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ABSTRACT

The principle of equivalence is known to cause nonunique-
ness in interpretations of direct current (DC) resistivity data.
Low- or high-resistivity equivalences arise when a thin geo-
logic layer with a low/high resistivity is embedded in a relative
high-/low-resistivity background formation causing strong
resistivity-thickness correlations. The equivalences often make
it impossible to resolve embedded layers. We found that the
equivalence problem could be significantly reduced by com-
bining the DC data with full-decay time-domain induced
polarization (IP) measurements. We applied a 1D Markov
chain Monte Carlo algorithm to invert synthetic DC data of
models with low- and high-resistivity equivalences. By apply-
ing this inversion method, it is possible to study the space of
equivalent models that have an acceptable fit to the observed
data, and to make a full sensitivity analysis of the model
parameters. Then, we include a contrast in chargeability into
the model, modeled in terms of spectral Cole-Cole IP param-
eters, and invert the DC and IP data in combination. The re-
sults show that the addition of IP data largely resolves the DC
equivalences. Furthermore, we present a field example in
which DC and IP data were measured on a sand formation
with an embedded clay layer known from a borehole drilling.
Inversion results show that the DC data alone do not resolve
the clay layer due to equivalence problems, but by adding the
IP data to the inversion, the layer is resolved.

INTRODUCTION

The direct current (DC) resistivity method, also known as the
geoelectrical resistivity method, is one of the most used methods
for mapping the electrical resistivity of subsurface geologic layers.

The method has well-known inherent ambiguities related to the
principle of equivalence, and equivalent layer sequences are inves-
tigated in several textbooks and papers (Koefoed, 1979; Knödel
et al., 2007). Best known are the low- and high-resistivity equiva-
lences (also referred to as S- and T-type equivalences), which arise
when a thin layer with a relatively low/high resistivity is present in a
background formation with a high/low resistivity. For these equiv-
alences, it is impossible to determine a unique solution for the
model parameters, resistivity and layer thickness, of the thin layer.
However, due to the correlation between the parameters, the thick-
ness-resistivity ratio (the conductance) is well-determined for low-
resistivity equivalences and the thickness-resistivity product (the
resistance) is well-determined for high-resistivity equivalences
(Fitterman et al., 1988).
Away to resolve equivalences and to improve model resolution is

by using complementary geophysical methods. Several field sur-
veys and quantitative analyses have been carried out with combined
or joint inversion of two or more different data sets from the same
location (e.g., Vozoff and Jupp, 1975; Raiche et al., 1985; Seara and
Granda, 1987; Sandberg, 1993; Christiansen et al., 2007). Raiche
et al. (1985) show that a significant improvement in resolution of
layered-earth models can be obtained by applying a joint inversion
of transient electromagnetic (TEM) data and DC data compared
with results obtained with either TEM or DC data alone. Sandberg
(1993) shows that adding induced polarization (IP) data to a joint
inversion of TEM and DC improves the resolution further.
If the subsurface is chargeable when acquiring DC data, the DC

response will be accompanied by the IP effect, which manifests
itself as a slow rise and decay of the potential after the injected
current is turned on and off. Consequently, by measuring the time-
varying potential at the current turn on/off, the IP effect can be mea-
sured in combination with the DC data (Binley and Kemna, 2005) in
the time domain (TD). The spectral content of the IP phenomenon
can be extracted from the time-domain induced polarization (TDIP)
transients, and often the Cole-Cole model (Cole and Cole, 1941;
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Pelton et al., 1978) is used to model the IP effect in the inversion of
the TDIP data (Hönig and Tezkan, 2007; Fiandaca et al., 2012,
2013). Outside mineral exploration, the combined DC and IP
method is frequently applied for lithology discrimination and char-
acterization (Gazoty et al., 2012b; Chongo et al., 2015; Johansson
et al., 2016; Maurya et al., 2016) as well as investigations of con-
taminated sites (Aristodemou and Thomas-Betts, 2000; Sogade
et al., 2006; Leroux et al., 2007; Gazoty et al., 2012a; Johansson
et al., 2015).
The aim of this study is to show that the application of spectral

