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ABSTRACT 

The success of geophysical investigations in general is to a large extent determined by the 
density of the measurements and the quality of the interpretations. The development in geophysi- 
cal data acquisition has gone in the direction of covering larger and larger areas with more and 
more dense grids of measurements. This development has been especially pronounced in the field 
of transient electromagnetic data acquisition (TEM) for mineral prospecting, where airborne sys- 
tems collect large volumes of data, and also in the field of environmental geophysics, where dense 
measurements of transient soundings have proved very usehl in connection with hydrogeological 
investigations. 

An ordinary 1D least squares iterative inversion of TEM sounding, data requires that the 
interpreter supply an initial model, and the computation time is not at all negligible even on 
present-day computing platforms. With a large daily production of soundings this procedure is 
slow, and there is need for fast approximate ways of interpretation. 

This paper outlines the development of an algorithm for imaging of TEM soundings in the 
central loop configuration based on the Born approximation and the Frechet kernel for the step 
response of the vertical magnetic dipole. The Frechet kernel depends on the resistivity of the half- 
space, but instead of using one Frechet kernel for a certain halfspace resistivity for all data, the 
Frechet kernel is scaled according to the all-time apparent resistivity of the measurements at every 
delay time. In this way, the actual resistivity structure of the halfspace is taken into account, and 
the inversion problem is linearized resulting in better imaged models. 

The imaging procedure produces models with 2040 layers which fit the original data, typi- 
cally within 5-10%. No initial model is required, and the algorithm is therefore well suited for 
automatic inversion. The algorithm makes it possible to see the results of a day's work in a matter 
of minutes and to implement on-line inversion simultaneous with the measurements. 

Introduction and Soerensen, 1994). 
In Denmark, transient electromagnetic soundings have 

The transient electromagnetic sounding method has become one of the standard methods of large-scale 
found increased use for a variety of purposes during the last hydrogeological investigations. This is due to the ability of 
two decades. transient measurements to delineate good conductors like clay 

Within the field ofmineral prospecting, the use of large- and salt water, which constitute the effective lower bound- 
scale, high-current instrumentation for deep penetration has aries of freshwater resources. The strategy of application has 
been supplemented with airborne systems well-suited for cov- been to obtain coverage of the target area with transient sound- 
ering large areas with profile lines of transient measurements ings with a density of approximately 16-25 per km2 often 
(Macnae et al., 1991). Recent instrumentation will measure along profile lines. The success of transient sounding in 
with a density of one sounding per 10 meters, resulting in hydrogeological investigations has led to the development of 
hundreds of soundings per minutes to be interpreted. pulled-array transient electromagnetic equipment (PA-TEM), 

In the last decade, small portable instruments have been where a transmitter loop and a continuously measuring re- 
developed, which, working with small currents and short turn- ceiver coil are towed through the landscape (Soerensen, et 
off times, are applicable for general geological mapping of al., 1995). With the PA-TEM method, the density of tran- 
the near-surface geology. Transient electromagnetic sound- sient soundings will be as high as for airborne measurements. 
ings are now routinely used in connection with environrnen- ~raditionall~, transient soundings have been interpreted 
tal geophysical investigations such as hydrogeological inves- with ID earth models with few layers (2-6), and though the 
tigations, prospecting for raw materials, and mapping of dump efficiency of the least squares iterative inversion programs 
sites and waste deposits (Fittermann and Stewart, 1986; has improved and the speed of commonly available comput- 
Buselli, et al., 1990; Hoekstra and Blohm, 1990; Christensen ers has increased, it is still time-consuming to interpret tran- 
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Figure 1. Apparent resistivity transforms for a 2-layer descend- 
ing model with resistivity 100 Rm in the first layer, 10 Rm in 
the second layer, and 50m layer thickness. The true model is 
shown with the thick grey curve. (1) the impulse response early 
time apparent resistivity, (2) the impulse response late-time ap- 
parent resistivjty, (3) the step response all-time apparent resis- 
tivity, (4) the step response all-time apparent resistivity plotted 
as a function of diffusion depth. 

sient soundings. In the case of airborne surveys and PA-TEM 
measurements, it is not feasible to invert the whole set of 
data using ordinary ID least squares iterative inversion pro- 
grams, and an "imaging" algorithm for fast approximate in- 
terpretation becomes interesting. The computer-based design 
of modem transient instruments also makes it desirable to 
develop fast interpretation techniques, which can be used for 

tivity is not uniquely defined (Spies and Eggers, 1986). There 
are two unambiguous definitions of apparent resistivity: one 
valid for early times, and one valid for late times; most often 
the late, time apparent resistivity definition is used. How- 
ever, the late, time apparent resistivity suffers from a number 
of drawbacks. It is not correct at early times, but always has a 
descending branch, and the curve exhibits under- and over- 
shoot when the resistivity of the subsurface changes. For these 
reasons, the usefulness of the late-time apparent resistivity 
transform for impulse data is limited, and only very experi- 
enced interpreters can estimate subsurface resistivity from 
an immediate inspection of the curve. 

The early-time apparent resistivity transform is only of 
use in cases where the diffision of the current system in the 
ground is in the early stage. If not, the early-time apparent 
resistivity transform fails to describe accurately any portion 
of the curve as it decreases rapidly with time. 

