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Abstract. Airborne electromagnetic (AEM) methods supply
data over large areas in a cost-effective way. We used Artifi-
cial Neural Networks (ANN) to classify the geophysical sig-
nal into a meaningful geological parameter. By using exam-
ples of known relations between ground-based geophysical
data (in this case electrical conductivity, EC, from electrical
cone penetration tests) and geological parameters (presence
of glacial till), we extracted learning rules that could be ap-
plied to map the presence of a glacial till using the EC pro-
files from the airborne EM data. The saline groundwater in
the area was obscuring the EC signal from the till but by us-
ing ANN we were able to extract subtle and often non-linear,
relations in EC that were representative of the presence of the
till. The ANN results were interpreted as the probability of
having till and showed a good agreement with drilling data.
The glacial till is acting as a layer that inhibits groundwater
flow, due to its high clay-content, and is therefore an impor-
tant layer in hydrogeological modelling and for predicting
the effects of climate change on groundwater quantity and
quality.

1 Introduction

Management of surface water and groundwater in deltaic ar-
eas is of paramount importance to sustain the current land
use and to protect the inhabitants from flooding, either by the
sea, rivers or groundwater (CLIWAT, 2011). In deltaic areas,

with surface levels around or below mean sea level (m.s.l.),
the groundwater is often saline due to seawater intrusion and
marine transgressions in the past. Climate change predictions
of increasing seawater levels and precipitation (especially
in wintertime) will likely affect the groundwater flow and
groundwater quality, especially the salinisation of groundwa-
ter (de Louw et al., 2011). To be able to forecast the effects of
climate change, spatially distributed groundwater flow mod-
els (both quantity and quality) are needed. These models re-
quire input parameters (hydraulic conductivity, porosity etc.)
that vary in 3-D space, and are based on the geological his-
tory of the modelled area. The usual workflow is to create a
geological model that is subsequently converted to a ground-
water flow model by selecting aquifers and aquitards from
the geological model and assigning the appropriate hydro-
logical parameters.

The basic dataset for geological modelling in many deltaic
areas consist of drillings, cone penetration tests (CPTs) and
geophysical data. Drillings and CPTs show much detail for a
point location (1-D), but to which extent the data can be spa-
tially extrapolated is not straightforward. Often the amount
of drillings is not sufficient to create detailed models of
the geological structure and lithological composition in the
subsurface. Incorporation of 2-D and 3-D densely sampled
ground-based and/or airborne geophysical data increases the
amount of data for subsurface characterisation substantially
(Hubbard and Rubin, 2000; Tye et al., 2011). Airborne geo-
physical techniques offer a quick way of collecting data over
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Fig. 1.Location of the study area, ECPTs and airborne geophysical
data.

a large area in a cost-effective way. One of the most popular
techniques used in groundwater studies is the electro mag-
netic (EM) method that results in a quasi-3-D model of the
resistivity of the subsurface (Kirsch, 2009). EM resistivity
(and its reciprocal, conductivity) might give an indication of
the geological build-up of the subsurface, when the resistivity
can be linked to lithological variation.

In this paper we describe techniques to combine 1-D
(point) data and quasi-3-D proxy data to produce a geolog-
ical model of the subsurface that can be used for hydroge-
ological modelling. Robinson et al. (2008) recognized the
need for improved geophysical measuring systems and sub-
sequent conversion of the geophysical signal to geological
and hydrogeological meaningful parameters that can be used
in distributed watershed modelling. Geostatistical methods
of interpolating in between boreholes require a representative
dataset that is often not available, due to the limited amount
of drillings and the large distances between the drillings.
For the proxy data to be useful in geological modelling, it
is necessary to convert the geophysical signal into a geo-
logical parameter (Gunnink and Siemon, 2009; Bosch et al.,
2009). This can be seen as a classification problem, for which
artificial intelligence is well suited.

2 Study area

The study area is located in the northern part of Fryslân,
the Netherlands (Fig. 1). This area is one of the pilot ar-
eas of the CLIWAT project (www.cliwat.eu), and several
geophysical techniques were employed, both airborne, HEM
(frequency domain airborne electromagnetics) and SkyTEM
(time-domain airborne EM), and land-based, electrical cone
penetration test, (ECPT). The main land use in the area is
grassland and agriculture. The average surface level is around
mean sea level, and is measured relative to the Dutch Or-
donance Level (NAP). In the area fluvial sediments, mainly
consisting of sand and occasionally clay were deposited in
the Early and Mid-Pleistocene (Peize-Waalre (PZWA), Ap-

