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Quasi-3D modeling of airborne TEM data by spatially

constrained inversion
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ABSTRACT

We present a new methodology, spatially constrained in-
version (SCI), that produces quasi-3D conductivity modeling
of electromagnetic (EM) data using a 1D forward solution.
Spatial constraints are set between the model parameters of
nearest neighboring soundings. Data sets, models, and spatial
constraints are inverted as one system. The constraints are
built using Delaunay triangulation, which ensures automatic
adaptation to data density variations. Model parameter infor-
mation migrates horizontally through spatial constraints, in-
creasing the resolution of layers that would be poorly re-
solved locally. SCI produces laterally smooth results with
sharp layer boundaries that respect the 3D geological varia-
tions of sedimentary settings. SCI also suppresses the elon-
gated artifacts commonly seen in interpretation results of
profile-oriented data sets. In this study, SCI is applied to air-
borne time-domain EM data, but it can also be implemented
with other ground-based or airborne data types.

INTRODUCTION

Airborne electromagnetic (AEM) surveys conducted around the
globe produce hundreds of thousands of line-kilometers of data ev-
ery year. Because of the enormous computational costs involved in a
full nonlinear 3D inversion, these data are usually inverted using a
1D forward model. The 1D model assumption is legitimate in quasi-
layered sedimentary areas, where it produces results only slightly
distorted by 2D or 3D effects (Newman et al., 1987; Sengpiel and
Siemon, 2000; Auken et al., 2005a). In some cases, the resulting
models are stitched together (Macnae and Lamontagne, 1987;
Auken et al., 2003; Huang and Fraser, 2003), often resulting in
abrupt variations in neighboring models because of inherently noisy
data and model equivalence. This is a nonoptimal result for sedimen-

tary environments where the lateral variations are expected to be
smooth. Models with smooth lateral variations can be achieved by
working in either the data domain or the model domain.

The first approach, which is widely used with both frequency- and
time-domain airborne EM data, entails smoothing the raw data be-
fore inversion. In this case, the signal-to-noise ratio is increased at
the cost of decreasing lateral resolution. In the second approach, the
constraints are applied between adjacent models during the inver-
sions and the data require less smoothing, thus keeping the detailed
earth information in the data. Examples of inversion methodologies
that constrain the models are the laterally constrained inversion
(LCI) of galvanic (Auken and Christiansen, 2004) and EM data
(Santos, 2004; Auken et al., 2005b; Mansoor et al., 2006) and the si-
multaneous inversion method of galvanic data (Gyulai and Ormos,
1999).

Each of these processing or inversion techniques is profile orient-
ed, in the sense that they aim at producing a continuum along a line.
However, they do not create any connection between neighboring
lines. Features that are perpendicular to flight lines benefit only par-
tially from inline constraints or smoothing because no information
in the model space is passed between adjacent lines. This means that
profile-oriented techniques favor structures following the flight di-
rection. Producing spatial maps based on such methodologies often
results in some lineation following the flight paths.

In this paper, we expand the concept of along-profile LCI to spa-
tially constrained inversion (SCI), which operates both along and
across profiles. The principles of SCI are similar to those of LCI, the
only difference being in the constraints, which are set laterally in two
dimensions rather than just laterally along the flight line. Being an
overdetermined problem, a full sensitivity analysis of the output
models is produced, allowing a quantitative evaluation of the inver-
sion results.

SCI has some similarity with the quasi-3D layered inversion
methodology presented by Brodie and Sambridge (2006). Their al-
gorithm is specially designed for helicopter electromagnetic (HEM)
data. By using bicubic B-splines, they invert a 3D grid (using a 1D
forward solution) for a combination of layered-earth parameters and
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gain-phase and bias parameters related to the calibration of the HEM
data. Their solution is formulated using sparse matrix solvers, which
enable them to invert extremely large data sets without dividing
them into subsets. The grid cells are often rectangular, with signifi-
cantly fewer node locations than observations, as opposed to SCI,
which, as we discuss, is based on actual observation locations.

