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Abstract Geological heterogeneity is a very important factor to consider when developing geological
models for hydrological purposes. Using statistically based stochastic geological simulations, the spatial heter-
ogeneity in such models can be accounted for. However, various types of uncertainties are associated with
both the geostatistical method and the observation data. In the present study, TProGS is used as the geostatis-
tical modeling tool to simulate structural heterogeneity for glacial deposits in a head water catchment in Den-
mark. The focus is on how the observation data uncertainty can be incorporated in the stochastic simulation
process. The study uses two types of observation data: borehole data and airborne geophysical data. It is com-
monly acknowledged that the density of the borehole data is usually too sparse to characterize the horizontal
heterogeneity. The use of geophysical data gives an unprecedented opportunity to obtain high-resolution
information and thus to identify geostatistical properties more accurately especially in the horizontal direction.
However, since such data are not a direct measurement of the lithology, larger uncertainty of point estimates
can be expected as compared to the use of borehole data. We have proposed a histogram probability match-
ing method in order to link the information on resistivity to hydrofacies, while considering the data uncer-
tainty at the same time. Transition probabilities and Markov Chain models are established using the
transformed geophysical data. It is shown that such transformation is in fact practical; however, the cutoff
value for dividing the resistivity data into facies is difficult to determine. The simulated geological realizations
indicate significant differences of spatial structure depending on the type of conditioning data selected. It is
to our knowledge the first time that grid-to-grid airborne geophysical data including the data uncertainty are
used in conditional geostatistical simulations in TProGS. Therefore, it provides valuable insights regarding the
advantages and challenges of using such comprehensive data.

1. Introduction

The success of groundwater flow simulation is largely determined by the conceptualization of the geology.
Geological models developed for hydrological purposes are traditionally derived from stratigraphical interpre-
tations of direct and/or indirect observations, each associated with various resolution, and types and magni-
tudes of uncertainties [James and Freeze, 1993; Mclaughlin et al., 1993; Berkowitz, 2002; Feyen and Caers, 2006;
Refsgaard et al., 2012]. It is suggested by several studies that the resulting geological structural uncertainty
plays an important role, especially in simulations beyond fluid flow, for instance, the simulation of contami-
nant transport. It is crucial that realistic geological structures are used in such cases since the flow paths may
be mistaken even though the water budget is simulated correctly [Selroos et al., 2002; H�jberg and Refsgaard,
2005; Poeter and Anderson, 2005; Troldborg et al., 2007; Rojas et al., 2008; Seifert et al., 2008].

The geological model used in groundwater simulations, including layers, units, etc., is traditionally con-
structed using a deterministic geological interpretation, which assembles the most comprehensive knowl-
edge available for the site being investigated [Sophocleous et al., 1999; Henriksen et al., 2003; Kollet and
Maxwell, 2006; Lemieux et al., 2008]. Using this approach, the hydrological predictive uncertainty originating
from the geological structural uncertainty is typically unaccounted for. It is possible to replace the geologi-
cal structural uncertainty by effective parameter uncertainty through inverse calibration of hydrological
model parameters [Hill and Tiedeman, 2007]. However, the parameter values obtained through calibration
with a biased geological model are also biased. Therefore, deterministic models with biased parameter val-
ues are unable to make accurate predictions for conditions outside the calibration base.
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It is commonly acknowledged that the geological structural uncertainty can be evaluated by using several
equally plausible models, and such geological models can be constructed manually and/or stochastically
[Franssen and Gomez-Hernandez, 2002; H�jberg and Refsgaard, 2005; Troldborg et al., 2010; Seifert et al.,
2012]. Generating multiple geological models using the stochastic approach requires the use of geostatisti-
cal modeling tools.

Geostatistical techniques for generating multiple geological realizations have become increasingly accessi-
ble in recent years [Deutsch and Cockerham, 1994; Carle and Fogg, 1996; Goovaerts, 2001; Strebelle, 2002;
Poeter and Anderson, 2005; Refsgaard et al., 2006]. Among these techniques, Transition Probability Geostatis-
tical Software (TProGS) is a two-point geostatistical method that is able to reproduce critical hydrogeologi-
cal features, such as the volumetric proportions, the mean lengths, and the juxtapositional tendencies of
the facies [Carle and Fogg, 1996; Carle, 1997; Weissmann and Fogg, 1999; Ritzi, 2000; Engdahl et al., 2010a;
dell’Arciprete et al., 2012]. TProGS also provides an extension to the traditional variogram analysis, especially
for asymmetrical structures where the geological characteristics may not be captured by simply using a var-
iogram model [Lee et al., 2007]. The multipoint geostatistics have shown promising improvement compared
to the traditional two-point geostatistics. However, it requires that a 3-D training image exists which
adequately represents the geological heterogeneity of the entire model domain [Hu and Chugunova, 2008].

The TProGS package produces stochastic geological realizations through Sequential Indicator Simulation
(SIS) and Quenching. SIS is widely used in soil surveys, reservoir modeling, and hydrogeological investiga-
tions where the nature of the data is primarily categorical [Sminchak et al., 1996; Juang et al., 2004; Elfeki
and Dekking, 2007; de Almeida, 2010; Quental et al., 2012]. Recent studies have demonstrated the possibility
of incorporating conditional data in SIS, such that the random process also honors reference data at specific
locations [McKenna and Poeter, 1995; Lee et al., 2007; Engdahl et al., 2010b; dell’Arciprete et al., 2012]. In con-
ditional stochastic simulations, one can either force the realizations to honor the data completely, ‘‘hard
conditioning,’’ or to honor the data partly with consideration of the uncertainty of the data, ‘‘soft condition-
ing’’ [Carle et al., 2006; Falivene et al., 2007]. However, it is not resolved how subjective information can be
used properly in geostatistical simulation.

Typically, the geostatistical characteristics in TProGS are established using borehole data. Borehole data pro-
vide adequate information on the distribution and variability of the deposits in the vertical direction, but
provide relatively weak information in the horizontal direction, since the horizontal length scale of lithologi-
cal units is usually smaller than the spacing between the wells in heterogeneous media. To overcome this
problem, studies have attempted to include spatially distributed but indirect information on geology for
solving data scarcity issues in the horizontal direction [Weissmann and Fogg, 1999; Elfeki, 2006; Harp et al.,
2008; Ye and Khaleel, 2008].

Previously, spatial geophysical data such as Ground Penetrating Radar (GPR) or seismic data have been
employed in geological simulations using various types of geostatistical techniques [Parra et al., 2006; Eng-
dahl et al., 2010b; De Benedetto et al., 2012]. In the present study, data obtained from an Airborne transient
ElectroMagnetic (AEM) survey are used to assist stochastic geological simulation using TProGS in a head-
water catchment in western Denmark. The transient EM method uses the inductive response of the ground
that is generated after the abrupt turn off of the electric current in a transmitter wired loop to relate the
decay of the magnetic field to the resistivity distribution of the ground. The conductive layers such as clays
provide the strongest responses, and the observation of the decay from the early times (i.e., right after the
turn off of the current) to the late times gives information from the near surface to the deeper formations
[Ward and Hohmann, 1988; Christiansen et al., 2006].The transient AEM system used in the present study,
SkyTEM, was initially designed for groundwater investigations and has been improved successively, leading
to different versions of the system with different size and power [Christiansen and Christensen, 2003;
S�rensen and Auken, 2004; Auken et al., 2009; Kirkegaard et al., 2011]. Each version is adapted to the target’s
depth, the most powerful version allowing prospection down to several hundred meters (larger electrical
resistivities in the top favoring deeper penetration of the EM field), and the smallest and less powerful sys-
tem providing a better resolution of the near surface.