Fig. 2. SE-NW geological cross section, showing the main geo-
logical units; PZWA: Peize/Waalre formation; AP: Appelscha for-
mation; PE: Peelo formation (from Elsterian glaciation); UR: Urk
formation; URTY: Urk-Tynje formation; DR: Drente formation
(Saalian glaciation); EE: Eem formation; BX: Boxtel formation
(Weichselian glaciation); HL: Holocene formations.

pelscha (AP) and Urk (UR) Formations). In the Elsterian,
some tunnel-valleys were formed and were filled with sand,
sometimes capped by clay (Peelo Formation (PE)). No tills
from this time period are found in the area. After the El-
sterian, fluvial deposits were again dominant (Urk-Tynje
(URTY) formation) until the land ice reached the area in the
Saalian ice age and a till layer at approx. 10–30 m depth was
deposited (Drente Formation (DR)). The till covers the en-
tire area and dips slightly to the north-west. Its thickness is
erratic and can vary considerably over short distances. The
till is considered to be an important layer in the groundwa-
ter flow, due to its low hydraulic conductivity. After the land
ice retreated, a marine transgression caused the sedimenta-
tion of sand and clay (Eem Formation (EE)). Another ice
age (the Weichselian) did not produce land ice in the area
but widespread aeolian coversands, the Boxtel Formation
(BX)). The latest (Holocene (HL)) transgression produced a
sequence of alternating sand and clay deposits (with locally
some peat) ranging from more than 10 m in the north-west to
less than 2 m in the south-east. For extensive description of
the geological formations see Mulder et al. (2003).

In large parts of the study area the groundwater is saline,
with the boundary between brackish and saline less than 5 m
below surface level. Only in the southeastern part of the area
the groundwater is fresh.

In Fig. 2, the cross section shows the general geologi-
cal setting. For the location of the geological cross section,
see Fig. 1.
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3 Materials and methods

3.1 Drillings

The National Database of the Geological Survey of the
Netherlands/TNO (www.dinoloket.nl) contains (amongst
other data types) drillings that are stored and described in
a consistent way. In the study area more than 3900 drillings
are available, although more than 90 % of them only sample
the upper 5 m. For only a small amount of the drillings men-
tioned above, the geological formations were determined, in
which the glacial till is especially of interest for this study.

3.2 ECPT

For this project, 71 ECPTs were carried out. Cone penetra-
tion tests are originally devised to establish the strength of
the sediments in geotechnical engineering. A sleeve of about
0.2 m with a cylindrical shaped conus is pushed into the soil
with a constant speed. The resistance of the conus is mea-
sured, together with the friction alongside the sleeve. When
pushed into the soil, every 0.02 m a measurement is taken.
The Electrical CPT also measures the electrical conductivity
by means of electrodes that are installed in the conus. For an
extensive description of CPT’s see Lunne et al. (1997). Clas-
sification of CPTs into lithological units (clay, sand, peat,
etc.) can be done with standard tables that are adapted to local
geology. The ECPTs in this study were classified into geolog-
ical formations based on the cone resistance and sleeve fric-
tion and the regional knowledge of the geology. This leads
to a dataset with depth of the top and bottom of each for-
mation and its electrical conductivity (EC). In Fig. 3 some
typical examples are given of the variation of the electrical
conductivity with depth, combined with data regarding the
occurrence of geological strata. For clarity reasons, the geo-
logical formations are grouped into 4 major units: Holocene
formations, post-Saalian formations (deposited on top of the
glacial till), the glacial till and the pre-Saalian formations.
The EC is dominated by the saline groundwater, resulting
in high conductivities compared to, for example, the sur-
face layers where the groundwater is fresh. In Fig. 3 the
EC is constantly increasing with depth (up to the glacial till
sediments), regardless of the lithological composition. The
boundary between the Holocene sediments (mixture of sand
and clay) and the underlying post-Saalian sediments (sand)
is not noticeable, except for ECPT S05G00606 and ECPT
S05G00609. Furthermore, the alternations of clay and sand
in the Holocene sediments (not shown in the graph) do not
show up in the EC profile. This is due to the large influence of
the saline groundwater on the EC, which obscures the effects
of lithological composition on the EC. On the other hand, it
can be noted that there is a drop in electrical conductivity in
the interval in which the glacial till occurs. Inspection of all
ECPTs revealed that in the majority of the ECPTs in which
the glacial till was found it showed a similar behaviour: de-

creasing EC in the depth-interval of the till, although the ac-
tual decrease in EC and its magnitude is not uniform. The
reason for this lower EC is not clear: the glacial till is clayey,
which theoretically causes a higher conductivity compared to
the sandy sediments below and above the till. A possible rea-
son for the lower electrical conductivity might be the water
quality in the till, which could be more fresh than the sur-
rounding sandy sediments. The last transgression caused the
salinisation of the groundwater, but due to the clayey nature
of the till and consequently low hydraulic conductivity, not
all (initial) fresh water is possibly replaced by saline water.
Since there are no groundwater samples from the till, this
unfortunately cannot be validated.