In the next section, we describe the SCI concept. Then we show its
results on a data set of airborne time-domain EM (TEM) data, both in
the form of average resistivity slices maps and of resistivity section
profiles. We compare the results of SCI with stitched-together sin-
gle-site inversions and LCL.

SCI METHODOLOGY

The mathematical formulation of the SCI method is very similar
to that of the LCI method (Auken and Christiansen, 2004). It is a
least-squares inversion of a layered earth regularized through spatial
constraints, which give smooth lateral transitions. Model parameter
information from areas with well-resolved parameters migrates
through the constraints to help resolve areas with poorly constrained
parameters. Similarly, a priori information, used to resolve ambigu-
ities and to add, for example, geologic information, can be added at
any point of the profile. It then migrates through the lateral con-
straints to parameters at adjacent sites. In noisy soundings, the spa-
tial constraints help to resolve model parameters using the informa-
tion coming from the neighboring soundings.

Lateral constraints can be applied to any model parameter. Our
approach is to constrain layer resistivity and either layer boundary
thickness or depth. Constraints on depths are often preferred over
constraints on thickness, especially in sedimentary settings, because
the models produced display higher horizontal continuity. Con-
straints on thickness are more suitable in the presence of layer-
boundary discontinuities (e.g., a fault).

The dependence of apparent resistivity on subsurface parameters
is generally described as a nonlinear differentiable forward map-
ping. For data inversion, we follow the established practice of linear-
ized approximation by the first term of the Taylor expansion:

dobs — Cgps = Ggmtme + g(mref)» (1)

where d, is the observed data, e, is the error on the observed data,
g is the nonlinear mapping of the model to the data space, and dmy,.
= My, — M, The true model m,,. must be sufficiently close to
some arbitrary reference model m, for the linear approximation to
be valid. We choose to apply logarithmic parameters to minimize
nonlinearity and impose positivity.

The Jacobian matrix G contains the partial derivatives of the map-
ping:

ad
Gy =—— 2)
omy,
for the ath datum and the bth model parameter.
In short, we write
Gémlrue = 5d0bs — €obss (3)

where 6dobs = dobs - g(mrel‘) .
The constraints are connected to the true model as

Rém,. = or + e,, “4)

where e, is the error on the constraints, with zero as the expected val-
ue. The term 6r = —Rm,; claims identity between the parameters
tied by constraints in the roughening matrix R. The main difference
between SCI and LCl is in the entries of R. In LCI, only constraints
on neighboring along-line soundings (i.e., soundings along a flight
line or a profile) are included, and R contains 1 and —1 for the con-
strained parameters:

10 0 -1 0 =+ 00 0
010 = 0 =10 =0 0
R=|. . :
000 = 0 1 0 -0 —1

(5)

In SCI, the constraints are also applied to offline soundings so
each model parameter is connected to many other model parameters
of the same kind (e.g., resistivity of layer 2 with resistivity of other
layer 2s from constrained soundings). The roughening matrix for
SCIis

N0 0 -1 0 0 -1 0 00 0
0 N 0 0 -1 0 0 -1 0 0 0
0 0 0 0 N/ 0 0 -1 0 0 -1

(6)

where NV is the number of models that the jth model parameter is
constrained to. For the jth row, |=(—1)| = N/. In both LCI and SCI,
R is sparse so that sparse operations can be applied. The variance, or
strength of the constraints, is described in the covariance matrix Cg,
which has nonzero entries in the same locations of R.

By joining equations 3 and 4, we can write the inversion problem

as
G 5d0 S 0obs
|: :|'5mtrue: |: bA:| + |:e bA:|, (7)
R or e,

or, more compactly,

G'-émy, = 46d +¢e'. (8)

The covariance matrix for the joint observation error e’ becomes
Cops O
=" = (9)
0 G

where C,, refers to the observational errors e, and Cy refers to the
error on the constraints e,. If a priori data are present, another row is
added to equation 9.