The situation is different when considering the step re- 
sponse. For the step response from central loop soundings, it 
is possible to uniquely define an apparent resistivity, which 
is valid for all times. This all-time apparent resistivity is de- 
fined through the expression for the step response of the ho- 
mogeneous halfspace (Ward and Hohmann, 1987) 

on-line interpretation in the field, and thus assist the field 
where o is'conductivity, p is the permeability, a is the radius 

crew in deciding about the location of future measurements. 
of the circular transmitter loop, and t is time. The term "imaging" has become widely used in the 

The normalized response 2aHJ1, which only attains geophysical literature to denote fast interpretation algorithms 
values in the interval from zero to unity, is a monotonically 

for geophysical measurements, and many papers have been 
increasing function of the parameter combination (Ba). For 

published about the subject (Macnae and Lamontagne, 1987; 
any 1D earth model, the normalized response will lie in the 

Nekut9 and Hohrnann 1989)' (lgg5) de- interval from zero to unity, and there is exactly one inverse 
veloped an imaging algorithm based on a delay-time formu- 

solution for Ba. The apparent resistivity is then determined 
lation of the forward transient problem. Recently, Smith et , 
al., (1994) published a paper onthe use of the ~rechet kernel LIY 

in developing an imaging algorithm for coincident loop 
soundings. 

In the following, an imaging algorithm based on the 
This all-time apparent resistivity does not have the spu- Frechet kernel of the step response of the vertical magnetic 

rious character of the impulse response late-time apparent dipole and the all-time apparent resistivity transform shall 
resistivity. The all-time apparent resistivity of a homogeneous be developed and used in connection with central loop tran- 
halfspace is in fact a constant equal to the resistivity of the sient measurements. 
halfspace. For layered models, there is no under- and over- 

Apparent Resistivity Transforms 

The use of the apparent resistivity transform and the 
plot of apparent resistivity as a function of time may be re- 
garded as a sort of "zero order" imaging procedure: it is fast, 
~ n d  it gives a first qualitative understanding of the resistivity 
variation with depth. For impulse-response data, which are 
by far the most commonly measured data, the apparent resis- 

shoo;, and the step response all-time apparent resistivity has 
a smooth transition when the subsurface resistivity changes. 
It is thus much easier to infer the resistivity distribution from 
this resistivity transform. Figure 1 illustrates the behavior of 
the early, the late, and the all-time apparent resistivity trans- 
forms for a Zlayer descending model. 

Although the step response all-time apparent resistiv- 
ity gives a qualitative picture of the resistivity variation in 
the subsurface, it is a very smoothed version of the subsur- 
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Current density Frechet kernel 
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Figure 2. Figure 2a is a contoured plot of the current density in the ground 500 p after turnoff of a vertical magnetic dipole on a lm 
halfspace. In fig. 2b, the current density is weighted according to its contribution to the vertical magnetic field at the center. 
Contour interval is 10% of the maximum value. The plot window covers 80 x 80m. 

face resistivity. What we would like is a "sharpening up" of 
the apparent resistivity curve to look more like the true resis- 
tivity distribution in the ground. This involves an associa- 
tion of depth with each measurement. It is this sharpening 
procedure which is most often called imaging. 

It is interesting to notice that plotting the step response 
all-time apparent resistivity as a function not of time, but of 
diffision depth, gives a surprisingly better result in terms of 
similarity with the true resistivity distribution. For a homo- 
geneous halfspace, the diffusion depth, d, is defined as 

where t is time, p is the magnetic permeability, and cr is the 
conductivity of the halfspace. 

Having found the step response all-time apparent re- 
sistivity as a function of time, pa(t), we may define the diffi- 
sion depth for our measured data as 

and plotting pa(d)=pa(d(t,pa(t))) in a double logarithmic plot 
gives a simple imaging procedure with virtually no compu- 
tational cost. The step response all-time apparent resistivity 
as a function of diffusion depth is also seen in fig. I .  The 
reason this simple plotting convention works so well is that 
the diffusion depth is a measure of the depth to the maxi- 
mum current density and thereby also, to some extent, to the 
depth of maximum sensitivity. The all-time apparent resis- 

tivity can be considered as a sort of average resistivity of the 
subsurface within the volume, where the current system pre- 
vails, and it thus reflects the history of the diffision process. 
By using the all-time apparent resistivity in the formula for 
the diffusion depth, the actual resistivity structure of the sub- 
surface is taken into account. 

Current Distribution and Sensitivity Function 

To gain a better understanding of the underlying phys- 
ics of transient measurements, let us consider the transient 
response of a vertical magnetic dipole source. Many authors 
have shown plots of the current distribution as d function of 
time in a homogeneous halfspace, the so called "smoke ring". 
This current distribution, resulting from a step-off at time 
zero, is shown in fig. 2a. The current in the ground has only 
an azimuthal component, and the current maximum diffises 
outwards and downwards with time, while the maximum 
broadens and decreases in amplitude due to ohmic loss in the 
conductor. The current density maximum follows a straight 
line, making an angle of 30" with the surface. It must be 
noted that the current density at the surface is approximately 
75% of the current maximum at depth at all times. The pic- 
ture illustrates how the sensitivity of the transient sounding 
method to the resistivity distribution moves downwards and 
outwards with time. 