For all ECPTs combined, the EC of the till interval was
compared to the EC of the layers above and below the till. In
Fig. 4 the combined histogram of EC for till and non-till is
shown. There is some overlap in the two distributions, but it
is also clear that there is a distinction between the statistical
distribution of the EC of the till and the EC of the non-till.
This underpins the observed EC distinction between till and
non-till, as seen in the individual ECPTs.

3.3 Airborne EM

The study area was covered by two airborne EM surveys us-
ing helicopter-borne frequency domain (HEM) and time do-
main (SkyTEM) systems often used in groundwater studies
(Siemon et al., 2009b; Steuer et al., 2009). In a small part, the
two surveys overlapped (see Fig. 1). The data processing of
the airborne EM is described extensively in the next sections,
because the processed EM data serves as the main input for
the subsequent analyses to model the glacial till.

3.3.1 HEM

Frequency domain EM methods are able to measure both the
induced secondary magnetic field and the inducing primary
magnetic field generated by a sinusoidal varying source cur-
rent. The latter is generally cancelled out so the method be-
comes sensitive to the conductivity distribution in the subsur-
face. Furthermore, the complex secondary field is normalised
by the primary field at the receiver. HEM methods use circu-
lar transmitter, receiver, bucking and calibration coils which
are rigidly mounted in horizontal coplanar (HCP) or verti-
cal coaxial (VCX) orientation in the bird. The HEM sys-
tem used in the Fryslân survey is a Resolve system consist-
ing of five HCP and one VCX coil systems. Transmitter-
receiver separations are about 7.92 m and 9.06 m, respec-
tively. The frequencies range from 386 Hz up to 133 kHz en-
abling investigations down to about 150 m in resistive (about
> 100 Ohm m−1) and 50 m in conductive grounds (about<

10 Ohm m−1). In the presence of saline groundwater and de-
pending on its degree of salinisation, the investigation depth
is generally limited to some metres (5–10 m) below the top
of the saline water (Siemon et al., 2012). This HEM system
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Fig. 3.Geological variation and EC, as derived from ECPT.

Fig. 4.Distribution of EC for intervals with and without glacial till.

has been successfully applied in a number of groundwater
surveys in recent years (Siemon et al., 2007, 2012; Steuer et
al., 2008; de Louw et al., 2011; Sulzbacher et al., 2012).

3.3.2 HEM survey

In the study area, a helicopter-borne survey was conducted
by the BGR airborne group in August 2009 (see Fig. 1 for lo-
cation). The airborne survey comprises an area of nominally
5–10 km by 12–24 km, which was flown with 6 survey flights
totalling about 616 line-km. The nominal flight-line spacing
was 250 m for the 41 ENE–WSW profile lines and 2000 m
for the 8 NNW–SSE tie lines. A radar station for air-traffic
control strongly disturbed the airborne measurements, hence
an area of about 7 km by 10 km in the centre of the planned
survey area could not be covered (Siemon et al., 2010).

The BGR helicopter-borne geophysical system (Fig. 5) si-
multaneously records six-frequency electromagnetic, mag-
netic and radiometric data. Besides the electromagnetic and
magnetic sensors, the GPS antenna and a laser altimeter are
installed inside the towed tube called bird. The navigation
instruments and the gamma-ray spectrometer are mounted in
the helicopter. A ground base station records the time-variant
data required to correct the airborne data. The survey alti-
tudes of the towed sensors are normally 30–40 m. Data are
recorded 10 times per second. At an aircraft speed of about
140–150 km h−1 leads to a mean sampling interval of about
4 m. Due to the relative high conductivity in the subsurface
of the survey area, the maximum HEM depth of investiga-
tion ranges from about 30 m in the south-west area to about
100 m in the north-east area.