The objective function, with ND as the number of data and NC the
number of constraints, is

1 1/2
= | —[(sd'TC’ " 'sd’ ) ; 10
0 ( ND + NC[( )] (10)
the objective function is minimized by

sm = (G''C''G) 76T sd’. (1)

This implies that the data misfit and the model roughness (i.e., the
constraints) are minimized. In LCI, only along-line soundings are
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included in the objective function. In SCI, the function includes also
offline soundings.

The forward 1D calculation is based on the solutions in Ward and
Hohmann (1988). The transmitter is modeled by integrating hori-
zontal electric dipoles along the wire path. A low-pass filter (Effersg
etal., 1999) is applied in the frequency domain, whereas transmitter
waveform, instrument front-gate, and low-pass filters following the
front gate are applied by convolution directly in the time domain.
The frequency to time-domain transform is done using a cosine or
sine transform with digital filters.

Conceptually, there are three main steps in SCI. The first is to se-
lect constraining points with Delaunay triangulation. We complete a
Delauney triangulation on the whole data set. For each data point, we
identify the immediate nearest neighbors that will be used to con-
strain model parameters.

The second step is to perform the first inversion run on large data
subsets suitable for parallel computation. We identify subsets, herein
called cells, that will be inverted independently. Using the Delauney
triangulation results to iteratively expand membership of cells, we
start with the nearest neighbors of a random point, add their nearest
neighbors, and so on, until a fixed number of points is reached. Adja-
cent cells overlap by one rank of nearest neighbors. For each cell, we
complete an independent SCI.

Finally, we preserve continuity across subsets with a second in-
version run, repeating the inversion using the first inversion results
as starting models and/or a priori information for the second inver-
sion. In the following sections, we expand upon each of these points
separately.

Selecting constraining points with Delaunay
triangulation

The first step for constraining soundings that cover an area is to
choose a strategy for connecting them. Such connections need to be
repeatable, not arbitrary, and adapt as much as possible to the spatial
distribution of the data set. In our approach, we use the Delaunay tri-
angulation for this purpose.

The Delaunay triangulation is the 2D version of the more general
3D Delaunay tessellation, which has been widely applied in differ-
ent areas of research as a favored method of representing surfaces
and reconstructing 3D objects. For a detailed description of De-
launay tessellation, see Aurenhammer (1991). In geophysics, De-
launay triangulation has been applied to seismic tomography (Bohm
etal., 2000), to integrating data for reconstructing 3D objects (Xue et
al., 2004), for interpolating irregular data sets (Sambridge et al.,
1995), and in parameter-searching algorithms (Sambridge, 1999).

Givenasetof n points inaplane, S,(x,y),S,(x,y), .. .,S,(x,y), with
S, being the point (or sounding) n, Delaunay triangulation represents
the only way to triangulate them so that all points in the set that do
not belong to a given triangle are external to the circumcircle of that
triangle. This means the points at the vertices of the given triangle
are nearest neighbors. An example of Delaunay triangulation is giv-
en in Figure 1. Note the points are included in a convex polygon and
each is connected to at least three others.

An important characteristic of Delaunay triangles is that they vary
in dimension according to the local data density. They adapt to the
density of the data set, so they are small and numerous in high-densi-
ty areas but large and fewer in low-density areas. The number of con-
nections to each sounding is not set arbitrarily but depends on data
density and distribution. Figure 2b shows the Delaunay triangulation

of a set of 5477 SkyTEM (Sgrensen and Auken, 2004) soundings re-
corded in the Stevnstrup area, eastern Jutland, Denmark (Figure 2a).
Delaunay triangulation connects at least two adjacent lines, which is
required if flight-line artifacts in the conductivity model are to be re-
moved. Figure 2c shows the frequency histogram of the number of
connections between soundings. On average, each sounding is
linked to six other soundings, with a minimum of three and a maxi-
mum of 18 connections.

The second step for setting the constraints is to decide how many
neighboring soundings each sounding should be constrained to. We
decided to set the constraint between the nearest neighbors, i.e., be-
tween the soundings connected by Delaunay triangles (see Figure
3a). This way, each sounding (in this case sounding a) is linked to its
best companions, i.e., the nearest neighbors (soundings b-g). They,
in turn, are constrained to their nearest neighbors (soundings a-w,
Figure 3b), and so on. The result is a continuum of interconnected
soundings, each of which is only constrained to its nearest neighbor.
Model parameter information spreads horizontally between nearest
neighbors and then to the whole data set.