The sensitivity of the transient method, however, does 
not depend directly on the current distribution at depth, but 
on the effect of the current distribution on the measured field; 
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Figure 3. Figure 3a shows the normalized 1D Frechet kernel for the transient vertical magnetic dipole in the case of a homogeneous 
halfspace as a function of normalized depth. The constant and the linear approximations to the Frechet kernel are also shown. 
Figure 3b shqws the unnormalied Frechet kernel for a halfspace resistivity of 1 Qrn at the times Ips, lops, loops, and lms in a 
double logarithmic plot. 

in our case, the vertical magnetic field was measured at the to m. This results in an analytic expression (see appendix A) 
source point. Using the usual formula for the magnetic field 
on the axis of a circular current element situated at the point q ( u ) .  F(u,t,z) = - * 16ur4  (6)  
with the cylindrical coordinates (r,z), the current element con- where 
tributes to the magnetic field at the surface as 9 (u) = (3 (2u2+ I )  e-" - (4u4+4u2-1) erfc (u) } 

dH(ul t )  = j (a , t , r ,z)  drdz  x 4 r2 (7) 
(r2+z2)3'2 ' u = z  2r  9 

where u is the conductivity, t is time, and j(u,t,r,z) is the cur- 
rent density at (r,z). 

Figure 2b shows the current distribution of fig. 2a 
weighted according to its contribution to the magnetic field. 
This plot reveals some interesting features of the transient 
method. At all times, the sensitivity stays high at the surface 
close to the center, and can be described as a cone-shaped 
structure, which broadens outwards and downwards with time. 
The maximum follows a straight line making an angle of 20 
with the surface. Note also that there is almost no sensitivity 
to the resistivity distribution within a cone with an opening 
angle of 30 directly under the source. This has consequences 
for the way we intuitively think about the physics of diffu- 
sion and should also be taken into account in connection with 
2D and 3D modelling. 

In the quasi-stationary case, which is the one consid- 
ered here, the function described in fig. 2b is the 2D (or 3D 
rotationally symmetric) sensitivity function of the magnetic 
field with respect to conductivity for the homogeneous 
halfspace referring to an annulus-shaped model element. The 
Frechet kernel is identical to this function divided with the 
conductivity, of the halfspace. 

The ID Frechet Kernel 

The 1D Frechet kernel for a layered earth structure can 
be found by integrating the 3D Frechet kernel over r from 0 

u is the conductivity of the halfspace, 
M is the magnetic moment of the dipole, and 

Using the expression for the magnetic field from a ver- 
tical magnetic dipole 

the Frechet kernel can be expressed as 

where 
15fi 4'(u) = -4F(u) - 

0 (10) 
Figure 3a shows a normalized plot of F(a,t) in a linear 

coordinate system. It is seen that the sensitivity is a bell- 
shaped function of u (and thereby of z), which has its maxi- 
mum at the surface at all times. The double logarithmic plot 
of F(u,t) at four different times seen in fig. 3b, shows how the 
Frechet kernel expands downwards with time while the 
amplitude decreases and the sensitivity drops very abruptly 
to zero with depth, decreasing as uJexo(-u2) (see appendix 
A). 
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The Imaging Algorithm 

The imaging algorithm proposed here is based on the 
following considerations: 
1) From the measurements, we can find the all-time appar- 

ent resistivity based on the step response. 
2) The Frechet kernel for any 1 D model can be approximated 

by that of the homogeneous halfspace in the sense that the 
&?gg of the kernel is the same, but the to which it 
has diffised at a certain time depends on the actual resis- 
tivity structure. This depth of diffision is taken as that of 
the homogeneous halfspace with a resistivity equal to the 
all-time apparent resistivity of the actual model at the given 
time. 

3) The imaging algorithm developed for the vertical mag- 
netic dipole case can be used for central loop sounding 
data. 

1) The field quantity most often measured with transient 
equipment is the impulse-response. However, given im- 
pulse response data, we may calculate the step response 
numerically (see appendix B). From the step response we 
can calculate the all-time apparent resistivity as a hnc- 
tion of time. 

2) These assumptions are the critical points of the procedure 
and the main idea of this algorithm. However, it is justi- 
fied by the observation that the Frechet kernel of inductive 
electromagnetic methods is not very model-dependent 
(Boerner and Holladay, 1990). As seen above, plotting the 
all-time apparent resistivity as a function of diffision depth 
is, in itself, quite a successful imaging procedure, and this 
makes it natural to try and scale the diffusion of the Frechet 
kernel according to the all-time apparent resistivity. Even- 
tually, as far as an imaging algorithm is concerned, the 
ultimate justification lies in the fact that it works. 

3) This is obviously the case for late times. For early times, it 
is a good approximation if the time is not too early, the 
resistivity is not too low, and the radius of the loop not too 
large. However, central loop magnetic field data are not 
directly used. The imaging algorithm to be developed will 
be expressed in terms of the all-time apparent conductiv- 
ity. This transformation removes a significant part of the 
influence of the geometry of the actual configuration, if 
the transformation from magnetic field to all-time appar- 
ent resistivity is done with the correct circular loop trans- 
mitter formula for the transmitter loop in question. This is 
illustrated in fig. 4, where all-time apparent resistivity 
curves for 2-layer increasing and decreasing models have 
been calculated. For decreasing models, the maximum dif- 
ference at time 5ps is 7.1% and for increasing models the 
maximum difference at time 5ps is 2.4%. Most impulse- 
response systems would not measure earlier than that, and 
topsoil resistivities lower than 10Q are not very common 
except in salinelarid regions. For all the models of fig. 5, 

the all-time apparent resistivity transform for a central loop 
configuration and for the vertical magnetic dipole con- 
figuration are identical. 