3.3.3 HEM data processing

Standard procedures including drift correction and levelling
(Siemon, 2009) and correction of man-made effects (Siemon
et al., 2011) were applied to process the measured HEM
values (in parts per million). In a 1-D setting, the HEM
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Fig. 5.The BGR helicopter-borne geophysical system.

responses of individual soundings were inverted, based on
the Marquardt-Levenberg approach, to layered models with
five layers (Sengpiel and Siemon, 2000; Siemon et al., 2010)
using individual starting models derived from apparent resis-
tivity vs. centroid depth sounding curves (Siemon, 2001). A
comparison with ECPT data showed that the use of smooth
fifteen-layer models provided better results (Mitreiter and
Siemon, 2011). Therefore, the smooth-layer approach was
used to include a-priori ECPT data to constrain the HEM in-
version. For this, the Laterally Constrained Inversion (LCI,
Auken et al., 2005) approach applied to HEM data (Siemon
et al., 2009a) has been modified to automatically include
ECPT conductivities as prior data.

All the already existing starting models close to an ECPT
site (i.e. within the search radius) are replaced by the cor-
responding ECPT model, but only down to the maximum
depth of an ECPT plus 10 %. Besides these prior constraints,
lateral and vertical constraints are used by the LCI to find
a reasonable balance between the importance of HEM and
ECPT data. The most promising results could be achieved
for a smooth inversion with fifteen layers using a search ra-
dius of 250–500 m and depth dependent vertical and lateral
constraints on the resistivities, i.e. the resistivities were con-

Fig. 6.SkyTEM helicopter system.

strained to 100 % (vertical) and 10 % (horizontal) change at
the shallowest depth and to 10 % (vertical) and 1 % (hori-
zontal) change at the greatest depth. In this case we used 5
times decimated dataset resulting in a sounding distance of
about 20 m.

3.3.4 SkyTEM

Transient Electromagnetic Methods (TEM) measure the in-
duced or secondary electromagnetic field due to the diffu-
sion of the eddy currents in the ground after the source cur-
rent is turned-off. Examples of mapping of groundwater re-
sources are reported in Auken et al. (2010), Kafri and Gold-
man (2005), Kok et al. (2010).

The SkyTEM system (Sørensen and Auken, 2004) is a
helicopter-borne time domain AEM system which consists
of a wire loop transmitter of several hundred square metres
and of a small receiver loop (Fig. 6). SkyTEM measures
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with two moments, one called Super Low Moment (SLM,
∼ 3100 Am2) which gives information of the near surface,
and one called High Moment (HM,∼ 122 000 Am2) which
gives deep information. These two moments are jointly in-
verted for each single sounding estimating electrical resistiv-
ity from the near-surface to a depth of 250–300 m, depending
on the setup used and the overall formation resistivity in the
survey area.

Data are corrected for pitch and roll from frame move-
ments in the airspace (by inclinometers mounted on the
frame) and the height above the ground is included in the
inversion with an a-priori measured one by lasers mounted
on the frame (Auken et al., 2009).

3.3.5 SkyTEM survey

The SkyTEM survey was carried out in the period 14–
18 September 2009. The survey consists of approximately
1000 line km of data with a line spacing of 200 m and covers
an area of 225 km2 (see Fig. 1). The SkyTEM survey utilised
a small loop with an area of 282 m2 and 4 turns aiming for
increased resolution of near surface geology rather than max-
imizing depth of investigation. The first time gate on SLM
(calculated from begin of the turn off ramp) was in 12 µs,
while the last gate on HM was in 21 ms. Coil correction was
applied to the early time gates resulting in a first SLM gate at
8 µs. An average sounding was produced for each 25–30 m,
ensuring that the raw data is not averaged over distances
greater than the distance between the individual soundings.
At later gates the lateral average was increased in order to
enhance the depth of investigation. With this setup and the
relative low resistive layers in the survey area, the resolution
ranges from a few metres below the surface to about 100 m
in the north-west area and 250 m in the south-east area.

3.3.6 SkyTEM data processing

The data were processed and inverted with the Aarhus Work-
bench software package (Auken et al., 2009). A major part of
the processing time was spend on removal of disturbed data
due to coupling to pipes, wires, etc. on the ground (Sørensen
et al., 2001). The survey areas have a dense infrastructure and
about 25 % of the data had to be removed, still leaving more
than 29 300 soundings for the geological modelling. Data
were inverted using the Spatially Constraint Inversion (SCI)
algorithm which gives a quasi-3-D interpretation of the geo-
logical layers (Viezzoli et al., 2008, 2009). Each model was
a 25 layer smooth model with logarithmic increasing layer
thickness in the interval from 2–32 m, with a maximum depth
of 240 m. At the end of the inversion, the depth of inves-
tigation (DOI) (Christian and Auken, 2010) was calculated
allowing to estimate to what depth the EM field contains in-
formation on the resistivity. For all details of the setup of the
SkyTEM system, the exact processing and inversion settings
we refer to Roth et al. (2011).