There are a number of different algorithms for calculating the De-
launay triangulation. We adopt the Quickhull algorithm (Barber et
al., 1996). Carrying out the Delaunay triangulation with this algo-
rithm takes an insignificant amount of time (for this data set, less
than a second). It is important to notice that, even though the De-
launay triangles are used in more than one stage of the SCI, the trian-
gulation of all data points is performed only once.

As mentioned above, the lateral constraints can be set for any
model parameter. Our approach is to constrain layer resistivities and
layer boundary depths.

The third and final step in preparing the constraints is setting their
strength, which is described in the covariance matrix Ck. The con-
straints need to reflect the expected variations in the geologic model.
In SCI, as in LCI, this is achieved empirically by means of model
recognition analysis and subsequent trial and error fine-tuning. The
constraints applied are to a large degree based on studies of 3D for-
ward modeling of complicated geologic models followed by LCI
(Auken et al., 2005b; E. Auken et al., personal communication,
2008). The strength of the constraints is distance dependent, as
shown in equation 12:

v

Figure 1. Delaunay triangulations of a randomly generated set of
points on a plane.
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C_SCId) =1+ (A — 1)(%)11, (12)

where d represents the distance between two constrained soundings,
B the reference distance, and A the reference constraint value. The
reference distance is the typical separation between adjacent sound-
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Figure 2. (a) The Stevnstrup field area. The map area is approximate-
ly 290 km?. Each dot represents a sounding. (b) Delaunay triangula-
tion of more than 1000 skyTEM soundings from the Stevenstrup
area. (¢) Frequency histogram of the number of connections between
soundings in the Delaunay triangulation.

ings, and the reference constraint is the value to which the strength of
the constraints is set in case of soundings that are closer than the ref-
erence distance. The exponent a determines how the constraints
loosen up with distance (e.g., linearly, fora = 1).

In this case, we used A=1.4, B=40 m, and a=1.5. According to
our experience, the output of the inversion is reliably robust with re-
spect to a wide range of choices for these parameters.

Performing the first inversion run on large subsets
suitable for parallel computation

Implementation of SCI uses a Cholezski decomposition with back
substitution with, currently, nonsparse matrix operations. This caus-
es a computational limitation when inverting the Jacobian matrix G’
in equation 11. Therefore, a typical data set of thousands of sound-
ings must be divided into smaller subsets. Each subset is then invert-
ed with spatial constraints as a unit. If the number of model parame-
ters contained in a subset is about 1000, the time spent doing the
Cholezski decomposition is comparable to the time spent calculat-
ing the Jacobian matrix.

For a five-layer model, 1000 model parameters are equivalent to
about 100 soundings. The SCI is completed on 100 SkyTEM sound-
ings in about 15 minutes. A single SkyTEM sounding is inverted, on
a 64-bit, 2-GHz processor, in about 5 s using a very conservative
regularization and starting from a half-space model. One hundred in-
dividual soundings without constraints take about 10 minutes. The
SCl s, therefore, about 50% slower than the collection of single-site
inversions.

a) 4

v

Figure 3. Delaunay-controlled progression of connections between
nearest neighbors. (a) Sounding a is first connected to soundings
b-g. (b) Soundings b-g are then connected to their nearest neighbors,
h-w, creating a continuum of interconnected soundings.
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If, for the purpose of defining the subsets, we superimpose on the
entire data set predefined cells of given sizes and shapes, the density
of the soundings in such cells could vary drastically because of the
varying data density of the whole data set. This would decrease CPU
efficiency. Instead, we once again turn to the Delaunay triangulation,
which allows the construction of geometrically unbiased subsets of
data that adapt automatically to data-density variations.

