurons in each of the hidden layers. Several
rules of thumb for choosing the number of neurons have
been suggested in literature [35]–[38]. These rules of thumb
cannot be generalized because they are not always valid
for all training cases. Several factors including the network
architecture, the degree of noise, the number of hidden lay-
ers, and the complexity of the function must be taken into
account when selecting the number of neurons. Ultimately,
the selection of an architecture for the neural network comes
down to trial and error. As mentioned earlier, the purpose
of this study is performance comparison between different
pre-processing techniques. Therefore, realizing the optimal
network configuration is beyond the scope of this work.
However, grid search is one of the ways to find the best
network configuration.

Other network types including convolutional neural net-
works, and recurrent neural networks might also be effective
for the problem in hand. Since data pre-processing is a critical
component in the success of any neural network, it can be
expected that other types of neural networkwould also benefit
from an optimal pre-processing strategy.

Once a suitable network architecture is defined, it is instru-
mental that the training resistivity structures cover the entire
model range to achieve acceptable accuracy performance
for various geological settings. Currently, the model space
covers Danish geological environments. Hence, satisfactory
performance can only be expected for such geological struc-
tures. In order to cover the entire model range, one way
is to augment the training models by shifting the existing
resistivity structures by a factor. Another way is to generate
random models to cover the entire model range. However,
in our experience, using random models for the training of
the network does not result in optimal performance for real
geological models. Therefore, it is desirable to train the neural
network on realistic geological structures.

We used a GA based inversion strategy to show the effect
of forward modelling accuracy for TEM inversion. However,
a fast and accurate neural network emulator of the forward
problem can also be integrated into the gradient-based inver-
sion schemes where the fast forwards can be used to approx-
imate the derivatives for calculating the Jacobian matrix by
a first-order difference approach to accelerate inverse mod-
elling. Other Bayesian inversion frameworks that require
many forward responses could also significantly benefit from
the neural network forwards.

The proposed study is based on the 1-D earth model.
Although some of the concepts may be applicable to 3-D
modelling, the extension is not trivial and may be considered
in the future.

IV. CONCLUSION
We evaluated the effects of several pre-processing methods
for the approximation of tTEM forward modelling using neu-
ral networks. Numerous experiments showed that the choice
of data pre-processing significantly affects the performance
of a neural network. The results showed that the gate-wise
min-max scaling achieves an accuracy of 95.9% and time-
based curve scaling results in 87.3% of all gates within a
3% relative error. The pre-processing technique based on the
commonly used logarithmic transform in geophysics domain
only achieves an accuracy of 75.0% of all gates within the 3%
relative error. The accuracy of these pre-processing methods
is superior to the logarithmic transform scaling. We also
established the effect of data variation on the performance
of our neural network and showed that more variation in data
curves consequently results in better performance. Although
we have considered the tTEM system, the findings of this
study are also applicable to other airborne or ground-based
TEM systems.
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