To further increase the resolution we added a-priori infor-
mation to all TEM models in a radius of 200 m from the lo-
cation of the ECPT. The a-priori resistivity of each layer in
the TEM model was calculated as the integrated conductivity
of the corresponding interval in the ECPT, while the standard
deviation (STD) on the a-priori value was set to a factor of
1.1 from 0–50 m from the ECPT and then decreasing with
the square of the distance from 50–200 m ending at a factor
of 1.0, i.e. the allowed deviation of the model conductivities
from the ECPT values was 10 % and 10–100 %, respectively.

3.4 Comparing airborne EM with ECPT

The aim of this study is to utilise the characteristic pattern of
the EC in the ECPTs that indicate the presence of the till. To
compare the results of the inversions (the individual models)
with the ground-truth – the ECPTs – we selected the clos-
est EM model to each ECPT, with a maximum distance of
50 m. The base inversions were used, in which no a-priori
information from the ECPTs was incorporated in the inver-
sion. In Fig. 7 some results are shown for both HEM and
SkyTEM, indicating that the fit of the airborne EM to the
measured ECPT is satisfactory. Especially the characteristic
pattern that is attributed to the presence of the glacial till is
preserved in most of the airborne models. To make a com-
parison between all ECPTs and the airborne EM model, the
closest EM model was selected, with a maximum of 50 m be-
tween ECPT and EM model. The thickness of the inversion
model depth of the EM model is varying in depth, while the
ECPT have aggregated values of EC every 0.1 m. To com-
pare the EC of the EM model with that of the ECPT, we
calculated for each layer in the inversion of the EM model,
the corresponding depth interval in the ECPT. For that depth
interval in the ECPT, the average of the natural logarithm
of the EC (Ln(EC) was calculated. In Fig. 8a scatterplots of
the average of the Ln(EC) from the ECPT vs. the Ln(EC) of
both HEM and SkyTEM are displayed. The SkyTEM inver-
sion shows a slightly better correlation with the ECPT data
than the HEM data, although there seems to be a slight un-
derestimation of the EC, compared to the ECPT. To appraise
the effects of including the a-priori information in the in-
version, we also made scatterplots for the constrained inver-
sion vs. the average EC from the ECPT (Fig. 8b) indicating
that there is a better fit compared to the unconstrained in-
version. This is not surprising, but one should be aware that
the ECPT data are not the only parameter used in constrain-
ing the inversion. Vertical, lateral and spatial constraints are
also used. Furthermore, the ECPT-based constraints are used
as a function of the distance to the EM models and there-
fore do not influence the inversion in a straightforward man-
ner. Figures 9, 10 and 11 show results from the inversion
of HEM and SkyTEM models. The inversion for HEM and
skyTEM data were calculated separately and were gridded
jointly to produce a model of the entire study area. In Fig. 9
slices of the EC at 4 different depths are displayed, showing
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Fig. 7. Some selected examples of comparison between EC from
ECPT and EC from airborne HEM and SkyTEM models (within 50
m), without a-priori constraints.

considerable lateral variation. Figure 10 shows the effect of
using a-priori EC data from the ECPT, while Fig. 11 shows
the EC distribution with depth for the cross sections indicated
in Fig. 1.

4 Artificial Neural Networks

4.1 Introduction into ANN

Artificial Neural Networks (ANN) are a form of artificial
intelligence that attempts to mimic the function of the hu-
man brain and nervous system (Aminzadeh and de Groot,
2006). ANN learn from data examples presented to the al-
gorithm and it is capable of capturing subtle relationships in
the data, even if the underlying (physical) relationships are
unknown or difficult to explain. The advantage of ANN over
traditional empirical and statistical methods is that there is no
need to introduce prior knowledge about the nature of the re-
lationship among the data. ANN are therefore well suited to
modelling the complex, often non-linear behaviour of earth
science data, which by their nature often exhibit large vari-
ability. Examples are the use of ANN in classifying lithology
(Bhattacharya and Solamatine, 2006), improving parameter
extraction from geophysical data for hydrological modelling
(Hinnel et al., 2010) and deriving parameters from Remote
Sensing data (Krasnapolsky and Schiller, 2003).

The structure and operation of ANN have been described
in detail by numerous authors (Shahin et al., 2008; Sandham
and Legget, 2010). We will only discuss the basics of ANN
here; the interested reader is referred to standard textbooks
like Hsieh (2009).