Cell construction is a multistep process. We select a starting point
randomly and then identify its nearest neighbors, as defined above.
They produce an outer border around the staring point (Figure 3a).
Then we identify the neighbors nearest to each of the points along
the border. This way, the cell is expanded to the next order of nearest
neighbors. We keep expanding the cell by selecting the nearest
neighbors to the points along the border of the previous iteration un-
til a predefined number of points is included in the cell. For a five-
layer model, that means approximately 100 soundings per cell,
which, including flight altitude, equates to 1000 model parameters.

After the first cell C, has been built, the second one C, is obtained
by iterative nearest-neighbor expansions around one of the points
along the outer border of the first cell. The third cell is built from one
of the points on the outer border of either the first cell, or of the sec-
ond cell, and so on, until the last cell C,, so that each sounding in the
data sets is assigned to a cell (see Figure 4a). Each cell C, is de-
scribed by the location of the 7 soundings it contains: S%,S5,...,S7
(with 7 not being the same for each cell) and by the location of the
nearest neighbors to each of these soundings: N},Nj,...,Nj;
NN, ... .N*;...;N.,NS, ... ,N'.

The last step, which leads to the final cells, involves expanding the
cells in Figure 4a around their borders to one more order of nearest
neighbors. In this way, we create a double overlap between neigh-
boring cells (see Figure 4b). This is the smallest overlap that ensures
a robust migration of model parameter information between cells
and that guarantees model parameter continuity across the cells. Be-
cause of the overlap between neighboring cells, a given sounding
S,(x,y) might be included in more than one cell.

The mechanism of information migration across cells is described
in detail in the next section. Note the irregular shapes of the cells.
Such irregularity is dictated by the spatial distribution of the sound-
ings, which governs the Delaunay triangles and therefore the nearest
neighbors. This cell-building procedure is completely automatic and
only requires that the user input the approximate number of data
points per cell desired. Ultimately, implementation of the Delaunay
triangulation allows selecting, for parallel computation, geometri-
cally unbiased subsets of data that adapt automatically to data-densi-
ty variations.

a)

UTMy
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Figure 4. Two stages of production of cells, identified by different
colors, for a portion of the Stevenstrup data set. (b) Overlap between
neighboring final cells. The dashed line defines the overlap region
between the cells C, and C,.

The total number of cells is divided into as many CPUs as are
available, and the SCI is run in parallel. Whenever a single sounding
S, belongs to an overlap region, it is inverted more than once. The
output of a model parameter for that sounding is the average of the
values of the model parameters obtained from the SCI of the individ-
ual cells, weighed inversely by their standard deviation. The stan-
dard deviation is obtained from the analysis of the model parameter
sensitivity resulting from the first inversion run.

Let us consider the case of S; belonging to n cells. The output for
the resistivity of the kth layeris

2 log(pi.‘)
. i=1 log(1/(1 + STD(p"),))*
p'(8) = exp . . (13)

2 (s
721\ 1 + STD(p");

The output for the thicknesses is computed in the same way, and
from there, the depths. Using the outcome of the sensitivity analysis
of the model parameters in the averaging ensures that well-resolved
parameters have a bigger influence on the result. In particular, it en-
sures that a well-resolved conductance that depends on consistency
between layer thickness and conductivity is also well preserved. The
output for the sensitivity analysis of each model parameter will be
the square root sum of the individual standard deviations. For exam-

ple,
STD(p*) = [ 2 (STD(p"),). (14)
i=1

Preserving continuity across subsets with the second
inversion run

The results of the first run are used as starting models for the sec-
ond run, reducing the computation time significantly (to less than
half) with respect to the first run. In the overlap zone, the starting
models are produced as described in equation 13 and therefore con-
tain information from adjacent cells.

Along the inner edge of the overlapping region (see Figure 5), the
results of the first run are used not only as starting models but also as
a priori information on the model parameters (i.e., starting model
with model confidence given by equation 14). We only apply a priori
information to the soundings that lie along the inner edge because

b)
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Figure 5. For the SCI of cells (a) C; and (b) C,, all the soundings are
started with model parameters obtained from the previous run. The
thick gray lines connect the soundings that also use the a priori infor-
mation from the previous run. The arrows show how the a priori in-
formation migrates toward the middle of the cells.
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they have all their nearest neighbors included in the cell, as opposed
to the soundings along the outer edge. This ensures that the a priori
information spreads, through the constraints, as homogeneously as
possible, both within and between cells.