The specific SkyTEM version used in the present study is called SkyTEM101. It has been developed to deliver
very high resolution in the near surface (top 20 m; C. Schamper et al., Assessment of near-surface mapping
capabilities by airborne transient electromagnetic data—An extensive comparison to convertional borehole
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data, submitted to Geophysics, 2013). The new processing methodology applied to this system for improv-
ing near-surface resolution is detailed in Schamper et al. [2014]. Despite its near-surface oriented design, the
SkyTEM101 system still has a depth of investigation of 100 m for a medium resistivity of 50 Xm. SkyTEM
data have the potential to become an important source of information in the construction of 3-D transition
probability/Markov Chain models. Additionally, the density of SkyTEM data provides a unique opportunity
for conditional geostatistical simulations. However, the added value of the extra conditional data on the
geological simulations still needs to be analyzed.

There are a number of known limitations and uncertainties associated with the use of transient AEM data as
a proxy of the geology, e.g., vertical and horizontal resolution capability, variations in ion content of pore
water and coupled and noise-infected data [J�rgensen et al., 2012, 2013; Viezzoli et al., 2013]. As a result,
when geostatistical simulations are carried out with the purpose to generate hydrogeological models, AEM
data may be best used indirectly as soft data. Borehole data, on the other hand, are in situ and generally
convenient to use. However, the borehole data may also be associated with various types of uncertainties.
Therefore, how to incorporate the uncertainties from the observation data, including both the geological
and geophysical data, remains an important challenge.

The objectives of the present study are: (1) to develop a method that transforms AEM data so that they can
be used in stochastic geological simulations by establishing a relationship between the facies data based
on borehole logs and the resistivity data based on the AEM survey; (2) to simulate equally likely geological
realizations using the transition probability-based indicator geostatistics with both borehole and AEM data
as soft conditioning; and (3) to analyze the uncertainties in the stochastic simulations with regard to data
types and different conditioning approaches. The result of the study gives information about the strengths
and weaknesses of the geostatistical software used, and it also underlines the importance of conditioning
data in such geological simulations.

2. Materials and Methods

The Norsminde Fjord catchment is selected as the study area. Two types of field data, namely borehole
data and AEM data, are extracted from the national geological database and collected from a field cam-
paign, respectively. A method is developed in order to link these two types of data, so the remotely sensed
geophysical data can also be used in simulations of geological facies. The stochastic geological modeling
tool used is TProGS [Carle, 1996].

2.1. Study Area and Geology
The Norsminde Fjord catchment located on the east coast of Jutland peninsula in Denmark (Figure 1) is
selected as the study site. The headwater catchment drains to Aarhus Bay through Raevs River and numer-
ous small tributaries. Over 70% of the drainage area is intensively farmed agricultural land. The catchment
slopes from west to east with about 90 m difference in surface elevation.

Knowledge of the geological and hydrogeological setting is mainly derived from groundwater abstraction wells.
In general, the setting encompasses Paleogene and Neogene marine sediments covered by heterogeneous
sequences of Pleistocene glacial deposits. The Paleogene layers are mainly of hemiplegic origin and composed of
very fine-grained impermeable marl and clay. The Neogene layers above comprise a clay-dominated, Miocene
marine formation interbedded by sandy deltaic units. These sand units can reach thicknesses of more than 10 m,
and the entire Miocene sequence is typically up to 40 m thick [Rasmussen et al., 2010]. The Miocene is only pres-
ent in the western part of the area, and the Paleogene clay is therefore directly covered by the glacial deposits in
the eastern part. The Paleogene and Miocene deposits are in places incised by deep buried tunnel valleys, in par-
ticular, in the southern part where the Boulstrup valley crosses the model area [J�rgensen and Sandersen, 2006].

The glacial deposits are composed of both sandy and clayey sediments. According to the boreholes, the
clay layers include a variety of lithologies from glaciolacustrine clay to clay till. The sandy glacial deposits
are generally of glaciofluvial origin and seem to occur as distributed and relatively small units within the
clay-dominated environment. The sequence is occasionally heavily deformed with occurrences of rafts of
Paleogene clay. The western part of the glacial sequence is subjected to stochastic geological modeling,
as shown in Figure 1. This area is delineated from the remaining area on the basis of surface morphology
in which a heavily deformed area occurs toward the northwest. Toward the east the glacial sequence
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pinches out due to surface erosion and to the south and west it is bounded by the limit of the survey
area. The lower boundary is delineated on the basis of borehole information. The contact between Mio-
cene deposits and glacial deposits has been identified in each borehole and these positions have subse-
quently been interpolated into a grid to represent the spatial structure of the boundary. The glacial till
sequence is singled out to ensure that all geological processes comply with a weak stationarity assump-
tion in this sub volume, and therefore does not impose any significant trend in space. The area of the
modeling domain is 108 km2.

2.2. Borehole Data and Quality Rating
Borehole information is obtained from the Danish National Geological Database—Jupiter, which contains
information on the 177 boreholes in the modeling area (Figure 2). All the boreholes have been automati-
cally assigned to quality groups by running a set of dedicated database queries. Each borehole is classified
into quality group 1 through 5, where group 1 refers to the highest quality and group 5 refers to very low
quality or no data. Boreholes from group 5 are discarded from the subsequent calculations.

The basic principle in the borehole rating is to separate the boreholes that are able to provide accurate and
useful information on lithology from the boreholes that provide very little information or even misleading
information. The rating is focused on the boreholes’ ability to distinguish between sand and clay, and the
ability to identify the exact locations of layer boundaries between sand and clay units. It is preferable if pro-
cedures to assess quantitative rating scores are established such that borehole ratings can be compared to
other areas and the results can be used directly for model constraining.

Six main criteria that directly or indirectly influence the quality of lithological borehole data are taken into
consideration, including:

1. Accuracy of the geographical position, i.e., boreholes with coordinates determined by GPS, are rated
higher than other boreholes.

2. Drilling method and purpose, i.e., auger drillings are rated higher than mud circulation drillings, and bore-
holes drilled for drinking water purposes are rated higher than boreholes drilled for seismic data collection.

3. Credibility of the contractors, i.e., boreholes drilled by drillers with a good reputation is rated higher than
boreholes drilled by drillers with a bad reputation.

4. Abundance of registered samples, i.e., boreholes with many samples per drilled depth distance is rated
higher than boreholes with few samples.

Figure 1. Location of the study area and the subarea with the glacial till deposit (shaded area) that is considered in the geostatistical simu-
lations. The domain used in TProGS is denoted by the white rectangle.
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5. Age of the borehole, i.e., young boreholes are rated higher than old boreholes.

6. Occurrence of major errors, i.e., boreholes with a high discrepancy between registered elevation and the
elevation of the ground surface at the registered drilling site are rated low.

The influence of each factor is counted and individual scores are assigned. The evaluation is concluded with
an overall rating that sums up the individual scores from all the contributing factors.

Although lithological units can be read directly from the borehole log data, the number of lithological units
is usually too great to be used directly in categorical geostatistical modeling. Thus, borehole lithological
data are converted into a textual facies system, which usually consists of fewer categories such as sand and
clay. In this context, facies is defined as a group of soil that shares similar hydraulic properties. In the present
study, we consider two facies, namely sand and clay.