information retrieved from TDIP data helps to reduce the well-known
resistivity-thickness equivalences seen with DC resistivity models
and therefore increases the reliability of inversion results dramatically
with only little effort. We show this by using a Markov chain Monte
Carlo (MCMC) inversion method to invert DC data alone and then
DC and TDIP data in combination. This allows us to study the space
of equivalent models in detail. The MCMC method also allows for
studies of parameter correlations and the full sensitivities of the non-
linear problem, which is essential when studying equivalences. In the
following, based on results from Madsen (2016), we investigate syn-
thetic examples of low- and high-resistivity equivalences and show
that thickness-resistivity equivalences observed with DC data alone
can be resolved by adding TDIP data where a layer contrast exists in
just one of the Cole-Cole IP parameters. Finally, we present a field
example in which the IP data help to resolve a clay layer (known from
boreholes) embedded in a sand formation.

METHODOLOGY

Data space

When inverting TD DCIP data, the data space is composed by the
apparent resistivity values ρa and full-decay chargeabilityM, which
are computed from the transient IP decay, as described by Gazoty
et al. (2012b). A log-transform is applied to enhance linearity, so the
data vector dobs, is given as

dobs ¼ flogðρa;qÞ; logðMq;gÞg;
q ¼ 1∶Nquadrupoles; g ¼ 1∶Ngates;

(1)

where ρa;q is the apparent resistivity measured at quadrupole q and
Mq;g is the chargeability of the gth time gate of the IP decay re-
corded at quadrupole q. In the case of negative chargeability data,
the inversion is carried out in the linear space without the log-
transform.
The analyses in this study are based on data simulated over a 1D

earth as a vertical sounding with 20 quadrupoles with current elec-
trode spacing jABj from 7.5 to 500 m and potential electrode spac-
ing jMNj from 2.5 to 65 m (Table 1). With these electrode

configurations, the geometric factor is limited to 3000 m to keep
a good signal-to-noise ratio (S/N) (Gazoty et al., 2013).
The applied waveform has a 100% duty cycle, as described by

Olsson et al. (2015), where the data measurements are performed in
the current-on time. Compared with the traditional 50% duty cycle
waveform, where the current is switched off before measurements
are made, the 100% duty cycle reduces the acquisition time to half
and increases the S/N due to signal superposition. The synthetic IP
decays are simulated from 2.5 to 10,000 ms after the current switch.
The signal is then divided into 35 time gates with logarithmically
increasing gate lengths from 0.8 to 2040 ms.
Gaussian noise is added to the data to simulate the noise level in

the field (Gazoty et al., 2013). The applied noise model is described
in Olsson et al. (2015), where a total standard deviation STDtotal, is
computed by summing a squared uniform term STDuni, and a volt-
age-dependent term STDvth, for each data point or time gate g:

STD2
totalðgÞ ¼ STD2

uniðgÞ þ STD2
vhtðgÞ; (2)

where STDvht is the effect of the signal level on the data uncertainty
computed as

STDvhtðgÞ ¼
VTH

VIPðgÞ
ffiffiffiffiffiffiffiffiffiffi
Dnom

p
DðgÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nstacks

p ; (3)

where VIPðgÞ is the measured voltage level, DðgÞ is the gate width,
Nstacks is the number of stacked pulses, andDnom is the nominal gate
width for a voltage noise threshold value VTH. In practice, data
points that fall below the voltage threshold will be given a larger
standard deviation. In this study, STDuni ¼ 2% has been used for
DC data and STDuni ¼ 5% has been used for IP data with VTH ¼
0.1 mV for Dnorm ¼ 0.01 s. Three stacks have been considered for
each quadrupole measurement.

Model space and forward modeling

Using the Cole-Cole model for parameterization, the complex
resistivity is given as a function of frequency (Pelton et al., 1978):

ζnðωÞ ¼ ρn

�
1 −m0n

�
1 −

1

1þ ðiωτnÞcn
��

; (4)

where for the nth layer, ρ is the resistivity, andm0, τ, and c are the IP
parameters. Adding the layer thicknesses thk, the model vector m
adds up to

Table 1. Electrode configuration of the 20 quadrupoles applied for generation of synthetic vertical soundings.