The Frechet Kernel Inverse 

In the Born approximation, valid for small conductiv- 
ity changes, the Frechet kernel describes the change in the 
response as a linear functional of the change in subsurface 
conductivity: 

m 

H(t i )  2. tfref ( t i )  + 1 ~ ( d ~ ' ( z ) , t ~ , z )  ( ~ ( z )  - oref(z)) dz , ( I  1) 
0 

where (ti) is the measured magnetic field at the time ti. 
HWfti is the magnetic field of the reference model. 
F(tYf(z),t,z) is the Frechet kernel of the reference model. 
~ ( z )  is the conductivity of the subsurface. 
 is the conductivity of the reference model. 

The response of the homogeneous halfspace with con- 
ductivity oo is the integral of the Frechet kernel multiplied 
with conductivity (eq. 9) 

All-time app reslstlvlty - dipole and 40x40  m 2  lo 

I .  I .  1 .  I 
¶ 2 5 - 2 5 2 ' 1 0 - ~  

T ~ m r  (sac) 

All-tlme app. resistivity - dipole and 4 0 x 4 0  rn2 lo 

I ,  I .  ;bd a ' lo-' lo-' 
1 .  
lo-' 

Time (sec) 

Figure 4. Comparison between all-time apparent resistivity 
curves for a magnetic dipole (thin black curves) and a square 
40 x 40 mz loop (thick grey curves) for a series of a) increasing 
and b) decreasing 2-layer models. In fig. a) the top layer resis- 
tivity is 10 Rm, the resistivity of the second layer is 100 Om, 
and the layer thicknesses are lm, 4m, 16m, and 64m. In fig. b) 
the top layer resistivity is 100 Rm, the resistivity of the second 
layer is 10 nm, and the layer thicknesses are lm, 4m, 16m, and 
64m. 
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Figure 5. The models obtained using the imaging procedures on 40 x 40 m2 central loop soundings. The fig. shows a comparison 
between the results obtained with the more damped constant approximation and the more sensitive linear approximation to the 
Frechet kernel for four models: two 2-layer models (descending and ascending) and two 3-layer models (minimum and maximum). 
The true models are shown with thick grey curves. The more sensitive inverse is marked with a n  "S". 

so in the case where the reference model is a homogeneous E(a, t ,z)  = 3- -L x i ( u )  
4* 1 2 0 ~  r3  halfmace. we find . - 

H (ti) = H O  (ti) + F (o,, ti, z) ( a  (2) - a,) dz 

- .  Y 
T 
0 . . .  

= j F(rO,t i .z)  u (z )  dz . (13) Using the expression (8) for the magnetic field H, the 
0  .... integrated Frechet kernel can be expressed as 

This expression shows that the Frechet kernel can be 
used in an "absolute" sense and not just in a differential sense P ( ~ , ~ , Z )  = # x i l ( u )  , 
as in eq. (1 1). 

For a layered 1D structure with L layers given by the where 
layer boundaries z, j=1 ,L+l,z,=O,z,+,= = we find that by gen- 
eralizing the previous expression and utilizing the assump- ( u )  = x u )  6 ( m - ( 0  (17) 
tion 2) 

' j + ~  Introducing the expression (16) into the imaging for- 
~ ( $ 1  = $ 7 I F ( U ~ ( L ~ ) . L ~ ~ Z )  dz mula (14) finally gives us an imaging formula, which in- 

J = I  2. 
J volves the all-time apparent conductivity and not the mag- ) (14) netic field itself 

= C { ~ ( U . ( t ~ ) , ~ , z ~ + ~ )  - P ( u , ( ~ ~ ) . $ . ~ I  , 
j=1 

where cra(ti) is the all-time apparent conductivity at the time ti 
and; is the integral of the Frechet kernel, which can be ex- 
pressed analytically (see appendix A): 
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Equation (18) expresses the apparent conductivity as a 
weighted sum of the conductivities of each layer. 

Approximations to the Frechet Kernel 

Using the exact Frechet kernel in the inverse formula- 
tion (18) results in imaged resistivity models displaying wild 
excursions, and conventional damping schemes do not pre- 
vent the oscillatory behavior. By introducing general weight 
matrices, these oscillations can normally be damped. How- 
ever, instead of this elaborate harnessing of the inverse prob- 
lem, we shall investigate the possibilities of using a family of 
simple, piecewise linear approximations which show a sur- 
prisingly well-behaved and predictable performance and 
which lead to an even faster inversion. 

The simplest approximation to the Frechet kernel is to 
set it equal to a constant down to a certain depth under which 
it is zero. The constant is taken as the surface value, and the 
depth, which in this context shall be called the diffusion limit, 
is determined so that the integral of the Frechet kernel from 
zero depth to infinity is correct, i.e. identical to that of the 
true kernel. The approximation is justified by the observa- 
tion that the Frechet kernel decreases extremely rapidly with 
depth (as u4exp(-u2)). This approximation is equivalent to 
saying that what is measured with transient soundings is the 
conductance of the subsurface down to the diffusion limit. 
Figure 3a shows the analytical Frechet kernel together with 
the constant approximation and the linear approximation, 
which shall be investigated later in this paragraph. 