2.3. The SkyTEM Survey
Airborne geophysical data were collected in the Norsminde catchment in June 2011 during a week-long
field campaign. After processing the voltage data from the SkyTEM helicopter campaign, which in principle
consists of the culling of the sounding perturbed by coupling due to the presence of man-made installations
(e.g., power lines, buried pipes), the AEM data are processed using a spatially constrained inversion algorithm
[Viezzoli et al., 2009]. The results provide a quasi-3-D distribution of both the near-surface (top 20 m) and the
deep (down to 100 m) resistivity. The sounding points are distributed along the flight lines and over 29 fixed

Figure 2. Observation data used in TProGS simulations. (a) Location of the boreholes as well as their affiliated quality groups, see Table 3. The SkyTEM flight lines after processing with
different flight densities are also shown; and (b–d) illustration of interpolated SkyTEM data onto 20 m 3 20 m 3 2 m grid using point sounding data at 0, 49, and 59 m. The TProGS
model domain as well as the glacial till sequence is the same as indicated in Figure 1. Note that the glacial till sequence is located above elevations of 0 m.
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depths relative to the ground surface. Altogether there are nearly 2000 km of flight lines and over 100,000
sounding positions in the Norsminde catchment. The spacing between the flight lines is maximum 100 m,
and on the west side of the catchment denser flight lines with a spacing of approximately 50 m have been
used, as shown in Figure 2. The target area is located at the place where the flight lines are most dense.

Point sounding data represent the measurement over a certain volume (e.g., upper layer footprint can be 25–75
m); therefore in order to compare resistivity data directly with local lithological data, interpolated sounding data
are used instead. Consequently, gridded resistivity data with dimensions of 20 m 3 20 m horizontally and 2 m ver-
tically are generated as successive horizontal slices after 2-D interpolation of point sounding data using kriging.

2.4. Linking Facies Probabilities to Resistivity
In order to use the AEM data in stochastic geological indicator simulations, the inverted resistivity data
need to be expressed as facies types [Gunnink and Siemon, 2009; Gunnink et al., 2012]. A procedure is devel-
oped for connecting airborne TEM data to the information on facies obtained from borehole well logs; this
procedure uses a histogram probability matching method (HPMM):

PðIjR½r1; r2�Þ5
ðr2

r1

f ðRÞ � dR

XI

0

PðIÞ51

(1)

where I is a certain facies category, and R is the resistivity measured by the AEM system, r1 and r2 are the start-
ing and finishing point of each resistivity interval, and f(R) is the function that transforms a resistivity value to a
sand probability. Equation (1) assumes that the probability of getting facies I is positively correlated to the
occurrence of resistivity over a certain range. To implement this idea and also to simplify the problem, resistiv-
ity data, which is in reality a continuous variable, are divided into discrete intervals. A fixed vertical discretiza-
tion is defined based on the scale of the presumed thinnest unit in the study area. The categorical data from
the boreholes are paired with the interpolated sounding data at the same coordinates. Next, a bin width is cho-
sen to group the resistivity data. The bin width has to be large enough to ensure that a sufficient number of
pairs of data types are available in each bin, and small enough to ensure a minimum resolution of the histo-
gram. The percentage of a facies is then calculated for each bin. Lastly, a curve fitting is performed to character-
ize the shape of the histogram. The probability of the facies is an indication of data hardness with any given
resistivity value. In the HPMM approach, a transition zone is usually defined in order to represent the transition
from one pure facies to another pure facies. However, in case the histogram is very flat indicating that the link
between the facies data and the resistivity data is very uncertain, the transition zone can also be subjectively
defined as the high uncertainty zone which corresponds to a range of probability, e.g., 30%–70% of sand.

If the AEM data are used in a deterministic way, i.e., a fixed number of categories are provided without con-
sidering their uncertainty, cutoff values are needed. In such cases, the histogram gives a good opportunity
to estimate where the cutoff values are likely to be located. In this study, only two categories are consid-
ered, and the cutoff value should be at the resistivity level that corresponds to 50% probability for the facies
unit being studied. However, a precise cutoff value cannot always be determined in the HPMM approach
since the cutoff value is usually located somewhere in the transition zone, and therefore subject to high
uncertainty. An empirical way to overcome this problem is to implement a cost function:

fcðhÞ5abs jpmðIjhÞ2pnðIÞj

~hopt5min ½fcðhÞ�

~popt5pmðIj~hoptÞ (2)

In the above equations, fcðhÞ is the cost function, which is the absolute difference between two sand pro-
portions: pn is the sand proportion counted from the borehole logs; pm is the sand proportion estimated
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from the AEM data, which depends on the cutoff
value, h. The optimized cutoff value ~hopt

� �
is

obtained at the place where the cost function
reaches minimum, and thus the bias-adjusted
sand proportion ~popt

� �
is the corresponding

sand proportion calculated using the AEM data
and the optimized cutoff value.

2.5. TProGS Modeling Package
TProGS was developed in order to simulate cate-
gorical variables through implementing transition
probability and Markov Chain geostatistics. In
TProGS, transition probability is used instead of
the traditional variogram approach for categorical
data due to its simplicity in formulating cross-
correlated variables and interpreting the results. A
two-category realization using TProGS is the same
as using standard variogram-based geostatistics
(e.g., SIS), since there is no asymmetry [Carle and
Fogg, 1996]. There are three key steps involved in
TProGS: first, the transition probabilities from
observation data are established; second,
Markov Chain (MC) models are developed in
order to represent the spatial variability seen
from the observed transition probability; third,
Sequential Indicator Simulations (SIS) and
quenching are applied so that the geological real-
izations are generated. The transition probability
is defined as:

tj;kðhÞ5Pr kðx1hÞjjðxÞf g (3)

where x is a location in space, h is the lag distance, j, k denotes two categories; it is possible that j5k. As
seen from equation (3), transition probability can be interpreted as ‘‘the probability that facies k occurs at
location x1h, given the condition that facies j occurs at location x’’ [Carle, 1996].

The 3-D MC models are generated to represent the spatial variability/dependency seen from the observed
transition probability, where the mean length and the proportions of the facies are identified. MC assumes
that the spatial occurrences depend only on the very nearest data, but not the data after that.

The 3-D MC model is then used as a reference in SIS and Quenching. In the SIS, first a random walking path
is chosen for all the grid cells, which is different in each realization. Then along the randomly determined
path, a grid is simulated by cokriging using values from the existing grids (both conditional data and
already simulated grids). The simulation is carried out by assigning the grid category with respect to the
probability distribution. The above process continues iteratively until all grids are filled. Next, Quenching is
applied where the modeled grids generated with SIS are used as its initial configuration. The grids along
the random path are then temporarily assigned to a different category as opposed to the SIS simulated cat-
egory. An objective function is established to evaluate the statistical difference between the MC model
from transition probability data and the MC model from the simulated realization. This iterative procedure
proceeds until the objective function is optimized [Carle, 1996].

3. Results

Stochastic geological models are constructed for the TProGS model domain indicated in Figure 1. After
delineating the glacial till sequence, only data inside the till area are used for histogram probability match-
ing, for estimating transition probabilities and for conditional geological simulations. The simulation results,

Table 1. Conversion of the Borehole Lithological Units to a Two
Facies System Consisting of Sand and Claya

Symbol Facies Description

b 0 Well, hole bored in the earth
dg 2 Meltwater gravel, Glacial
di 1 Meltwater silt, Glacial
dl 1 Meltwater clay, Glacial
ds 2 Meltwater sand, Glacial
dv 0 Alternating thin meltwater beds, Glacial
dz 2 Meltwater stone, Glacial
g 2 Gravel and sand, unspecified
gi 1 Mica silt from Late Tertiary
gl 1 Mica clay from Late Tertiary
gp 1 Gyttja or coal, Late Tertiary
gs 2 Mica sand, Late Tertiary
i 1 Silt, unspecified
kg 2 Quartz gravel, Miocene
ks 2 Quartz sand, Miocene
l 1 Clay, unspecified
ll 1 Dense clay, Eocene
m 1 Mould, organic topsoil
mg 2 Gravel till, Glacial
ml 1 Clay till, Glacial
ms 2 Sand till, Glacial
o 1 Fill, man-made deposits
ol 1 Clay, Oligocene
p 1 Gyttja, organic mud, unspecified
s 2 Sand, unspecified
sl 1 Thick marl, Eocene
t 1 Peat, unspecified
ti 1 Freshwater silt, Late Glacial
u 0 Mixed clay sand and gravel, unspecified
v 0 Alternating thin beds, unspecified
x 0 Unknown bed
z 0 Stone, flint, unspecified

a‘‘1’’ indicates clay, ‘‘2’’ indicates sand, and ‘‘0’’ indicates the data
that are not able to be classified, and therefore removed from the
calculation.