Quadrupole 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

jABj (m) 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 72.5 92.5 117.5 147.5 192.5 240 305 390 500

jMNj (m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 15 15 15 15 65 65 65
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m ¼ flogðρnÞ; logðm0n
Þ; logðτnÞ; logðcnÞ; logðthkmÞg;

n ¼ 1∶Nlayers;m ¼ 1∶Nlayers − 1: (5)

Given a layered-earth model, the algorithm presented in Fiandaca
et al. (2012) is used to model the TDIP forward response. This al-
gorithm applies the full-decay waveform and models the transmitter
current waveform and the receiver transfer function accurately.

Linearized inversion and uncertainties

A linearized inversion approach is used to determine the start
model for the MCMC inversion algorithm described in the next sec-
tion. The linearized inversion of 1D DC data follows the algorithm
described in Auken et al. (2005). The algorithm was later extended
to include IP data as well (Fiandaca et al., 2012). In these inversion
approaches, the uncertainty analyses of the model parameters are
computed through the posterior covariance of the linear mapping
Cest as described by Tarantola and Valette (1982a). Due to the log-
arithmic transform applied in the inversion, the uncertainty on the
model parameter mi is given as a standard deviation factor (STDF)
defined as

STDFðmiÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cestði;iÞ

q �
; (6)

where the 68% confidence interval for mi is between

mi

STDFðmiÞ
< mi < mi · STDFðmiÞ: (7)

A perfect resolution will give a STDF ¼ 1 and using the terminol-
ogy from Auken et al. (2005), a STDF < 1.2 indicates a well-
resolved parameter, 1.2 < STDF < 1.5 indicates a moderately re-
solved parameter, 1.5 < STDF < 2 indicates a poorly resolved
parameter, and STDF > 2 indicates an unresolved parameter.

MCMC inversion

Following a probabilistic formulation, the posterior probability
distribution of the model m is given as (Tarantola, 2005)

PpostðmÞ ¼ KPpriorðmÞPlikeðmÞ; (8)

where PpriorðmÞ is the prior probability distribution given by prior
information, PlikeðmÞ is the likelihood function describing the de-
gree of fit between the observed data and the forward response of
the modelm, andK is a normalization constant. The objective of the
inversion is to describe the posterior probability distribution and
thereby determine the space of models with the highest probability.
Assuming the uncertainties of the model parameters to be Gaussian,
the likelihood can be written (Mosegaard and Tarantola, 2002)

Plike ¼ k · exp

�
−
1

2
ðgðmÞ − dobsÞTC−1

obsðgðmÞ − dobsÞ
�
;

(9)

where dobs holds the observed data, gðmÞ is the forward response
of m, Cobs is the covariance matrix of the observed data, and k is

a normalization constant. If needed, the likelihood function can
easily be extended to contain regularization terms as well.
MCMC methods have been previously applied to geophysical

inversion problems to describe the posterior probability distribution
(Tarantola and Valette, 1982b; Mosegaard and Tarantola, 1995,
2002). In this study, the method is applied with a Metropolis-
Hastings sampling algorithm (Metropolis et al., 1953; Hastings,
1970), in which a random walk samples models directly from the
posterior probability distribution. The sampling algorithm repeats
two steps. First, a new model mnew is proposed. The new model
is then accepted or rejected based on the likelihood ratio between
mnew and the last accepted model, here referred to as the current
model mcur. In this way, a Markov chain of models is sampled,
wheremj is dependent only onmj−1 and none of the previous mod-
els (the Markov property). The algorithm will sample models with
high probability more frequently and will thereby converge toward
the posterior probability distribution.
The MCMC algorithm applied for inversion of DCIP data fol-

lows Madsen (2016) and Madsen et al. (2017), and it is presented
as a pseudoalgorithm in Algorithm 2. Before the routine is started,
the variables N ite and kstep are initialized (step 1). These are the
number of iterations and a step-length constant, which is later used
to define the model perturbation for the MCMC sampling. A lin-
earized inversion is then performed to determine the start model for
the MCMC model sampling (step 2). This is done to minimize the
burn-in phase of the MCMC algorithm, thereby reducing the inver-
sion time. Hereafter, the MCMC sampling (steps 4–13) is started
using a scaled model proposer (step 5) to compute the next model
mnew in a random walk:

mnew ¼ mcur þ Ln kstep; (10)

where kstep is the predefined step-length constant, n is a vector of
random numbers drawn from a Gaussian distribution, and L is the
Cholesky decomposition of CestðmstartÞ, so

Table 2. Metropolis-Hastings algorithm applied for inversion
of DC and DCIP data (after Madsen et al., 2017).