The constant approximation to the Frechet kernel is 
given by 

F(u, t , ~ )  = F, = 1 5 C  I 
4n 16u r4 = H (L) . -STi- for 2 5 sD , 

(19) 
for 2 > zD , 

where H(ti) is the value of the magnetic field at time ti, and 
the diffusion limit of the Frechet kernel zD is determined by 

r The expression (19) for the Frechet kernel can be used 
together with the imaging formula (I 8) for any layered earth 
model, but choosing the layer boundaries zj equal to the dif- 

F r e c h e t  k e r n e l  o f  damped i n v e r s e  

c 
=1,m 
Q MAWMUM DAMPED 
m 
m 
0 
N 

.rt A 

m 
E L 

z 

M 

Z / Diffusion limit 

Figure 6. The Frechet kernel of the intermediately-damped in- 
verse (thick grey curve) shown together with the constant a p  
proximation (maximum-damped) and the linear approximation 
(minimum-damped). 

fusion limits of the Frechet kernel, zD, results in a very simple 
system of equations, as equation (1 8) reduces to 

where hj is the thickness if the j'th layer. Since = hj , 
j=l 

equation (21) expresses the apparent conductivity as a 
weighted sum of the conductivities of each layer with the 
layer thicknesses as weight factors. 

The system of linear equations (21) may easily be in- 
verted for the layer conductivities by forward substitution, as 
the matrix involved is lower triangular. The inversion proce- 
dure is a sort of "stripping the earth" algorithm. 

Another approximation to the Frechet kernel is obtained 
by taking a linear function as the approximating function. 
Utilizing the results from the constant approximation, we 
immediately find 

F(u , t , z )  = 0 for z > 2z0 . 

Also, in the case of the linear approximation to the 
Frechet kernel, the layer boundaries shall be defined equal to 
the difision limits, which are now 2zD. This results in a 
system of equations in which the matrix is lower triangular 
and the system is solved through substitution. 

In fig. 5, a number of results are gathered for four dif- 
ferent models: two Zlayer models (descending and ascend- 
ing) and a maximum and a minimum 3-layer model. The 
performance of the imaging algorithms for the doubly de- 
scending and the doubly descending 3-layer models are simi- 
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Figure 7. Scaling factors for the diffusion depths and residuals of the 2-layer models of fig. 5. Figure 7a shows the residuals of the 
unshifted model (a), the optimally-shifted model (b), and the suboptimally shifted model (c) for the descending case. Also the scaling 
factor for the ,diffusion limit is shown (d) together with a linear approximation to it (thick grey curve). Figure 7b shows the analo- 
gous curves for the ascending 2-layer model of fig. 5. 

for 1-+ < z '  , 

lar to those for the 2-layer models. The models resulting from F (a, t, z) = A for Z' < + , 
the application of the imaging algorithms for the constant and 
the linear approximation to the Frechet kernel on synthetic F ( ~ , ~ , ~ )  = A 1-1 U , z' = Z/D ior + < Z' < I - +  

noise-free data are shown together with the true resistivity 
{ 2 1-& } 

models. It is seen that the imaging algorithms work very well 
(a, t, = 

with descending type models, but react slower to ascending 
resistivity models. The worst performance is seen with the (23) 
maximum model, which is to be expected. From the asymp- where a is a damping factor between zero (linear approxi- 
totic behavior, it is seen that the imaged models reach the true mation) and unity (constant approximation), and the ampli- 
value of the resistivity very well. For the constant approxima- tude A and the diffusion limit D are given by 
tion there is practically no undershoot and overshoot in the 
imaged models, while the linear approximation exhibit a little A = F O a n d D = 2 z , .  
overshoot and undershoot. Both approximations represent a 
damped inverse, but while the constant approximation is a Choosing the layer boundaries z ,  according to 
well-damped inverse, the linear approximation results is a more 
sensitive. The linear approximation results in models closer I .  = ( I  - ! ja)Dj , 

J (25) 
to the true models. It has a steeper ascent for ascending mod- 
els, and for the 3-layer minimum model the linear approxima- results in a linear system of equations with a lower triangu- 
tion results in a more well defined region of low resistivity lar matrix solved by substitution. 
and the resistivity of the 2nd layer of the imaged model is The parameter can be chosen continuously between 0 
closer to the true value than is the case for the constant ap- and 1, corresponding to the linear and the constant approxi- 
proximation. mation to the Frechet kernel respectively. This enables the 

Both inverse procedures work satisfactorily on perfect damping to be adjusted to the noise level of the data. The 
magnetic field data. However, when noise is added to the chosen damping should be strong enough to give reasonable 
magnetic field values, i.e. when real measurements are con- models without wild excursions and small enough to allow 
sidered, the question of controlling the damping becomes im- as many features of the model as possible to become visible. 
portant. To be able to adjust the damping of the inverse con- Because of the rapid back substitution technique of solving 
tinuously between the extremes of the constant and the lin- the linear system of equations, the imaging procedure is as 
ear approximation, we shall consider an intermediate piece- fast as the click of the mouse, and different damping param- 
wise linear approximation illustrated in fig. 6. The figure eters can be tried out practically without computational cost. 
shows approximations, which are constant down to a certain 
depth and linear down to the diffusion limit, constructed in Fine Tuning of the Inverse 
such a way as to keep the integral of the approximate Frechet 
kernel unchanged. The approximation is given by The above derivations are founded upon the assump- 

tion that the diffusion of the Frechet kernel is adequately de- 
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scribed by the all-time apparent resistivity. Whether or not Imaged mods section 

this is the case can be judged from the misfit between the 
model responses of the imaged models and the original data. 1 - Figure 7a shows the misfit in percent between the model 
response of the imaged models and the original magnetic I 