Water Resources Research 10.1002/2013WR014593

HE ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 3153



however, are generated and presented for the entire TProGS model domain in order to demonstrate the sit-
uations both with and without the influence of the conditioning data.

3.1. Histogram Probability Matching
Thirty-two different lithological units are identified in the geological borehole logs in the Norsminde area.
Following the steps described in section 2.2, the lithological units are classified into a binary facies system
consisting of only sand and clay. A list showing the results of this process can be seen in Table 1. The facies
data are then discretized vertically into layers of 5 cm, which is the smallest scale at which sand units can
be identified in the study area. Each of the 5 cm facies data is paired with the SkyTEM resistivity value from
the corresponding 3-D grid. Since the interpolated AEM data have a vertical grid resolution of 2 m, up to
40 facies data are associated with one grid, assuming that the borehole data are not interrupted at that
depth.

To link the resistivity spectrum to the facies, a histogram is established. It is decided to use 10 Xm bin width
to group the resistivity data, and in each bin the probability of sand is calculated as the number of logs cate-
gorized as sand divided by the total number of logs. In principle one can use either sand or clay to calculate
the probability; however, since the purpose of the present study is to build geological models for ground-
water simulation, sand is chosen because the highly conductive zones have a large impact on the transport.
The higher end of the resistivity can reach values above 100 Xm, but it rarely occurs in the Norsminde area.
Therefore, the histogram ends at 100 Xm which gives 10 bins in total. The histogram generated on
borehole-SkyTEM data pairs is shown in Figure 3 as the bar chart. Once the histogram bars are determined,
a third-order polynomial is used to perform curve fitting:

f ðxÞ5

fmax ðx2Þ jx > x2

a � x31b � x21c � x1d jx1 < x < x2

fmin ðx1Þ jx < x1

8>><
>>:

(4)

It should be mentioned that a third-order polynomial can be nonmonotonic, which is inconsistent with the
concept of monotonically increasing probability of sand as resistivity increases (Figure 3). However, in the
present case the function is confined when it reaches the maximum or minimum value at the two ends.
This procedure ensures that higher resistivity values always indicate higher sand probability and vice versa.
The histogram obtained by only fitting the observation data is referred to as the ‘‘first-guess histogram’’

Figure 3. Histogram probability matching, including the bar chart developed using the observation data, the first-guess and the bias-
adjusted histograms. The number of data pairs in each bin is indicated on the secondary vertical axis.
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(see Figure 3). The cutoff value to
separate sand and clay which is
read from the 50% sand probabil-
ity is estimated to be 55 Xm.
Using this cutoff value, the sand
proportion calculated from the
AEM data is 12.1%, whereas the
sand proportion calculated from
borehole data is 29.4%. It is seen
that the mismatch is substantial,
and it is likely that the cutoff
value is too high.

Various uncertainties affect the
histogram resulting in a wide
transition zone between the two
facies, and thus the location of
the cutoff value for separating
sand and clay for the AEM data is
also highly uncertain. However,
in most geostatistical modeling
tools, including TProGS, the pro-
portion of a facies can only be
given as a single value. Therefore,
the mismatch in sand proportion
between the two data types has
to be resolved. In order to do so,
equation (2) is applied to setup
the cost function. It is assumed
that the proportion mismatch is
mainly caused by the unevenly

distributed sampling density of borehole data, meaning that the borehole data have insufficient representa-
tiveness at the locations where the borehole sampling frequency is low. Therefore, the disagreement in
sand proportion is expected to be larger at the locations where borehole density is low, and to be in better
agreement when the borehole density is higher than a certain threshold (thus more representative).

To address the borehole representativeness issue, the model domain is divided into 1 km2 subdomains
where the sand proportions are calculated individually. The subdomains with no boreholes are eliminated.
The subdomains are then aggregated into larger subdomains (up until 81 km2) which give more combina-
tions in terms of the sand proportion to borehole density relationship. The result of this analysis is shown in
Figure 4a, where it can be roughly estimated that when the borehole density is larger than 2/km2 the values
fluctuate less. Therefore, the sum of absolute difference between the sand proportions of the two data
types is only evaluated with borehole density above 2/km2. This procedure is done iteratively with changing
cutoff values from 43 to 55 Xm. The result can be seen in Figure 4b, where the lowest cost function occurs
at a cutoff value of 46 Xm. The values behind Figure 4b are accumulated absolute errors for all subdomains
that fulfill the borehole density threshold. For each subdomain, the probability of sand based on the AEM
data is calculated using all grid values with no weighting, and the probability of sand based on borehole
data is calculated using all available borehole data in that subdomain.

Using 46 Xm as the cutoff value, the sand proportion calculated from the AEM data then becomes 23.7%,
which will be used for the subsequent geostatistical analysis. As seen on Figure 4a the plot using 55 Xm
cutoff value indicates a positive bias (borehole minus AEM sand proportion), whereas the plot using 46 Xm
in general does not show obvious biases when the borehole density is above 2/km2. Therefore, the 46 Xm-
to-50%-sand-probability is superimposed on the histogram by adding an extra point in curve fitting, where
the polynomial is forced to go through this point. The resulting histogram, called ‘‘bias-adjusted histogram,’’
is shown in Figure 3. At this point, any resistivity value from the AEM data can be converted first to sand/

Figure 4. Identifying the cutoff value for the AEM data in order to separate sand and
clay. (a) Differences of sand proportions between borehole data and AEM data using two
cutoff values plotted against borehole density; and (b) sum of absolute error of sand pro-
portions between the two types of data calculated for subareas with borehole density
above 2/km2 with varying cutoff values, equation(2).
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clay facies based on the estimated cutoff value, and then associated with sand probability using the bias-
adjusted histogram.

3.2. Transition Probability and Markov Chain Models
Observed transition probabilities are established using both borehole and AEM data, where the AEM resis-
tivity data are converted to sand/clay facies using 46 Xm as the cutoff value without considering the uncer-
tainty. Borehole data are used without considering the quality rating.

A number of parameters needs to be specified in this process, see Table 2. The AEM data are measured
exhaustively and provide abundant data in all directions. Borehole data sampling are less extensive in the
horizontal direction but the data density is still sufficient for the analysis. Therefore, it is decided to use an
angle tolerance of 0� for both azimuth and dip directions, which restricts the data search to directions
aligned with the coordinate system of the geological model. Bandwidth, which is the maximum allowed dis-
tance perpendicular to the search angle, is therefore in this case irrelevant. The transition probability in the
vertical direction is computed for a range of 20 m. Since the AEM data only exist every 2 m vertically, a lag
spacing of 2 m is used; whereas for the borehole data, 1 m lag spacing is used. For the remaining parame-
ters the same values are used for both data types.

Transiograms showing transition probabilities using the observation data are shown in Figure 5. The mean
length is estimated by the interception of the first lag transition rate to the horizontal axis. In the vertical
direction, transition probabilities calculated based on the two different data types are in good agreement.
However, since the minimum lag distance of the AEM data is 2 m, the transition rates at small separations
are different for the two data types: the mean length of sand is 5 m using the borehole data and 9 m using
the AEM data. Therefore, in order to establish vertical transition rates more accurately, borehole data are
indispensable, since a 2 m data interval from the AEM survey is relatively coarse and not able to resolve the
natural length scale of sand.