1: Set Nite, kstep
2: Run linearized inversion to determine start model,

mstart and the covariance matrix CestðmstartÞ
3: mcur ¼ mstart

4: for i ¼ 1, Nite do

5: Compute a new model proposal

mnew ¼ mcur þ L n kstep
6: Compute acceptance probability

Pacc ¼ PlikeðmnewÞ
PlikeðmcurÞ

7: Draw random number (α) from a uniform distribution [0:1]

8: if Pacc > α

9: mcur ¼ mnew

10: else

11: mcur ¼ mcur

12: end if

13: end for

Comparison of DC and DCIP E49
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CestðmstartÞ ¼ LLT: (11)

The Cholesky decomposition of the matrix is applied to the
model perturbation to scale the step length between the current
model and the proposed new model. By scaling the model proposer
with Cest, the different interval ranges and the uncertainty of the
individual Cole-Cole parameters are taken into account. The scaling
lets the algorithm take larger steps for parameters with a high un-
certainty and therefore leads to a faster convergence. It was found
that by applying the scaled model proposer, the algorithm converges
more than 200 times faster compared with a standard Gaussian pro-
poser (Madsen et al., 2016). For a homogeneous half-space, this
means that the number of iterations necessary to reach convergence
is brought down from 1,000,000 to 5000 models. Running on
10 CPUs, this is a decrease in the inversion time from approxi-
mately one day to 10 min.
The acceptance probability Pacc of our model is computed as the

likelihood ratio (step 6) as given by Mosegaard and Tarantola
(1995). When computing the ratio, the normalization constant from

the likelihood equation (equation 9) cancels out because it is present
in the numerator and the denominator. If the likelihood of the new
model is higher than the likelihood of the current model, the new
model will always be accepted to the Markov chain and will become
the new mcur. If, however, the likelihood of the new model is lower
than the likelihood of the current model, the new model will only be
accepted with probability Pacc as outlined in steps (7–12).
The uncertainty of the model parameters is computed as the

standard deviation from the mean of each marginal posterior prob-
ability distribution. The uncertainties are then expressed as STDFs
as for the linearized approach. The variation of the standard
deviation during the sampling is used to check the convergence.
When the standard deviations of the marginal posterior probability
distributions have converged, the probability distribution has con-
verged as well and the number of iterations has been sufficient.

RESULTS

Low- and high-resistivity equivalences

A low-resistivity equivalence (S-type equivalence) arises when a
thin layer with a relatively low resistivity is embedded in a forma-
tion with a higher resistivity. The thickness and the resistivity of the
embedded layer cannot be resolved, whereas the conductance is
fairly well determined.
The apparent resistivity data in Figure 1 are the synthetic forward

response of a three-layer model, which has a low-resistivity layer
embedded in a high-resistivity formation, where the resistivity
values are ρ ¼ ½200; 20; 200� Ωm and the associated thicknesses
are thk ¼ ½10; 5� m. These DC data are inverted with the MCMC
algorithm with 200,000 iterations, and the result is presented in
Figure 2a. Here, the density of the black lines illustrates the density
of accepted models and is therefore an image of the posterior
probability distribution. The model found to have the highest prob-
ability (dashed yellow line) is not consistent with the true model
(red line) in the low-resistivity layer. The STDFs of the model
parameters that were found from the MCMC inversion results

are listed in Table 3 (row 1). The STDFs show
that the parameters of the top and bottom layers
are well-resolved by the inversion scheme, but
the probability distributions of the thickness
and the resistivity of the embedded low-resistiv-
ity layer do not converge and the parameters can-
not be determined.
The models accepted by the MCMC algorithm

span the space of equivalent models. There is a
clear negative correlation between the resistivity
and the thickness of the embedded layer (Fig-
ure 2a). In the second layer, as the resistivity
of the equivalent models decreases, the thickness
decreases as well, keeping the conductance
constant. The STDF of the conductance is 1.04,
which indicates a well-resolved parameter.
Low-resistivity models with varying layer

thicknesses have been inverted with the MCMC
algorithm to study the respective equivalences.
With the resistivity contrast presented in Fig-
ure 2a, strong equivalences causing unresolved
parameters are found to be present until the em-

1 10 100

90
100

200

Pseudodepth (m)

ρ a (
Ω

m
)

Figure 1. The apparent resistivity forward response and associated
error bars computed from a three-layer model with the parameter
values: thk ¼ ½10; 5� m and ρ ¼ ½200; 20; 200� Ωm. The apparent
resistivity ρa is plotted against a pseudodepth. The error bars cor-
respond to two standard deviations.