Using the results of the first inversion run as starting models for
the second run allows model parameter information to be passed, by
means of the constraints, between neighboring cells. This ensures, at
least to a first-order approximation, a continuous flow of information
between soundings, independently of the cells.

SCIs of each cell are once again run in parallel. This time, the final
output for the overlapping zones is obtained by keeping the results
obtained from the inner edge of the overlapping zone of each cell.

FIELD EXAMPLE

SClI can be applied to all data types for which a 1D forward solu-
tion exists. In this article, we cover the case of airborne TEM sound-
ings. Over the past few years, the helicopter borne SkyTEM system

Q)  Elevationinterval -160to-140m D) Elevation interval -80 to -60 m

Resistivif)? (ohm-m)

Figure 6. Mean resistivity maps at elevation intervals —160 to
—140 m and —80 to —60 m for a portion of the Stevenstrup data
set: (a, b) stitched 1D inversion, (¢, d) LCI, (e, f) SCI. Black dots rep-
resent SkyTEM soundings; black lines represent the profiles shown
in Figures 7 and 8. The purple rectangle is the area of the buried val-
ley.

(Sgrensen and Auken, 2004) has collected many thousands of kilo-
meters of TEM data, many of them in sedimentary environments for
groundwater exploration. We present a case study from an 80-km?
survey in the Stevnstrup area, eastern Jutland, Denmark, as shown in
Figure 2a. Each black dot represents a sounding, which is either a
low-moment or a high-moment sounding. The average spacing be-
tween flight lines is 250 m. Many soundings near roads and power
lines have been removed because of transmitter-induced couplings
to power lines and to cables buried along the roads (Danielsen et al.,
2003). The full data set contains 5477 soundings. Of these, approxi-
mately half are high-moment (=60,000 Am?) and the other half
low-moment (= 10,000 Am?) soundings.

In general terms, the geology of the survey area consists of Danien
Limestone at the bottom. The limestone is saturated with residual
saltwater (with an average resistivity of =2 ohm m)in the very deep
parts and infiltrating freshwater (30—~100 ohm-m) in the more super-
ficial parts. On top of this is 0—100 m of heavy Paleogene clay with
an average resistivity of 2-5 ohm-m. The uppermost part of the se-
quence is till, consisting of varying clay mineral content and glacial
sands. It was expected that one or more buried valleys were incised
into the Paleogene clay. These valleys are filled with outwash sand
and gravel (50-80 ohm-m) and represent important aquifer struc-
tures (Auken et al., 2003; Jorgensen et al., 2003).

We compare the results of three different inversion approaches:
(1) stitched-together independent 1D inversion of individual sound-
ings, (2) LCI, and (3) SCI. Each inversion has the same starting mod-
els (in this case, a uniform half-space of 50 ohm-m) and five layers.
The number of layers was chosen as the least number of layers that
fitted the data while being indicative of the main expected geologic
units of the area. The only effect of reducing (increasing) the number
of layers would be to increase (reduce) the optimal number of sound-
ings of the SCI cells for computation purposes (always aiming at
about 1000 model parameters per cell). As SCI is a parallel proce-
dure, the total inversion time depends on the number of available
processors.

First, we present the results in the form of mean resistivity values
at different elevation intervals (Figure 6) and then in the form of pro-
files (Figure 7). The average resistivity maps, at both elevation inter-
vals, clearly demonstrate the effect of the constraints. LCI (Figure 6¢
and d) promotes along-line continuity, with respect to the stitched-
together single-site inversion. For example, note the area that delim-
its aburied valley that runs in east-west (delimited by the purple rect-
angle in Figure 6¢). However, LCI also introduces elongated fea-
tures coincident to the flight lines (more evident in the areas delimit-
ed by the black rectangles in Figure 6¢ and d). SCI, on the other hand,
produces smooth variations in every direction. It clearly delineates
the borders of the buried valley. It resolves continuous west-east fea-
tures, especially noticeable in the region of the valley, that are not so
well identified by the other two methods.