0 
field data for the descending 2-layer curve of fig. 5. For small Rofiieomdd 1 1 0 ~ 1  

damping factors, the misfit is rather large with a residual of 
30% for the undamped linear approximation. Increasing the Multiple layer I- squares model section 

damping causes the residual to decrease to a level around 7% 
for the most damped case (the constant approximation). This 
can, however, be remedied by introducing a shift of the im- 2 - 

aged models towards smaller depths to the layer boundaries. -I 

W d e ~  (10 m] 

M 100 ISU NU W JW 130 400 430 500 550 

Whereas the integral of the Frechet kernel must be kept cor- 
rect to obtain the right imaged resistivity values, a simulta- 
neous scaling of the diffusion limit and the amplitude with a AII-time a p p . ~ .  versus diff. depth d o n  

certain factor, keeping the integral constant, will result in a 
scaling of the depths ascribed to the imaged resistivity with 2 -5 
that same factor. Figure 7a shows the optimal shift of the 
diffusion limit as a hnction of the damping coefficient and -I 

the resulting residual for the imaged models. As expected, FmtZe mad- (10 IIII 

the residual is now lower for the undamped inverse than for 
the most damped inverse. The residuals are 2-5%, which 
means that the imaged models are essentially correct, and it 
shows that the imaging algorithm is in effect a very good 
linearization of the inverse problem. Choosing a linear ap- 
proximation to the shift as a function of the damping factor, 
which is also shown in fig. 7a, results in suboptimal residu- 
als not very much greater than the optimal ones. 

Figure 7b shows a similar analysis for the 2-layer as- 
cending model of fig. 5. In this case the optimal shift is some- 
what smaller, and the residuals of the optimally-shifted models 
are 2-7%, again a very good inverse. Using the linear ap- 
proximation to the shift as a function of damping factor of 
the descending model results in suboptimal residuals about 
twice as large. Considering the characteristic of transient 
soundings to give a very good resolution of the depth to a 
good conductor, it seems reasonable to put more emphasis 
on the correct determination of this depth than on the correct 
depth to a bad conductor, and consequently choose the shift 
according to the descending model. The shift factor for the 
diffusion limit found in this pragmatic way can be expressed 
as 

shift factor = 0.6782 1 + 0.26068 a (26) 

The models of Figure 5 have all been subjected to this shift. 

Application of the Imaging Procedure 
to Field Measurements 

Figure 8 illustrates the application of the imaging al- 
gorithm to a profile of transient soundings in the central loop 
configuration. The well-damped inverse of the constant ap- 
proximation to the Frechet kernel has been used and the re- 
sult is displayed in fig. 8a as a contoured model section. The 

Figure 8. Imaged model sections from a TEM profile for the 
detection of the salt water horizon on the island of Romo in 
Denmark. The section of fig. 8a is based on the imaging algo- 
rithm, section 8b shows the results of least squares inversion 
with multiple-layer models, and fig. 8c is a section of all-time 
apparent resistivity as a hnction of diffusion depth. 

profile consisting of 17 soundings is from the island of Rlml, 
Denmark, where it transects the NE comer of the island. The 
depth to the good conductor, the saltwater horizon, is small 
at the ends of the profile where the distance to,the coast is 
small; and larger in the middle of the profile situated further 
inland. Besides the depth to the salt water, fig. 8 also shows 
the varying surface resistivities along the profile. 

The same profile has been interpreted with the 1 D least 
squares iterative inversion program SELMA (Christensen and 
Auken, 1992) with multiple-layer models consisting of 15- 
20 layers. In the inversion the layer boundaries have been 
kept fixed. The models resulting from the least squares in- 
version are shown as a contoured model section in fig. 8b. 
Essentially the models sections of figs. 8a and 8b are identi- 
cal. 

To illustrate that the imaging algorithm developed here 
is superior to the plotting of all-time apparent resistivity as a 
hnction of diffusion depth, a contoured section based on the 
simple plotting convention of equation (4) is presented in 
fig. 8c. 

The next example, shown in fig. 9, is from a 
hydrogeological investigation around Gjern River 30 km west 
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Figure 9. Imaged model sections from a TEM profile for the mapping of the deeper 
parts of the Gjern River Valley, Denmark. The section of fig. 9a is based on the imaging 
algorithm, while section 9b shows the results of least squares inversion with multiple- 
layer models. 

of Aarhus, Denmark. The riverbed follows a straight line for 
many kilometers, which has given rise to speculations about 
tectonic movements as a cause for this unusual behavior. A 
series of profiles of transient soundings were placed across 
the river valley, one of which is presented in fig. 9. The im- 
aged model section based on 18 soundings is presented to- 
gether with a section obtained through rigorous least squares 
inversion with multiple-layer models with fixed-layer bound- 
aries. In both sections a depression in the well conducting 
basement consisting of heavy Tertiary clay is seen directly 
under the river valley supporting the assumption of tectonic 

movements as a cause for the morphology of the valley. In the 
section based on least squares inversion, the surface-near high 
resistivities are higher than in the imaged section. This is to 
be expected, since the imaging algorithm is based on the Born 
approximation which does not quite reproduce larger resistiv- 
ity contrasts. 