Figure 2. (a) MCMC inversion results of a model with the resistivity values
ρ ¼ ½200; 20; 200� Ωm. The middle layer has a low-resistivity equivalence, where
the thickness and the resistivity are strongly correlated and unresolved. The black lines
are models accepted by the MCMC algorithm, and the density of the lines illustrates
the posterior probability density. The dashed yellow line shows the model, which has the
highest probability. (b) MCMC inversion result of synthetic DCIP data generated from
the model: ρ ¼ ½200; 20; 200� Ωm, m0 ¼ ½20; 200; 20� mV∕V, τ ¼ 1 s, and c ¼ 0.6.
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bedded layer is given a thickness, which is three times the thickness
of the top layer.
To study the influence of TDIP data on the resistivity-thickness

equivalences, TDIP data are added to the existing DC data and a
joint inversion is performed in terms of the Cole-Cole parameters.
The true model is plotted together with the MCMC inversion result
in Figure 2b for all three IP parameters. The time constant τ and
the frequency exponent c take the same values in all three layers,
and only a contrast is present in the model space chargeability m0,
where the embedded layer has a relatively high chargeability
(m0 ¼ ½20; 200; 20� mV∕V). The synthetic TDIP data are shown
in Figure 3.
The inversion result of the joint DCIP data shows that adding IP

data to the inversion helps resolve the thickness of the embedded
layer and therefore decreases the amount of equivalent models. The
thickness and resistivity are still negatively correlated, but because
the space of equivalent models is reduced, the resistivity and thick-
ness of the second layer are now well-resolved with a STDF < 1.2

(Table 3, row 2).
The degree to which the equivalences are resolved depends on the

magnitude of the contrast in chargeability between the layers. In
Figure 2b, the chargeability contrast has the same magnitude as
the contrast in the resistivity, i.e., a factor of 10, which gives us
a realistic model for field measurements of a clay layer embedded
in a sand formation. If this contrast is reduced, the resolution of the
model will decrease. MCMC analyses of models with different
chargeability contrasts indicate that as long as the contrast is more
than a factor of six (i.e., m0 ¼ ½20; 120; 20� mV∕V), the MCMC
maximum probability model corresponds to the true model and
the model parameters are resolved.
The influence of IP has also been studied in models with

high-resistivity equivalences (T-type equivalence), where a high-re-
sistivity layer is embedded in a low-resistivity formation (Figure 4).
The high-resistivity equivalences in the DC inversion results
(Figure 4a) are similar and of the same magnitude as those observed
for models with low-resistivity equivalences. IP data with a charge-
ability contrast between the layers were added to the inversion,
and the DCIP data were inverted together (Figure 4b). The high-
resistivity equivalences are resolved with a contrast in the charge-
ability similar to the low-resistivity case, i.e., a factor of six.
If contrasts are given to any of the other IP

parameters in an inversion, the equivalences
are reduced as well. When the lithology changes
between layers, not only do the resistivity and the
chargeability change, but the value of the time
constant τ and the frequency exponent cwill usu-
ally change as well. Therefore, if a contrast is
added in τ or c, then the contrast in the charge-
ability can be much less than a factor of 10 and
the equivalences will still be resolved. An exam-
ple of this is shown later with field data.

Equivalences and parameter contrasts

To study possible equivalences in IP data and to
determine to what extent IP parameter contrasts
between layers can resolve layer thicknesses, a
three-layer DCIP model is constructed with no
contrast between the layers, i.e., reassembling a
homogeneous half space. This default model is

given the Cole-Cole parameters: ρ ¼ 200 Ωm, m0 ¼ 100 mV∕V,
τ ¼ 1 s, and c ¼ 0.6. The thicknesses of layer one and two are
10 and 5 m, respectively. For one Cole-Cole parameter at a time,
the parameter value of the embedded layer is then changed and a
MCMC inversion is performed to study how well this single param-
eter contrast is able to resolve the thickness of the layers. The result-
ing uncertainty analysis of the thickness of the embedded layer is

Table 3. STDFs of the model parameters, resistivity and
thickness, of a three-layer model (Figure 2) determined from
a MCMC inversion of DC and DCIP data, respectively.
Nonvalues indicate unresolved parameters.