The good conductor present at depth in the valley (Figure 6¢) rep-
resents residual saline water in a limestone host, whereas the shal-
lower resistive structure visible in Figure 6f corresponds to uncon-
solidated sediments. Figure 7d shows a sketch of the vertical section
of the geology of the area.

The complete SCI was conducted on the data set more than once,
with different starting points for the creation of cells, which there-
fore had different locations, shapes, and sizes. The results, not
shown here, proved that SCI is robust with respect to the choice of
the starting point (i.e., of the cell’s geometry).
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Figures 7 and 8 show the cross sections of the two profiles drawn
onto the maps in Figure 6. The two profiles allow comparison of the
results of the inversion methodologies along different directions. In
both, the single-site stitched-together inversion gives the least lateral
continuity, as expected. The south-north profile in Figure 7 follows a
flight line and therefore also the chain of soundings constrained in
the LCI. This should produce good results, apart from possible mi-
nor distortions from 2D effects along the edges of the buried valley.
A sketch of the geological cross section inferred from available geo-
logic models is shown in Figure 7d. Both the LCI and the SCI cor-
rectly identify all of the main geologic units. The single-site inver-
sion fails to delineate the boundary between clay and limestone re-
corded in the proximity of the borehole, although
it does define the boundary in other areas of the

sponds to unresolved parameters (Auken and Christiansen, 2004). In
SCI, more model parameter information is passed between sound-
ings than in LCI. This decreases the uncertainty of the model param-
eters, which benefit from the across-line constraints. The lower stan-
dard deviation factor of Figure 9b suggests that a significant amount
of model parameter information in the SCI has migrated across the
direction of flight lines, allowing better resolution of model parame-
ters.

The question arises whether the better model parameter resolution
comes at the cost of a worse fit to the data for the SCI because of the
smoother model space. The white and black dots in Figure 9 repre-
sent, respectively, fitted and unfitted data (residual lower or higher

profile.

The minor difference between SCI and LCI is
in the detection of the whole clay-limestone
boundary in the northern portion of the profile,
which SCI defines more continuously. This result
is because the constraints set in SCI allow model
parameter information to migrate across the flight
path, not only along it (as in LCI). Therefore,
model parameters are, better resolved. We will re-
turn to the parameter sensitivity analysis issue at b)
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the end of this section.

In Figure 7, black bold arrows indicate the lo-
cation of the main discrepancies between the re-
sults of the SCI and the other methods. In the por-
tions of the profile where the limestone is overlain
by a thick clay cover, its absolute resistivity val-
ues are underestimated. The thick clay layer also
masks the presence of deeper residual saltwater.

Figure 8 displays less continuity because the 0 500
direction of the southwest-northeast profile does
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not coincide with flight lines and thus has a lower c)um
sounding density. Both SCI and LCI results agree
substantially with the available geologic model
(Figure 8d). SCI, however, provides more contin-
uous results overall, both at the boundary be-
tween the shallow resistive layers of glacial sedi-
ments and clay and at depth along the clay-lime-
stone boundary. Black bold arrows indicate once
again the main differences between the SCI and
the other two methods.

So far, we have shown that SCI reveals the d)m
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same overall geologic structures as LCI but that p
they are significantly different in detail. SCI re- 0
covers the actual geology of the area better, and
the pictures are much more coherent compared to
those based on profile-oriented LCI and the indi-
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sults produced.

The spatial maps in Figure 9a and b show the
standard deviation factor for the resistivity of lay-
er 3 for the LCI and for the SCI, respectively.
Moderately to well-determined parameters have
a standard deviation factor less than 1.5; a stan-
dard deviation factor greater than two corre-
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Figure 7. Resistivity cross section for south-north profile: (a) stitched-together single-site
inversion, (b) LCI, (c) SCI, (d) sketch of geology cross section.
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than one standard deviation of the stacked
—dB/dt signal). Their density shows that this is
not the case. The LCI and the SCI fit the data in
96% and 95% of the total number of soundings,
respectively. Therefore, we conclude the SCI de-
creases the uncertainty of model parameters
while fitting the data.