ANN consists of a number of artificial neurons, called
units, nodes or perceptrons. In earth science application,
Multi Layer Perceptrons (MLP) is the most commonly used,
in which the processing elements are usually arranged in lay-
ers: an input layer, an output layer and one or more interme-
diate layers, called hidden layers (Fig. 12a), and its operation
is given by Eqs. (1) and (2).

Ij = θj+

∑n

i=1
wjixi (1)

yj = f (Ij ) (2)

whereIj is the activation level of nodej , wji is the connec-
tion weight between nodes i and j,xi is the input from node
i = 1, . . . n, θj is the threshold for nodej , yj is the output
for nodej andf (.) is the transfer function.

Each node in a specific layer is connected to many
other nodes via weighted connections. The scalar weights
determine the strength of the connections between the in-
terconnected neurons. An individual neuron receives its
weighted input from many interconnected individual neu-
rons, from which the weights are summed, and a threshold
is added. The result of the summation is passed through a
transfer function (stepwise, sigmoid) to produce the output
of the neuron, Fig. 12b.
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Fig. 8. (a)Comparison between Ln(EC) of airborne models (HEM and SkyTEM) and average Ln(EC) from corresponding interval in the
ECPT. Maximum distance between airborne EM model and ECPT is 50 m.(b) Comparison between Ln(EC) of airborne models (HEM and
SkyTEM), using a-priori ECPT data, and average Ln(EC) from corresponding interval in the ECPT. Maximum distance between EM model
and ECPT is 50 m.

Fig. 9.Depth slices of EC from HEM and SkyTEM models.

The propagation of information in MLP starts at the input
layer, where the input data are presented. The next layer re-
ceives the weighted inputs from each node in the input layer
and the weights are summed and passed through a transfer
function to produce the nodal output, which is then weighted
and passed to neurons in the next layer. The network ad-
justs its weights by using a learning rule until it finds a set
of weights that will produce the input-output mapping with
the smallest possible error. This process is called the learning
or training stage.

In general, the data is split in at least two parts, a learning
dataset and a dataset on which the learning rule is tested.

4.2 Application of ANN

In this study we applied Artificial Neural Networks to de-
termine the presence of a glacial till layer in the models of
airborne EM. We used the ECPT data, with interpreted top
and bottom of the till and the corresponding Ln(EC), to train
the ANN algorithm to detect the till. Since the distribution of
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Fig. 10.Comparison between HEM inversions without and with a-
priori constraints from ECPTs. Location of cross section is C-C’,
see Fig. 1.

Fig. 11. Cross sections showing the EC for HEM (upper figure,
cross section B-B’) and SkyTEM (lower figure, cross section A-A’)
inversions with a-priori constraints of ECPTs. For location of cross
sections, see Fig. 1. The black line in the upper figure denotes the
centroid depth values (Z∗), indicating the depth of investigation.

EC in the airborne models and the ECPTs are comparable,
we can use the training on the Ln(EC) of the ECPTs for the
Ln(EC) of the airborne EM models.

4.2.1 Data pre-processing

The selection and pre-processing of the input data is a crucial
step in the successful application of ANN. The procedure is
described in detail here using Fig. 13.

a

b

Fig. 12. (a)Typical layout of Artificial Neural Network (ANN) ar-
chitecture.(b) Activation of transfer function in ANN.

a. In order to normalise the distribution of the EC and
thereby enhancing the discrimination capabilities be-
tween different EC-intervals (till vs. non-till) in the
ANN, Ln(EC) was calculated. All subsequent process-
ing and calculations were carried out for the Ln(EC)
data.

b. A smoothing algorithm was used to filter out the noise
from the data. A moving window of 0.1 m was used, in
which the data points at the border of the window re-
ceived less weight than the data points in the middle of
the window, according to a Gaussian weighting distribu-
tion scheme. Aggregation into 0.1 m intervals was done
by simply averaging the smoothed Ln(EC) over 0.1 m.

c. For every interval of 0.1 m in the ECPT, the occurring
geological formations, as determined from the sleeve
and tip friction of the ECPTs, was ascribed to that in-
terval. In this way, for each interval of 0.1 m, the ln(EC)
and the occurring geological formation is known. Since
the focus of the study is on determining the glacial till,
all intervals in which the till was determined were la-
belled 1, the remaining intervals were labelled 0; this
is the in following interpreted as the probability of en-
countering till.

The result of the data processing is a dataset that has a depth-
interval of 0.1 m, in which each interval has a Ln(EC) and
the probability of till.

4.2.2 Training and testing the ANN

The next step in the ANN workflow is to setup the network
and to determine the input-nodes, the amount of nodes in the
hidden layer and the output. Since we are interested in the
probability of finding till, there is only one output node: prob-
ability of finding till in the interval (0,1). The input nodes
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a.

c.