Discussion and Conclusions 

The algorithm outlined here has some similarities with 
the work of Smith et a].. (1994) and with the work of Polzer 
( 1985). 
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Smith et al., (1994) developed an imaging algorithm 
for coincident loop soundings using the Frechet kernel and 
the impulse-response apparent resistivity. The apparent re- 
sistivity was ascribed a depth equal to the depth of the maxi- 
mum of the Frechet kernel. A linearized inversion with a 
boxcar averring hnction was also described, but the use of 
the impulse-response apparent resistivity instead of the step- 
response apparent resistivity used here gave erratic models, 
when overshoot and undershoot was present in the impulse- 
apparent resistivity curves. 

Polzer (1985) considered time as a function of the mag- 
netic field and developed a theory for inversion of the ar- 
rival-time data of a certain amplitude of the magnetic field. 
Using a linear approximation to the Frechet kernel a one- 
step imaging inverse was developed, where the diffusion depth 
was scaled according to the arrival time of a reference model, 
a homogeneous halfspace. This scaling of the arrival-time 
Frechet kernel can be shown to be completely equivalent to 
the scaling according to all-time apparent resistivity presented 
here and results in similar-imaged models. 

The present approach to imaging of transient electro- 
magnetic data using the Born approximation and a Frechet 
kernel scaled not only with the time of the measurement, but 
also with the all-time apparent resistivity, has proved itself 
to be an efficient procedure for fast interpretation of tran- 
sient soundings. Choosing the layer boundaries of the model 
equal to the diffusion depths results in a lower triangular 
linear system of equations which is solved very rapidly. The 
imaging algorithm is fast, robust, fully-automated, and re- 
quires no initial model. The damping of the inverse proce- 
dure can be controlled by the choice of approximation to the 
Frechet kernel. 

The model sections obtained through the imaging pro- 
cedure are in very good agreement with model sections based 
on rigorous least squares inversion. 

The imaged models can be used directly to give an over- 
view of an area, and contoured model sections based on im- 
aged models from soundings along profile lines give a very 
fast insight into the subsurface conductivity distribution. 

The imaged models can be used as good input models 
to an iterative least squares inversion program. 

The simplicity and speed of  the imaging algorithm 
makes it an attractive choice for an on-line interpretation 
procedure in modem computerized transient data acquisi- 
tion systems. 

Besides giving an efficient imaging procedure, the 
present study also casts new light on the nature of transient 
measurements and has resulted in a deeper understanding of 
the dynamics of  current diffusion associated with transient 
loop sources. 

The approach of finding the step response from the 
impulse response through a least squares formulation seems 
a viable one. 

The scaling of the Frechet kernel according to some pa- 
rameter of the reference model, for which a sort of "instanta- 
neous" or "apparent" value can be given, is a principle which 
is applicable in many other inverse problems. In electromag- 
netic induction problems, in general, the Frechet kernel for 
the homogeneous halfspace depends on the halfspace resis- 
tivity, and if a sort of apparent resistivity can be defined, the 
procedure outlined here for the transient case should be appli- 
cable. It would be very interesting to see the approach applied 
to the MT case. In the case of low-induction number mea- 
surements and for direct current problems, the Frechet kernel 
of the homogeneous halfspace is independent on halfspace 
resistivity, and the above procedure cannot be used. In the case 
of thermal conduction, a similar approach should be viable. 
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APPENDIX A 
THEFRECHETKERNEL 

In this appendix, an analytical expression for the Frechet 
kernel of the step response of the vertical magnetic dipole over a 
homogeneous halfspace shall be developed. 

Let us consider the electric field, and thereby the current, in 
a homogeneous halfspace from a vertical magnetic dipole in the 
quasi-stationary approximation. First, we observe that the transient 
currents in a conductivity structure, which is a function of depth 
only, is in horizontal circles. The electric field in the azimuthal 
direction is given by Ward and Hohmann (1987, 4.49), 

where 

M is the moment of the dipole, 
p is the magnetic susceptibility of empty space, 
f is the frequency, 
t is the time, 

u is the conductivity of the halfspace, 
J, is the Bessel functions of order 1. 

The Fourier Transform of the step response 

may be evaluated explicitly by expressing it as an inverse Laplace 
Transform 

1 x a' (A, 2, t) = e x p ( - p  t )  
PU 

which is given by Erdelyi, et al., (1954, page 246 (12)), 

@ ? ( A , z ,  r) = e x p ( h )  { + e x p [ - ( ~ r + & ) ~ ]  - ~ e f i ( ~ r + & ) )  , 

. = @ ,  
whereby we find for the current density j, = uE, 

with @(h,z,t) = pu W(h,z,t). 

This integral is computed numerically using the digital filter 
method of Fast Hankel Transforms (Johansen and Soerensen, 1979; 
Christensen, 1990) to give the current density shown in Figure 2a. 

The contribution of the current to the measured magnetic 
field at the origin can be found from the formula for the magnetic 
field on the axis of a current loop 

dH (u, t) = j (a, t, r, z) d r  dz x $ r ' 
(r2+z2)3/2 

9 (A-6) 

which using (A-5) can be written as 

The contribution to the magnetic field, from a layer of thick- 
ness dz at depth equal to z is found by integrating (A-7) with re- 
spect to r from 0 to =. The integral only involves the term in the 
brackets {...I, and using Gradshteyn and Ryzhik (1965) 6.554.4 we 
find 
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First we find the integral 

where Gradshteyn and Ryzhik (1965) 3.462.7 has been used. 
Then we calculate the second term first reducing by partial 

integration 

(A- 13) 
from which it is seen that 3 (u)  decreases as u-'exp (-w2) for u+m. 