STDF(ρ1) STDF(ρ2) STDF(ρ3) STDF(thk1) STDF(thk2)

DC 1.01 – 1.02 1.03 –
DCIP 1.01 1.17 1.02 1.01 1.2

1  10 100

1

10

100

Pseudodepth (m)

M
 (

m
V

/V
)

Figure 3. (Panel DCIP) Forward response of the IP model given
in Figure 2. Each line illustrates the data measured in one of the
35 time gates with the earliest time gate at the top of the plot (every
second time gate is shown here). Examples of the two standard
deviation error bars are shown for three of the time gates (black
lines).

Figure 4. (a) MCMC inversion results of a model with the resistivity values
ρ ¼ ½20; 200; 20� Ωm. (b) MCMC inversion result of synthetic DCIP data generated
from the model: ρ ¼ ½20; 200; 20� Ωm, m0 ¼ ½20; 200; 20� mV∕V, τ ¼ 1 s, and
c ¼ 0.6.
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shown in Figure 5. If the STDFs computed over the marginal pos-
terior probability distributions are greater than 2.5, then the STDF in
the figure is set to 2.5 indicating an unresolved parameter.
The blue line in Figure 5 represents a number of models in which

the resistivity of the second layer varies between 20 and 2000 Ωm
in a background formation of 200 Ωm. We see that no matter
the resistivity contrast, low- and high-resistivity equivalences are
present making it impossible to resolve the thickness of the em-
bedded layer. When changing the chargeability of the embedded
layer (Figure 5, red line), the increase in resolution of the layer
is larger for a decreasing relative chargeability compared with an
increasing value. So, for the case studied here, it is easier to resolve
the layer thickness of an embedded low-chargeable layer than from

a high-chargeable layer. For a contrast between the layers in c, only
a factor of one half, e.g., c ¼ ½0.6; 0.3; 0.6�, is required to gain a
well-resolved layer thickness (Figure 5, purple line). For a contrast
in τ (Figure 5, yellow line), it is only possible to resolve the layer
thickness moderately. The time constant τ is the Cole-Cole param-
eter with the widest interval range and is often the most poorly re-
solved parameter, which gives rise to the only moderately resolved
layer thickness.

Field example

To show the influence of TDIP data in an analysis of field mea-
surements, two 1D vertical soundings (2 m apart) are extracted from
a larger 2D profile acquired in Grindsted, Denmark, and inverted
together. The local geology is dominated by 60 m of Miocene sands,
but a borehole drilled close to the soundings identifies a thin layer
of clay and sandy clay (thickness ¼ 2 m) close to the surface
(depth ¼ 1.5 m). To focus on this low-resistivity clay layer, only the
top 15 m of the soundings is considered.
The applied data were acquired with 12 different electrode con-

figurations, where the IP decays are measured between 3.5 and
4000 ms with a 100% duty cycle with the Terrameter LS instrument
(ABEM instruments AB). The IP decays were extracted from the
raw full-waveform recordings and sampled at 3750 Hz using the
algorithm described in Olsson et al. (2016).
The measured data are shown in Figure 6. The DC data are in-

verted with the MCMC algorithm and then compared with the
MCMC inversion results of the combined DCIP data (Figure 7).
For the DC inversion, the results show strong equivalences and un-
determined parameters (Figure 7a). The STDFs computed from the
MCMC inversion results are presented in Table 4. The resistivity
and thickness of the clay layer determined by the DC inversion
are unresolved (Table 4, row 1). However, as for a classic low-re-
sistivity equivalence problem, the conductance is resolved. Besides
the equivalence problem, the poor resolution may also be due to the
limited number of DC data points in the top two layers (Figure 6).
However, for the DCIP inversion, the low-resistivity layer is well
resolved (Table 4, row 2) and fits the borehole information (Fig-
ure 7b). This means that the information given in the IP signals re-
solves the thickness-resistivity equivalences.
The results of the linearized inversion of the field data, i.e., the

linearized inversion applied to determine the start model for the
MCMC analysis (Algorithm 2, step 2), are also shown in Figure 7
(blue line), and the linearized uncertainty analysis is listed in Table 4
(rows 3 and 4). The linearized inversion of DC data finds the low-
resistivity layer, but the thickness and the resistivity of the layer are

unresolved, and so is the conductance. The lin-
earized inversion of the DCIP data agrees well
with the MCMC inversion results for the resistiv-
ity and thickness of the layer.