Fig. 13.Data pre-processing for training the ANN.

consist of the Ln(EC) value and the depth at every 0.1 m in-
terval of the ECPT (see Fig. 13c). The depth was used in or-
der to account for the general trend in depth of the glacial till,
dipping to the north-west. We experimented with the amount
of nodes in the hidden layer and selected three nodes. The
network layout is given in Fig. 14, together with the search
algorithm.

Because of the general dipping of the depth of the till, it
was decided that it is not meaningful to use one trained net-
work for the entire area. Therefore, the training of the ANN
was made location dependent, so that the changing depth of
the till could be accounted for.

For every airborne EM model, a maximum of 3 closest
ECPTs were selected and used to train the local network. To
account for the fact that some EM models are close to an
ECPT, it was decided to make the number of ECPTs to be
used in the training of the ANN depending on the distance
to the EM model. If the distance between the EM model and
the ECPT was less than 250 m, the closest ECPT was used.
If the distance between the EM model and its surrounding
ECPTs is between 250 m and 1000 m, the algorithm searches
for the two closest ECPTs between 250 m and 1000 m, while
with distances greater than 1000 m the three closest ECPTs
were used (see Fig. 14). To select a maximum of three ECPTs
to train the network was a trade-off between enough data to
train the network and trying to make the trained network as
local applicable as possible. The ECPT cover well the study
area, which helped considerably to obtain good trained net-
works for the study area.

We used the ANN algorithm developed in the Python pro-
gramming language by Wojciechowski (2009). This algo-
rithm is designed using feed-forward architecture, with iden-
tity functions for the input nodes and sigmoid activation
functions for all other neurons. The function that is min-
imised during training is a sum of squared errors of each
output for each training pattern.

The next step in the general procedure of applying ANN is
to test the network. Since we are using only a limited amount
of ECPT data for every training (maximum the 3 closest) it
was decided it was not feasible to set aside a part of this lim-
ited amount of data to test the network. Instead, to determine
the goodness of fit when the trained network is applied to the
models of the airborne EM, we selected drillings in the area
that were classified as having till. The top and bottom of the
till from the drillings was used to test the results of the ANN
network of the closest (< 75 m) airborne EM model.

The network that is trained with the data of the ECPTs
will be used to obtain an estimate of the presence and depth
of the glacial till from the airborne EM models. The airborne
EM models were processed and inverted with a pre-defined
layer thickness that increases with depth. For every layer of
the inversion, the mid-depth was chosen as representative for
its depth, as well as the Ln(EC).

The ANN procedure might result in probabilities smaller
than 0 or larger than 1. If this occurred, we arbitrarily set the
probabilities to 0 and 1, respectively.

Figure 15 shows the results of some individual EM models
that were subjected to the ANN procedure to estimate the
occurrence and depth of the till from the HEM models and
SkyTEM models. The results give a probability of finding
till and are therefore not straightforward to compare with the
drillings, which give a binary indication of the presence of
the till in the drilling. Therefore we selected a threshold for
which we determined the till to be present, and compared the
depth at this threshold with the depth of the till in the drilling.

In Fig. 16 the top and bottom of the till, as determined
in the HEM and SkyTEM models by ANN, is compared
to those of the nearest drilling. A threshold of 0.75 is ap-
plied: when an interval received a probability> 0.75, the top
of that interval was regarded as the top of the till. The results
of the estimation of the top of the till are quite good when
looking at the rank order correlation (r), displayed in the
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a

b

Fig. 14. (a)Neural Network architecture for determining till from
Ln(EC) and depth.(b) Search strategy for determining relevant
ECPTs for training ANN.

right lower corner in Fig. 16. The bottom of the till is more
difficult to estimate: the ECPTs often only reached the bot-
tom of the till and did not enter deep enough in the underlying
sediments, thereby not capturing the full pattern of the EC
with depth. Also there are less drillings that reached the bot-
tom of the till compared to drillings that reached the top.

In 8 out of the 21 SkyTEM models (38 %) that were within
75 m of a drilling, the ANN did not detect the top of the till
with a probability larger than 0.75. The results of the ANN on
these 8 EM models were inspected more closely and it was
found that 5 of them were more than 55 m from the near-
est drilling or showed a till thickness less than 2 m, which is
the approximately layer thickness of the SkyTEM inversion
model at that depth. Two out of the 8 EM models did have
the top of the till estimated within 1 m of the top of the till in
the nearby drilling, only with a probability slightly less than
0.75 (with a minimum probability of 0.65).