In the horizontal direction, transiograms for both the X and Y directions were initially generated. However, they
appear to be identical up to 1000 m, and the mean length estimated from X and Y directions are also identical.
Therefore, the system is considered horizontally isotropic, and only the figure in 10 direction is displayed to
avoid repetition. The first lag calculated using borehole data is completely offset: the AEM data suggest a mean
length of sand of 500 m, whereas 1200 m is estimated from the borehole data. It is rather common to experi-
ence difficulty when estimating transition probability in the horizontal direction from borehole data alone
according to previous studies [Weissmann and Fogg, 1999; Sakaki et al., 2009; Blessent et al., 2011]; however, the
advantage introduced by high-resolution geophysical data is obvious, as the AEM data density is about 1000
time higher than the borehole density. Therefore, the two data types have their strengths and weaknesses in
terms of identifying transition probability. It is also seen in Figure 5 that the observed data suggest different
sand proportions, 23% and 30%, for AEM and borehole-based analysis, respectively. This is expected, because
the sand proportion from the AEM data is obtained using the cost function as shown in section 3.1, whereas
the sand proportion from the borehole data is obtained by point counting. Since it is only reasonable to have
one Markov Chain model for the same system, the objective is not to make the two proportions match exactly,
but to achieve a realistic sand proportion so that the MC modeling can be carried out.

TProGS offers a variety of options when choosing the method for 3-D Markov Chain modeling. It is also
encouraged to integrate subjective knowledge in the modeling process [Fogg et al., 1998]. In the present
study, it is chosen to use Embedded Markov Chain modeling, where clay is used as the background unit.

Table 2. Parameter Values Used in TProGS in Order to Establish Transition Probabilities Using the Observation Data on All Three
Directionsa

Lag (m) Azimuth (�) Dip (�)

Number Spacing Tolerance Angle Tolerance Angle Tolerance

Z 20 (10) 1(2) 0.5(1) 0 0 90 0
X 20 100 50 90 0 0 0
Y 20 100 50 0 0 0 0

aNumbers in parentheses indicate the parameter values used for AEM data. If not specified, the same values are used for both bore-
hole and AEM data.
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Therefore, the mean lengths of sand entered into the matrices are 5 and 500 m in vertical and horizontal
directions, respectively. The modeled transition probability using the Embedded Markov Chain approach,
Figure 5, successfully represents the observed data. Even though the transition rates at the first lag are not
specified directly, the modeled transition probability fits the borehole data at the first lag in the vertical
direction and AEM data in the horizontal direction.

3.3. Simulated Sand-Clay Texture Models
The borehole data are considered as the local truth in most studies. The present study provides an opportu-
nity to introduce uncertainty on the borehole data through the quality rating exercise described in section
2.2. The result of the quality rating is shown in Table 3. The boreholes are classified into five quality groups
from 1 to 5, where smaller number indicates higher quality. In stochastic geological simulations, borehole
data are usually used as hard conditioning data, which means the probability given to the borehole data
are 100%. In the present study, we use the borehole quality rating as a reference, and give probability
scores to the borehole data based on which quality group they belong to. Therefore, quality group 1 is
given a probability of 100%, same as hard conditioning, whereas the probability score deceases by 5% for
subsequent quality groups (Table 3). This is considered a subjective way to incorporate uncertainty of bore-
hole data as soft conditioning information.

Three conditioning scenarios are considered when generating the equally likely stochastic realizations using
the modeled transition probabilities determined in the above section: (1) borehole data used as hard data,
(2) borehole data used as soft data, and (3) both AEM and borehole data used as soft data. Each scenario is
simulated with an ensemble of 10 realizations. The output cell size is 20 m 3 20 m 3 2 m, which is selected
in order to resolve the geological features and also to make sure there is conditioning data in most grid
cells. The horizontal extent of the simulation domain can be seen in Figure 1. Vertically 40 layers are gener-
ated using 21 m above sea level as the bottom of the model domain. The domain size and grid size are the
same for all three scenarios. A 3-D illustration using realization 2 from scenario 1 is shown in Figure 6
together with the location of the boreholes. Horizontal slices at 49 m (above sea level) from realization 2, 4,

Figure 5. Transiograms for observed transition probability using borehole data and SkyTEM data, as well as modeled transition probability
using Embedded Markov Chain model. (a) Vertical direction; and (b) horizontal direction.

Water Resources Research 10.1002/2013WR014593

HE ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 3157



6, 8, and 10 for all three scenarios are illustrated in Figure 7. As seen in Figure 2, the horizontal coverage of
the AEM conditioning data is not the same at different elevations. 49 m is chosen because it is one of the
elevations where the largest lateral coverage of AEM data can be found, and also because it has a distinctive
high resistivity cluster in the western part.

Figure 7 indicates that the degree of spatial variability between scenarios and between realizations in each
scenario is very different. The borehole data-based scenarios 1 and 2 are similar, whereas the AEM data-
based scenario 3 appears to be very different compared to the borehole-based scenarios: the location of
sand lenses are much more fixed in scenario 3. This implies that the exhaustive AEM data set has a signifi-
cant impact on reducing the uncertainty/spatial variation in conditional geological simulation. Since the SIS
algorithm only considers the simulated Markov Chain model, which depends on the mean length of sand,
the realizations based on borehole data conditioning show similar sizes of sand units on each realization,
whereas the realizations based on the AEM data show a few large sand units and numerous scattered small
ones. This is produced by TProGS to ensure the simulated mean length is statistically correct. The greater
lateral continuity of sand bodies seen from the AEM-based models suggests that the conditioning data
overwrite the mean length of sand obtained from the Markov Chain model.

It should be noted that the conditioning data are only used inside the glacial till structure. Areas where AEM
data exist are highlighted in Figure 7. Both the spatial variability and the scale of the sand units are compa-
rable for all three scenarios outside the highlighted area, where no conditioning data are applied. It is not
possible to simulate an irregular shaped area with TProGS; therefore, the global sand proportion of 23.7%
on the Markov Chain model may not apply to the subdomain of the glacial till area. In fact, based on the 10
realizations, the sand proportions inside the glacial till sequence are estimated to 21%, 25%, and 34% for
scenarios 1, 2, and 3, respectively. When looking at the entire TProGS domain, the averaged sand propor-
tions are the same for all three scenarios. This is controlled by the Markov Chain model. However, for the
subdomain where the AEM data exist, the simulation results in artificially high values of sand proportion.
This could be seen as a sign of strong conditioning. Moreover, the large discrepancies between the

Table 3. Rating of Borehole Data Quality in the Glacial Till Unit of the Norsminde Catchment

Quality
Group

Number of
Boreholes Short Description

Probability
for Conditioning

(%)

1 25 High data sampling frequency, coordinates and level measured with differential
GPS, trusted contractor and high-quality drilling method

100

2 34 Typically normal sampling frequency, trusted contractor and drilling method but
without differential GPS measurements

95

3 43 Typically normal sampling frequency, poor drilling method and samples 90
4 10 Low data sampling frequency, very poor drilling method and samples 85
5 65 Very low quality, no data

Figure 6. 3-D illustration of a TProGS realization together with the locations of the borehole data used for conditioning.
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simulated sand spatial distributions using borehole and SkyTEM data separately for conditioning implies
that the system may not be stationary.