DISCUSSION

In this study, we have used the MCMC inver-
sion approach as a tool to invert TD DCIP data
to study equivalent models and to obtain a non-
linearized sensitivity analysis of the model
parameters. We do not, however, suggest the
MCMC approach as a general scheme for inver-
sion of 2D and 3D data sets because the com-

Figure 5. STDFs of the thickness of the second layer, thk(2), in a
three-layer model. The STDFs are plotted against the contrast in the
Cole-Cole parameter between the layers. The default three-layer
model has the same Cole-Cole parameters in all three layers:
ρ ¼ 200 Ωm, m0 ¼ 100 mV∕V, τ ¼ 1 s, and c ¼ 0.6. The thick-
ness of the top and second layers is 10 and 5 m, respectively. A
parameter contrast between the layers is then obtained by changing
the value of one of the parameters in the second layer. As an exam-
ple, the STDF of thk(2) is 1.5 for a factor three contrast in the τ
(i.e., ρ ¼ 200 Ωm, m0 ¼ 100 mV∕V, τ ¼ ½1; 3; 1� s, and c ¼ 0.6).
Note: If the STDF of a parameter is greater than 2.5, i.e., completely
unresolved, then the STDF is set to 2.5 in the figure.
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Figure 6. (a) DC and (b) IP data with error bars (two standard deviations) from two
vertical soundings (red and blue curves) measured in Grindsted, Denmark. For the IP
data, each curve represents a time gate of the measured IP decays. Only four of 29 time
gates are shown here.
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putation time would be immense (at least for full-decay modeling).
Despite the time reduction gained by applying the posterior
covariance for scaling the sampling algorithm, the time required
to invert a 2D data set is still days with the MCMC scheme com-
pared with up to a few hours for the linearized approach. That said,
the MCMC approach still has its advantages over gradient-based
linearized methods when it comes to quantifying model parameter
uncertainties and correlations. As opposed to gradient-based
methods in which the inversion result is one “best-fitting” model,
it is possible with the MCMC approach to study the space of mod-
els that all fit the observed data to a certain degree. Furthermore, it
was found that the MCMC approach is largely independent on the
start model of the inversion, which is not always the case for gra-
dient-based inversions.
In this study, we have chosen to focus on TD DCIP data. How-

ever, the same results are expected for frequency-domain data
because preliminary MCMC studies have shown that the sensitivity
of the Cole-Cole parameters retrieved from the TD or frequency
domain is comparable.

CONCLUSION

By inverting synthetic DC resistivity data with a Metropolis-
Hastings MCMC algorithm, we have studied well-known resistiv-
ity-thickness equivalences present in DC inversion results. Then, we
have combined the DC data with full-waveform TDIP data and
found that the TDIP data help to resolve the layer thicknesses
and thereby the resistivities in models with low- and high-resistivity
equivalence problems. This is possible because no major thickness
equivalences are present for the IP parameters. The results show that
the increase in resolution depends on the added chargeability con-
trast between the layers (modeled in terms of the Cole-Cole IP
parameters) as well as the settings causing the equivalence, i.e.,
the layer thicknesses and the resistivity contrasts in the model.
In the models studied, it was found that a contrast of a factor of
six in the chargeability (which can easily be expected in the field,
e.g., if a clay layer is embedded in a sand formation) is enough to
resolve strong equivalences. Furthermore, inversion of a DCIP field
data set shows that a thin clay layer embedded in a sand formation
causes strong equivalences and ambiguities in the retrieved models
when only considering the DC data. However, when the IP data are
added to the inversion, the clay layer is resolved. This was found to

be the case for MCMC inversions as well as lin-
earized inversions.
Combined, the results indicate that equivalent

layer sequences can be resolved by adding IP
data to the inversion. Considering that TDIP data
can be collected by most instruments when col-
lecting DC resistivity data, the DC equivalence
problems can be significantly reduced at very lit-
tle additional cost.
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