For the HEM models that were closest to a drilling (within
a maximum of 75 m), 6 out of 15 models did not detect the till
at a probability> 0.75. Inspection of the results of the ANN
applied to these HEM models shows that the probability at
which the till was detected was only slightly lower than 0.75,
with a minimum of 0.7. Only for 2 out of 15 (13 %) HEM
models that were located within 75 m of a drilling, the top of
the till was not detected with a probability> 0.7.

Fig. 15. Presence of till in drillings and probability of till from
ANN for some selected EM models. Maximum distance between
EM model and drilling is 75 m.
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Fig. 16.Comparing top and bottom of till, as determined from ANN
with top and bottom of the till in closest drilling (max. distance
75 m); (a) top of the till from HEM, (b) top till from SkyTEM,
(c) bottom of the till from HEM and(d) bottom of the till from
SkyTEM. Correlation coefficient is given in the right-lower corner
of each figure.

Regarding the bottom of the till, the correlation for both
HEM and SkyTEM models between the bottom of the till in
the drilling and from the models is weaker. Also, the bottom
of the till suffers from the same problem with the pre-defined
threshold of 0.75: more than half of the models did not detect
the till at a probability of> 0.75, but did so at a probability
between 0.6 and 0.75. In a case where the thickness of the
till is less than 2 m, the airborne EM could not detect differ-
ences in EC and therefore the ANN was not able to produce a
probability of having till. Besides this, sometimes the bottom
of the till was not detected because it was deeper than in the
surrounding ECPTs that were used for training the ANN.

4.3 Applying the ANN to airborne EM

For every model of both HEM and SkyTEM, the ANN pro-
cedure, as described above, is applied to obtain the prob-
ability of till. For every EM model, the closest 3 ECPTs
were selected and the ANN was trained with the data from
these ECPTs and subsequently the trained network was ap-
plied to the EM model. This resulted in a probability of till
for each interval in the EM model. These probabilities were
then interpolated over the entire area to a voxel model of
50× 50× 1 m. For every voxel, the probability of having till
is then known. The resulting 3-D model is shown in Fig. 17,
together with cross sections that are situated at the same lo-
cation as the airborne EM cross sections of Fig. 1.

Fig. 17.3-D voxel models of the probability of till, as derived from
ANN of HEM and SkyTEM models.(a) and(b) are derived from
SkyTEM models,(c) and(d) from HEM models. Cross section(b)
is A-A’ in Fig. 1; cross section(d) is B-B’ in Fig. 1.

The general trend of the till is in agreement of what is
known of the till from the drillings, which is also true for
the estimate of the top of the till. The bottom of the till shows
some noisy features that are probably due to artefacts. On the
other hand, it is known that the bottom surface of the till is
erratic and can show large fluctuations over short distances.

The results of the modelling of the glacial till are used in
a subsequent study that models the effects of climate change
on the groundwater system, with an emphasis on salinisa-
tion (Faneca S̀anchez et al., 2012). This study shows that the
glacial till is an important aquitard, inhibiting groundwater
flow and therefore an important spatial feature that should be
modelled as accurately as possible.

5 Conclusions

Airborne geophysics, combined with ground-based data
proved to be a useful tool for mapping a regional glacial till
layer in a highly conductive environment. The till layer is an
important hydrological layer because it acts as an aquitard
inhibiting groundwater flow. The till layer shows a large spa-
tial variability in thickness and is therefore not easily mapped
with conventional data (drillings, CPT). Due to the distinct
pattern of conductivity of the till in ground-based ECPTs,
and the good agreement between airborne and ground-based
conductivity profiles, this distinct pattern of conductivity in
the ECPT served as a training set for the recognition of the
till in the airborne EM results.

The application of the ANN method allowed us to estimate
the probability of till occurrence in the airborne EM models.
The top of the till was mapped with more confidence than the
bottom of the till, due to the sometimes limited depth of the
ground-based ECPT. The till-layer is used in hydrogeological
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modelling to predict the effects of climate change on, for ex-
ample salinisation. Because of its widespread occurrence and
its erratic top and bottom, it is important to map the till layer
as detailed as possible, in order to obtain sound predictions of
the effect of climate change on salinisation of groundwater.

The use of ANN to discriminate between different sedi-
ments by (airborne) EM is depending on the specific pattern
of the Electrical Conductivity for the sedimentary sequences
in the study area. Field data of EC, together with sedimen-
tary interpretation is therefore essential, together with the
understanding of the geology of the area. This combination
should lead to a balanced training dataset, in which geologi-
cal and geophysical knowledge are combined to achieve the
best result possible.
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