All in all, the above results show that when borehole data are used for conditional simulation, the geostatis-
tical features, such as mean length and proportion of sand, are honored statistically better than when AEM
data are used for data conditioning in the focus area. This shows that the selection of conditioning method
is important for transition probability-based geostatistical simulations, and using a large number of data
points for soft conditioning can effectively change the geostatistical features specified in TProGS.

4. Discussion

Our results have revealed new challenges when transforming airborne geophysical data to hydrogeological
facies data, and subsequently using such data for establishing transition probabilities and carrying out sto-
chastic geological simulation with soft data conditioning. The primary challenge when using the HPMM
transformed data is that different sand proportions are found from the two different types of data (borehole
and AEM). Since only one proportion can be specified for the Markov Chain model, the proportion mis-
match is important to be addressed. Second, the borehole data have traditionally been considered as
ground truth when the two types of data are compared. However, it is important to know what role the
borehole data uncertainty plays during the data transformation. Last, the impact of conditioning data on
the resulting geological models is analyzed.

4.1. Proportion Mismatch
We have proposed to use a histogram probability matching method to associate geophysical sounding
data with borehole facies data. However, the cutoff value for the geophysical data is difficult to determine,
and therefore causes proportion mismatch for the classified facies between the two data types. The cutoff

Figure 7. Simulated geological models using TProGS, horizontal slices are taken at 49 m above sea level. Borehole locations are also indicated by light yellow points. Three scenarios are
presented: (1) using borehole data for hard conditioning, (2) using borehole data for soft conditioning; and (3) using both borehole and AEM data for soft conditioning. Five realizations
are shown for each scenario.
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value is initially estimated from
the first-guess histogram where
the resistivity value correspond-
ing to 50% sand probability is
found. However, this approach
leads to large discrepancy of
sand proportion between the
two types of data. This indicates
that the linkage between bore-
hole facies data and AEM resistiv-
ity is uncertain. Figure 3 shows
that the transition zone between
high probability of sand and high
probability of clay is quite wide. If
70% probability is taken for both
facies, the transition zone is
located between 43 and 68 Xm.
It is most likely that the ‘‘true’’
cutoff value is located some-
where within this range, but it is
difficult to identify the exact
location.

The proportion mismatch could
be caused by both the geophysi-
cal data and the borehole data.
The geophysical data have a
tendency to underestimate sand
units. AEM data normally show
local-scale representativeness
errors, because the small sand

units are not detected. In a conceptual three-layer model, when the resistivity value of the middle layer is
much larger than the two neighboring layers, the electric current will tend to avoid the high resistivity sand
layer and take the short route to the more conductive layer underneath. An example is shown in Figure 8
where the thin sand layer at depth 11–12 m is buried within a thick clay layer and therefore not identified
by AEM. This phenomenon is amplified when the thickness of the resistive layer is small compared to its
depth, and it is called ‘‘the principle of suppression’’ [Parasnis, 1997]. Based on this theory, the AEM data is
expected to underestimate the volume of the sand units in areas where clayey (low resistive) sediments
dominate. This is consistent with our observation.

On the other hand, the borehole data are likely to overestimate the sand proportion, which is mostly due to
sampling bias [Proce et al., 2004]. First, boreholes are drilled at the places where high-permeable layers are
assumed to exist based on previous knowledge, since the purpose for the majority of drillings in Denmark
is to find groundwater aquifers. This can be seen in Figure 2 where the number of boreholes is unevenly dis-
tributed across the study area. Second, most drillings stop when a sandy aquifer is found. As a result, the
clay sediments underneath the sand are not detected which also leads to overestimation of sand from the
borehole log data [Nilsson et al., 2007]. However, in the present study, the second explanation does not
apply. In fact, a large sand layer is present between the bottom of the glacial deposits and the top of the
Miocene deposits, and most boreholes penetrate through both deposits. Since only the glacial deposits are
studied and the boundary between the two layers is subjectively delineated, the location of the boundary
can introduce uncertainty. If the boundary is shifted a few meters upward or downward, the sand propor-
tion of the two facies changes significantly, as shown in Table 4.

Therefore, the AEM underestimation and the borehole overestimation imply that the sand proportion is nei-
ther 12.1% nor 29.4% seen from the first-guess histogram, but rather somewhere in between. The study
uses an empirical search method to assess the ‘‘optimal’’ sand proportion. The estimated value of 23.7% for

Figure 8. Side-by-side comparison of borehole lithological data and AEM vertical sound-
ing data at borehole number 99.625.
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the entire area seems reasonable based on the results from the transition probability analysis. The bias-
adjusted cutoff value, 46 Xm, is also consistent with the resistivity ranges considered in C. Schamper et al.
(submitted manuscript, 2013), where clay is characterized by resistivities in the range 25–60 Xm and sand is
defined by resistivities above 50 Xm. The resistivity overlapping between the two hydrogeological facies
illustrates the uncertainty in the link between the resistivity values and the lithology characterization.

Figure 3 shows that the distribution of sample pairs over the resistivity spectrum is much inclined to the
low resistivity region which is a result of the large proportion of clay in the area. Considering that the AEM
data actually highlight the conductive units and are inverted on a logarithmic scale in order to reflect the
dynamics of the diffusive transient EM, the fitted histogram generated using linear scale can also introduce
uncertainty. Therefore, the first-guess histogram is plotted using a log-transformed domain in Figure 9. The
distribution of borehole data pairs is close to a normal distribution. The cutoff value for 50% sand probabil-
ity is in this case 57 Xm which is similar to what can be obtained using the linear-scale first-guess histogram
(55 Xm). This exercise indicates that using the log-transformed resistivity data to construct the histogram
does not have significant impact on the resistivity-facies relationship, and thus the procedure for bias
adjustment is necessary.

The vertical sampling scale of the two types of data differs by a factor of 40, as indicated in section 3.1,
which could also result in mismatch of sand proportions. To evaluate the impact of the footprint difference,
the borehole data are aggregated to 2 m intervals in order to match the AEM data footprint. The upscaling
is done using the following procedure: borehole data are counted vertically using the 5 cm interval data
set. An upscaling threshold is selected to classify the upscaled facies in every 2 m interval. For instance, if
60% upscaling threshold is chosen, it means that when the sand count within a 2 m interval suggests more
than 60% is sand, then the whole 2 m is categorized as sand for the upscaled facies. After the 5 cm data set

Table 4. Proportion of Sand Estimated From Borehole Data and AEM Data With Alternative Bottom Elevation of the Glacial Till Structure
(Unit: %)

Changed By

Borehole SkyTEM

All Grades Grade 1 Only 55 Xm cutoff 46 Xm cutoff

110 m 18.4 22.1 4.4 11.7
15 m 23.1 25.7 6.4 15.7
0 m 29.4 30.7 12.1 23.7
25 m 35.0 33.3 18.9 31.2
210 m 39.3 34.7 25.0 37.4

Figure 9. Histogram probability matching presented on log scale.
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is scanned, the sand proportion can be calculated for the 2 m rescaled data set. The objective is to match
the original sand proportion by adjusting the upscaling threshold.

A trial-and-error approach is used to find the upscaling threshold, and the results can be seen in Table 5. It
is noted that the upscaling thresholds can be adjusted such that the sand proportion of the fine-resolution
data sets is successfully matched. The value of the upscaling threshold indicates the impact of sampling
scale on the estimated proportion. If all four quality groups are considered, the upscaling threshold is 50%
indicating that a sampling scale of 2 m using the dominant facies (the one above 50%) will give similar
results to using a sampling scale of 5 cm. This is logical because the 2 m sampling scale is significantly
smaller than the vertical mean length scale of 5 m (Figure 5). This implies that if the histogram was con-
structed using the 2 m interval data, the histogram would not show a significantly different shape. However,
it is still preferable to use the 5 cm data to identify the mean length as stated in section 3.2.