The mean resistivity slice map, the profiles, the
sensitivity analysis of the model parameters, and
the analysis of the data fit prove that, overall, SCI
fits the data and produces well-determined output
models that resemble the known geology of the
area better than stitched-together original inver-
sions and also better than a profile-oriented inver-
sion methodology such as LCIL.

DISCUSSION AND OTHER
APPLICATIONS

The SCI concept is applicable to different geo-
physical data types distributed on a plane. The
Delaunay triangulation ensures an efficient con-
nection of data points with very irregular data
density. Thus, SCI could be applied to a combina-
tion of similar data sets coming from methodolo-
gies with different data-sampling densities, such
as galvanic (surface or downhole) and TEM or
HEM measurements. Despite the 1D forward ap-
proximation, SCI can also be applied with suc-
cess to geologic settings that present modest 2D
and 3D variations because the strength of the con-
straints can be adjusted to reflect the geologic
variability of the area. Even though SCI is not de-
signed for a single profile of data, it would be ap-
plicable to it, effectively reducing to the LCI

method.

SCI has the potential to be particularly effec-
tive in fixed-wing airborne EM (AEM) data.
100 These systems, where the receiver is towed in a
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Figure 8. Resistivity cross section for the southwest-northeast profile: (a) stitched-to-
gether single-site inversion, (b) LCIL, (c) SCI, (d) sketch of geology cross section.

1.0 15 20
Figure 9. Layer 3, standard deviation factor of resistivity of third lay-
erin (a) LCIand (b) SCI. The white and black dots represent, respec-
tively, data that were fitted or not fitted within the noise level by the
inversions.

bird behind and below the transmitter, are asym-
metric and produce flight-direction-dependent
asymmetries. That is, the model parameters (e.g.,
average resistivity maps) obtained from process-
ing data flown along a line in one direction differ significantly from
those obtained with data from the same line but flown in the opposite
direction (Smith and Chouteau, 2006). Because adjacent lines typi-
cally are flown in opposite directions, such asymmetries are usually
removed from maps by applying spatial filters, using perpendicular
tie lines, or interpolating reverse line-direction data from adjacent
lines (Smith and Chouteau, 2006). The advantage of the SCI ap-
proach is that, rather than being filtered or interpolated, information
is passed across adjacent flight lines and used to increase model pa-
rameter resolution.

Even when using a nonspecialized spare matrix operation such as
in the present implementation, there is no inherent limit on the di-
mension of the data sets that can be inverted with SCI. Larger data
sets increase the number of cells and therefore slow down the com-
pletion of the SCI process (or require more parallel processes). How-
ever, dividing the data set into subsets allows SCI to be applied to ar-
bitrarily large data sets. Applying specialized sparse matrix opera-
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tions, the subject of ongoing work, will largely increase the size of
the cells.

CONCLUSIONS

SCI applies horizontal constraints for ensuring lateral continuity,
improving resolution of model parameters for single stations that are
not well resolved by the data from that station alone. Use of De-
launay triangulation for the constraints allows SCI to adapt efficient-
ly to data-density variations. In profile-oriented data sets, it ensures a
connection between adjacent lines by means of across-line con-
straints. Therefore, it eliminates the common elongated features that
often coincide with the direction of the survey (i.e., flight lines) and
that distort the continuity of geologic units across flight lines. Al-
though based on a 1D forward model, SCI results in a computation-
ally practical, quasi-3D inversion of EM data.

SCI can be applied to different data types. In the study presented
here, SCI was applied successfully to quasi-3D modeling of TEM
data in a sedimentary environment. It produced laterally smooth,
well-determined results that are more geologically reasonable than
individual sounding inversions or the profile-oriented LCI. The SCI
allowed a significant improvement in the mapping of the intermedi-
ate clay-limestone interface.
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