-ed Frechet Kernel 
For the imaging algorithm, we need the integral over z of the 

Frechet kernel. Also for this integral an anaIytic expression can be 
found. 

The partial integration rule gives us the formula 

un erfc(u) du = untl erfc(u) + f 1 untl exp(-u? du , 
n+ 1 n+ 

(A- 14) 

- - 1 exp(.uz) L& - (2"2+ 2) + + i ( l u 2 +  ~ u ) e x p ( u 2 ) e r ~ ( u )  which we shall use in the following. We obtain 
1 6 G  s4 

P(o.t ,u) = 1 F(CT.CU) dz = I F(u,t,u) 27du 

where Gradshteyn and Ryzhik (1965) 3.462.7 has been used once 
more. 

Combining the integrals I, and I, we find 

dfi ( r ,  t, z)  = dz {*(2u1+ l ) e - ~ ~  - (4u4+4u'l)erfc(u) ) . 
4% 1 6 s  

(A-1 I) 

and thereby the Frechet kernel 

6 H = M  1 - 2~ (2u2+ 1) e - ~ '  - (4u4+4utl)erfc (u) } 
60 4 i ~  1 6 g r 4  {T = Y 4 { - (?us+JuLu)er~c(u) + + [-$-u4-fu2-l/ + i ( - u c ~ )  - 11 =-"*} 

(A- 12) 
4* 8 o 7  

The above expression in the brackets is not numerically stable 
for large values of the argument u. For large values of u, we shall 
use the series expansion of the complementary error function 
(Abramowitz and Stegun, 1964,7.1.23) and we find (A- 15) 

where Gradshteyn and Ryzhik (1965) 2.322.1-2 have been used. 
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APPENDIX B 
FINDING THE STEP RESPONSE FROM THE 

IMPULSE RESPONSE 

Most transient data acquisition systems measure the rate of 
change of the magnetic flux through an induction coil for a repeti- 
tive alternating step-off in the source current, which is equivalent 
to the impulse response. However, the measured field quantity H' 
is not the pure impulse response. The response is modified through 
the finite turnoff time of the transmitter and due to the repetitive 
signal. Assuming the turnoff ramp and the turn-on ramp to be linear 
and neglecting contributions to the measured signal from transmit- 
ter signals earlier than the last turn-on, the measured response can 
be written in terms of the step response as 

where 
t,, is the time since end of turnoff ramp, 
t, is the time since start of turnoff ramp, 
t ,  is the time since end of turn-on ramp, 
L, is the time since start of turn-on ramp, 

Aoff is the turnoff ramp time, and 
*on is the turn-on ramp time. 

H' is thus a linear function of the step response. 

By expressing the step response as a linear combination of base 
fhctions f, 

,-- 
the measured response H' can be expressed as a linear function of 
the coefficients Al. By solving this linear system of equations in a 
least squares sense, we can determine the coeficientsAl and thereby 
fmd the step response. This approach to the determination of the 
step response takes both the finite turnoff time and the run-on ef- 
fect into account, and the actual uncertainties of the measured data 
can be incorporated in the solution of the linear system in the usual 
way. 

Extensive numerical experiments have led to a solution to 
the above problem taking In(t) as variable instead oft,  and the quo- 
tient between the step response of the measurements and the step 
response of a homogeneous halfspace as dependent variable. The 
linearity of the problem is preserved by these transformations. The 
base hnctions are chosen as 

found from the step response will display a rapidly increasing branch 
for late times without any justification in the measured data or the 
general geological background. This means that sometimes the ap- 
parent resistivity transform must be weeded out by hand-slowing 
down the inversion process and impairing the automation of the 
procedure. 

Three pieces of information should be incorporated in a fu- 
ture improvement of the algorithm for finding the step response. 
Firstly, the value of the normalized step-response at time zero is 
unity. Secondly, the late time asymptotic behavior of the step re- 
sponse is known. For a 1 D earth model, the step response decays as 
-UZ. Thirdly, the frequency content of the step response, and thereby 
the possible rate of change of the response, is restricted to lower 
and lower frequencies as time increases. Preferably, the base func- 
tions should be chosen to automatically fulfill these three require- 
ments. The above procedure incorporates the second of the require- 
ments, in that the base functions automatically approach a constant 
for the quotient between the step response of the measurements 
and the step response of a homogeneous halfspace as time goes to 
infinity. 

With 60 measurements of H' distributed over 3 decades in 
time, it takes less than 0.5s to find the step response on a 1 Mflop 
computer. The mean fit to the measured H' field is usually of the 
order of a few percent. When doing the imaging on the step re- 
sponses calculated from the impulse response, the models become 
slightly more noisy than when using the exact step response, but 
the difference is small. 

where the x, are chosen with a uniform sampling density of 0.5e in 
the interval from In(tl) to In(\), where t, and 5, are the earliest and 
the latest time of measurement. The parameter b is chosen equal to 
6. 

Generally, the above algorithm works well, but it does break 
down in certain cases. Sometimes the all-time apparent resistivity 