The difference in the mean length of sand in vertical direction obtained from borehole and AEM data, 5 and
9 m, respectively (Figure 5), indicates that the measurement footprint of the AEM data is larger than the 2
m resolution of the data set. Thus, the volume of soil over which the electric currents propagate in the soil
and the additional smoothing of the data caused by the numerical inversion algorithm limit the effective
vertical resolution of the information suggesting that the AEM system may have difficulty identifying a sand
unit with a vertical extent of 2 m. The vertical resolution of the AEM data also has an effect on the results in
the horizontal direction. Since the AEM data are averaged across a 2 m deep interval, the same 2 m averag-
ing is occurring across the entire voxel that is used for the horizontal measure, which will affect both the
proportion and the mean length. This addresses the importance of the resolution of a device: borehole data

are well resolved in both horizontal and
vertical directions; however, the borehole
data are also extremely sparse in the hori-
zontal direction. AEM data, on the other
hand, have a much coarser resolution;
however, these data are very dense in the
horizontal direction.

4.2. Impact of Borehole Quality
When comparing borehole data and the
AEM data in the histogram probability

Figure 10. Histograms presented for different borehole quality ratings. The gray areas indicate the transition zones and are therefore
excluded when calculating RMSEs.

Table 5. Proportion of Sand With Borehole Data Rescaled From 5 to 2 m
(Unit: %)a

Quality Group
Sand Proportion in
5 cm Vertical Depth

Sand Proportion
in 2 m Rescale

Upscaling
Threshold

1 30.7 30.7 48
2 25.2 25.5 52
3 34.6 34.3 50
4 21.6 21.8 61
All (1–4) 29.4 29.4 50

aQuality groups are defined in Table 3.
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matching method, borehole data are considered as the true representation of the hydrogeological facies.
However, the shape of the fitted histogram, especially the width of the transition zone, indicates that uncer-
tainties from various sources are lumped into the data. These uncertainties include: first, borehole descrip-
tions are not accurate, and classification of borehole lithology is subjective. Second, there are uncertainties
on the resistivity data due to the resolution of the physics itself, the geophysics instruments, field measure-
ments and signal processing (inversion). Third, there is no unique relationship between resistivity and lithol-
ogy, and the curve can therefore be fitted in various ways. Last, there are uncertainties related to the scale
of aggregation, since the borehole data and geophysical data have different resolutions and hence different
supporting scales [Refsgaard et al., 2014]. The difference between the actual histogram and the ‘‘ideal’’ histo-
gram (where only zeros exist below the cutoff value and ones above the cutoff value) indicates the magni-
tude of the combined uncertainty. It also means that the larger the combined uncertainty, the lower the
slope of the fitted histogram will get.

It can be useful to acknowledge the borehole quality rating information and examine the influence that the
borehole data quality plays in generating the histogram. In order to do so, the following steps are taken:
first, individual first-guess histograms are prepared for each borehole quality group. Second, cutoff values
that separate clay and nonclay are identified. Last, root-mean-square errors (RMSEs) are calculated for each
histogram comparing to the ideal histograms, while excluding data 610 Xm from the cutoff values. The
results are shown in Figure 10 and the corresponding statistics are listed in Table 6.

If the uncertainty from the borehole data is the dominating uncertainty, decreasing slope should be
observed with decreasing borehole quality. However, this trend is not entirely clear in Figure 10. The slope
is found to decrease from quality groups 1 to 3; however, quality group 4 seems to have highest slope and
hence the best performance. Comparing the RMSE values in Table 6, the same conclusion can be obtained.
It seems that the relatively good match obtained between the borehole data and the AEM data in group 4
is not caused by high data quality but related to the frequency of facies shift per 10 m. If other factors are
equal, the higher the borehole quality, the more heterogeneity they are able to represent. As a result, the
better match between the borehole data and AEM data can be a coincidence due to the fact that both data
types have smoothed facies transition. Additionally, there are only 10 boreholes in group 4, and the sample
volume might be too small to be representative. Therefore, it is inconclusive whether borehole data uncer-
tainty has the dominating effect to the overall uncertainty.

4.3. Impact of the Conditioning Strategy
One of the main objectives of the present study is to evaluate if and how exhaustively sampled grid-to-grid
airborne geophysical data can be used in geostatistical simulations. This is implemented through incorpo-
rating AEM data as soft information for constraining SIS in TProGS. The simulated results suggest consider-
able differences compared to the scenario where only the borehole data are used. In order to analyze the
impact of the conditioning data on estimates of facies uncertainty at point locations, the probability of sand
for each pixel is calculated based on the 10 realizations. This is done for all three scenarios at the elevation
of 31, 49, and 59 m. and the results are shown in Figure 11. The simulated probability of sand is an indica-
tion of the variability between realizations. Using borehole data as soft information (Figure 11c) results in
higher variability than if the borehole data are used for hard conditioning (Figure 11b) as expected. It is
noted that the quality scores for different borehole groups (seen in Table 3) are subjective. Thus, if lower
scores are used, the difference between scenario 1 and 2 will be larger. However, the difference between
scenario 1 and 2 is small compared to the difference between scenario 2 and 3, when AEM data are added.

The AEM data-based simulations (Figure 11d) indicate almost deterministic results at the locations where
conditioning data are available (Figure 11a) regardless of the depth. In the densely conditioned areas, the
probability of sand or clay is above 80%. This is a clear indication that the simulations have been strongly
conditioned in the horizontal direction. In order to quantitatively illustrate the strongly conditioned simula-
tion results, cumulative density functions (CDF) are plotted against sand probabilities for all three simulation
scenarios. It is seen in Figure 12a that the AEM transformed facies data, which is used for soft conditioning,
aligns very well with the two simulation scenarios generated with borehole data as conditioning informa-
tion (scenario 1 and 2). However, the AEM data-based simulations (scenario 3) show a flat shape of the CDF
which indicates that the probability of sand has been magnified. Therefore, it is believed that the main rea-
son for the difference between the AEM-based simulations and the borehole-based simulations is the
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conditioning strategy, and because of that the geostatistical features (mean length and proportion) are not
honored in the AEM-based simulations.

It is estimated that the mean length of sand in the horizontal direction is 500 m whereas the conditioning
data is provided every 20 m and the output grid size is also 20 m. The AEM data are spatially correlated and
it is speculated that TProGS has difficulties dealing with spatially correlated data. In the cokriging process of
the current TProGS version, the uncertainty of the soft conditioning data are considered when randomly
selecting the facies for interpolation, but the uncertainty is not considered when calculating the kriging
covariance matrix. Therefore, this results in an artificial reduction of the uncertainty of the correlated data.
Hydrological simulations using strongly conditioned realizations of the geology will show similar flow paths.

Table 6. Histogram Cutoff Values in Relation to Different Borehole Quality Groupsa

Quality Group
Number of
Boreholes Cutoff Value (Xm) RMSE Point Counts

Number of Facies
Shift (per 10 m)

1 25 57 0.17 8714 9.9
2 34 58 0.19 17,733 2.7
3 43 54 0.28 18,509 2.0
4 10 50 0.16 3892 0.6

aQuality groups are defined in Table 3. The frequency of facies shift is calculated for every 10 m.

Figure 11. Simulated sand probabilities each based on 10 TProGS realizations at 31, 49, and 59 m above sea level. The locations of boreholes are indicated as black points. (a) Probability
of sand for the transformed AEM data using HPMM, (b) using borehole data for hard conditioning, (c) using borehole data for soft conditioning, and (d) using both borehole data and
AEM data for soft conditioning. Figure 11b–11d correspond to scenario 1–3 in Figure 7, respectively.
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Possible solutions for this prob-
lem might be: (1) thinning out
the conditioning data so they are
no longer correlated or less cor-
related; (2) adding uncertainty
when producing the histogram
to account for the data correla-
tion; (3) update the cokriging
function in TProGS so the data
uncertainty can be considered
when calculating the covariance
matrix. Here the first method has
been tested, where the amount
of conditioning data is reduced
by 90% and the simulations are
reproduced. On the original AEM
data set, every one out of ten
data entry is kept using the same
sampling spacing. The resulting
resistivity-to-sand-probability
relationship is compared with the
bias-adjusted histogram and the
simulation where the entire AEM
data set is used for conditioning,
Figure 12b. By removing the
majority of the conditioning data,
the estimated uncertainty is at
the level which was originally
intended (the same as the bias-
adjusted histogram). However,
further implementations and
analysis for dealing with the cor-
related data are outside the
scope of the present study.

It is shown in Figure 11 that for
the three selected depths, the
largest difference between the
simulation scenarios occurs at 49
m elevation. At 49 m elevation,
the largest difference between
scenario 3 and scenario 1

appears to be on the south west corner of the study area, where the AEM-based simulations suggest very
large probability of sand, whereas the borehole-based simulations suggest large probability of clay. This is
because borehole data missed this large sand unit due to insufficient sampling. There is only one borehole
reaching 49 m at the location where AEM data indicates sand. Based on this borehole alone, it is not possi-
ble to generate a sand unit with the same size as can be done using AEM data for conditioning. Therefore,
the comprehensive AEM data have certain advantages in simulating the geology in the study area. The
large sand unit at 49 m may be mapped based on borehole data for conditioning if a three-facies system
was used, since many of the resistivity data in that area belongs to the transition zone. The reasons why it
was decided to use a two facies system to begin with are: first, the borehole data have to be classified into
a number of hydrogeological facies, so that they can be paired with resistivity data. The borehole lithologi-
cal descriptions originally contained 32 units, as seen in Table 1. If the borehole data are classified into three
hydrofacies (sand, clay, and an in-between facies), it is very difficult to determine which lithological units
that belong to the intermediate facies. Second, as a first attempt to carry out such lithological-geophysical

Figure 12. Illustration of simulation that is strongly conditioned by AEM data used as soft
conditioning information. (a) Cumulative density functions (CDFs) plotted against proba-
bility of sand for the AEM conditioning data and three simulation scenarios as seen in
Figure 7; and (b) reproducing the histogram using the simulation results with the whole
AEM data set and reduced AEM data set.
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data pairing, we would like to keep our experiment as simple as possible. If three facies are used, the histo-
gram probability matching method will also have to involve cross relations between every two of the three
facies.

Another way to demonstrate the influence of using abundant AEM data for geological simulation is a cross-
validation analysis, which can be carried out by examining the effect of AEM data on the TProGS results
using an independent data set. Since there is no independent data set available, we have therefore split the
borehole data into two subgroups with equal population using random selection: one for conditioning the
TProGS simulations and the other for validating the results. The voxel values from TProGS are compared to
the colocated borehole data. For scenario 2 (borehole data used for soft conditioning) 32.6% agreement
with validation data is found in terms of simulating the sand units at the correct location, whereas the
agreement is 77.2% for scenario 3 (both borehole and AEM data used for conditioning). The improvement
caused by adding the geophysical data into the conditional simulation process is obvious. It shows that
using both AEM and borehole data is superior for finding the correct locations of sand lenses compared to
the case where borehole data is the only data source for conditioning.

2-D or 3-D geophysical data have been used in geostatistical techniques such as indicator geostatistics,
multiple-point geostatistics and object-based methods [Deutsch and Wen, 2000; Parra et al., 2006; Mariethoz
et al., 2009; Engdahl et al., 2010b]. However, employing AEM data for stochastic hydrofacies simulation is a
relatively new field where only a few studies have been published. Therefore, the results presented in the
present study have certain novelties in this particular subject. As far as we know, only Gunnink and Siemon
[2009] and He et al. [2013] have tried to use AEM data for stochastic geological simulations. The geophysical
data employed by Gunnink and Siemon [2009] were based on frequency EM (FEM). The current study uses
transient EM (TEM) which usually has a lower resolution close to the ground surface than FEM. However,
since the TEM version we used (SkyTEM101) has been optimized for higher-resolution near surface (C.
Schamper et al., submitted manuscript, 2013), the airborne geophysical data used in the two studies are in
fact comparable regarding near-surface resolution, and thus the results are also similar in terms of the sand-
clay texture models. On the other hand, He et al. [2013] used the conventional TEM technology and the
flight line spacing was twice as high compared to the present study. The geology in their study area was
described as a glaciotectonic complex which means that the degree of geological heterogeneity is higher
and the correlation length is smaller than in the glacial till sequence. They later found that the correlation
length of their system was significantly smaller than what was resolved in the geological model based on
the TEM data, and therefore it was difficult to identify the correlation length properly. This indicates that the
AEM data density plays an important role depending on the specific geological condition.

5. Summary and Conclusions

In the present study, the geostatistical modeling tool TProGS is used to simulate structures of sand/clay-
dominated glacial deposits. The simulations use in situ borehole data and airborne geophysical data for
establishing transition probabilities as well as for conditioning the stochastic indicator simulations. The
exhaustive geophysical data are used with consideration of their uncertainties, which is an innovative con-
tribution of the study. To our knowledge, it is also the first time that TProGS is applied in conditional simula-
tions with such extensive geophysical data.

A histogram probability matching method is used to associate the resistivity data from the AEM survey to
facies categories. The resulting first-guess histogram shows large discrepancies in terms of sand proportions
from the AEM data compared to the results using borehole data (12.1% and 29.4%, respectively). This mis-
match indicates that the linkage between these two types of data is highly uncertain which is shown as a
wide transition zone from clay to sand on the fitted histogram.

The wide transition zone is attributed to various reasons such as data uncertainty, the curve fitting method
and the footprint of measurement. An empirical cost function is therefore used to assess an optimal sand
proportion. The bias-adjusted cutoff value of 46 Xm is obtained for dividing sand and clay; and the corre-
sponding sand proportion is 23.7%. It is later shown that by using the cutoff value from the empirical
method, the resulting transition probabilities are reasonable. However, the simulated spatial patterns based
on AEM data show very large differences when compared to the borehole data-based simulations. More-
over, it is also indicated that the selection of log-transformed resistivity data for generating the histogram
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did not play a significant role, but the delineation of the target area (the glacial till sequence) has an impor-
tant impact.

The transition probabilities established from the two types of observation data are in good agreement in
both vertical and horizontal directions when the bias-adjusted cutoff value is used. The estimated mean
lengths of sand units are 5 m vertically and 500 m horizontally for the Quaternary glacial till deposits. The
geological heterogeneity as well as connectivity can also be well represented by TProGS. Because of the
high data density, the AEM data are superior in horizontal directions, whereas borehole data are favorable
in the vertical direction for identifying observed transition probabilities. Additionally, TProGS has shown the
ability to combine the information from different sources of data in different directions.

The results show that the selection of conditioning method is critical for transition probability-based geo-
statistical simulations: when borehole data are used, the assigned spatial statistics are better honored,
whereas when AEM data are used, the simulations tend to follow the conditioning information and leave
very little room for variability between realizations. Meanwhile, the AEM data are indispensable for simulat-
ing sand units when there is a lack of borehole data coverage. The cross-validation analysis shows a large
improvement when AEM is introduced compared to the case where borehole data are used alone. However,
the strongly conditioned simulation results caused by abundant AEM data and the data uncertainty prob-
lem are not yet fully accounted for.
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