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Abstract
Hydrological models are often set up to provide specific forecasts of interest. Owing to the inherent uncertainty in data

used to derive model structure and used to constrain parameter variations, the model forecasts will be uncertain. Additional data
collection is often performed to minimize this forecast uncertainty. Given our common financial restrictions, it is critical that we
identify data with maximal information content with respect to forecast of interest. In practice, this often devolves to qualitative
decisions based on expert opinion. However, there is no assurance that this will lead to optimal design, especially for complex
hydrogeological problems. Specifically, these complexities include considerations of multiple forecasts, shared information among
potential observations, information content of existing data, and the assumptions and simplifications underlying model construction.
In the present study, we extend previous data worth analyses to include: simultaneous selection of multiple new measurements and
consideration of multiple forecasts of interest. We show how the suggested approach can be used to optimize data collection. This
can be used in a manner that suggests specific measurement sets or that produces probability maps indicating areas likely to be
informative for specific forecasts. Moreover, we provide examples documenting that sequential measurement election approaches
often lead to suboptimal designs and that estimates of data covariance should be included when selecting future measurement sets.

Introduction
In hydrological science, we are moving toward a basic

framework when developing groundwater flow models
for water resource management. Stripped down, this
framework includes four steps. First, existing data are
retrieved to build an initial version of the groundwater
flow model, once analyzed, the second step is to
collected additional information about the system. This
often includes the collection of data, which can provide
structural information on the subsurface (e.g., boreholes
or geophysical data). This step also includes collecting
information on state variables, which can be used to
constrain model parameters in an inversion scheme. Such
data could include hydraulic heads, streamflow discharges,
chemical concentrations, specific types of geophysical
data, etc. The third step is refining the numerical flow

1Corresponding author: Department of Geoscience, Aarhus
University, Aarhus, Denmark; troels.norvin@geo.au.dk

2Department of Hydrology and Atmospheric Science,
University of Arizona, Tucson, AZ 85721.

Article impact statement: Using models to select multiple
future measurements to collect is difficult, not impossible, but
worth the effort.

Received February 2017, accepted August 2017.
© 2017, National Ground Water Association.
doi: 10.1111/gwat.12595

model based on the new evidence. Subsequently, the
model responses are fitted to hydrological data by
adjusting model parameters, and the estimated parameters
are evaluated for their relation to the physical properties
they represent (e.g., Anderson et al. 2015; Doherty 2015;
Hill and Tiedeman 2007). Ideally (but often overlooked!),
the calibrated model is then subject to detailed uncertainty
analyses, which result in a model prognosis presented
with quantitative uncertainties (e.g., Tonkin and Doherty
2009). The third and final step is applying the results
from the model in a decision/management framework.
Here the model prognosis is used together with other
supplementary information either to gain insight or to
inform regulatory or treatment actions. The challenge,
especially given the relatively limited budgets associated
with most hydrologic investigations, is to determine the
optimal types, timing, and locations for acquiring new
data. In practice, this is most often done based on the
expert knowledge of the practitioner, meaning that it is
qualitative and subjective. It is generally not reasonable
to expect that intuition alone can lead to optimal data
collection, especially given that the hydrologist must
consider the information content of existing data, often
comprised of many data types, and when the goal of
the modeling task is to optimize for multiple forecast
scenarios.
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When considering more complex questions, such as
multi-objective decision support, the task of selecting new
data may require approaches that are collectively referred
to as optimal design (OD). In relation to hydrological
studies, OD has been investigated for over 20 years.
For complete references to early OD work, we refer
to the review studies by Dixon and Chiswell (1996)
and/or Loaiciga et al. (1992). We also need to distinguish
between different goals of the OD analysis. In relation
to contaminant hydrology, several studies advocate that
OD should be related to economic benefits (Freeze et al.
1992; James and Gorelick 1994; Criminisi et al. 1997;
Feyen and Gorelick 2005; Norberg and Rosen 2006).
This type of analysis requires a specific definition of
“the price of being wrong,” which may not always
be easy to quantify (e.g., how do you quantify the
price of a spring being depleted due to groundwater
abstraction?). Alternatively, OD can be related to the
optimal distribution of a fixed number of measurements
based on their ability to reduce the uncertainty of a specific
forecast (e.g., Kikuchi et al. 2015; Wöhling et al. 2016).
This sort of OD design typically requires that the number
of observations to include into the analysis is predefined.
Including the number of observations as a variable would
require a trade-off function to the overall value of the
measurement, for example, the price or effort required to
make the measurement. Examples of such trade-offs in
relation to groundwater remediation can be seen from the
classic reference of James and Gorelick (1994). In the
present analysis, we have not adopted this price trade-
off. Focus is therefore instead to select the optimal spatial
distribution of a fixed number of measurements to obtain
the maximum decrease in the predictive uncertainty.

OD studies can also be subdivided into two main
categories: those applying nonlinear Monte-Carlo (MC)
based methods to estimate predictive uncertainties (e.g.,
Nowak 2010; Leube et al. 2012; Kikuchi et al. 2015),
and those applying linear approximations (Dausman et al.
2010; Fienen et al. 2010; Engelhardt et al. 2013; Hill
et al. 2013; Wallis et al. 2014; Wöhling et al. 2016).
Nonlinear MC methods may be necessary for problems
including processes or parameter interactions that lead to
highly nonlinear responses. The linear methods rely purely
on forecast and parameter sensitivities. That is that the
relation between model responses and model parameters
can be approximated as linear. The dependency on
forward model runtime is therefore limited, because this
linearization often only has to be performed once. From a
practical standpoint such a linearization can be performed
using inversion software such as PEST (Doherty 2016)
or UCODE (Poeter et al. 2014). OD relates closely
to parameter identifiability (Doherty and Hunt 2009),
namely that we seek to identify model parameters with
high uncertainty, that have high sensitivity to model
forecasts. Once identified, we can seek to find the new
data leading to maximum reduction in uncertainty of
these parameters. Formally, this can be derived in a
Bayesian context as done by Christensen and Doherty
(2008). In relation to OD, this estimate was initially

applied to select the optimal location of one additional
observation well to constrain the forecast of stream
flow reduction due to groundwater abstraction (Fienen
et al. 2010). Dausman et al. (2010) used the method to
estimate important observation locations of temperature
and salinity concentrations to constrain uncertainty after
a change in stress on the system. Hill et al. (2013)
used the observation-prediction (OPR) statistic (Tonkin
et al. 2007) to determine the optimal locations for
an additional head measurement in the Death Valley
regional groundwater flow model, and found multiple
places for optimal placement. Common among these
three studies, they evaluated the contributions to the
reduction in predictive uncertainty due to the addition of
a single new observation. Wallis et al. (2014) extended
this approach to selecting multiple observations in an
OD of a tracer test experiment. However, they did not
optimize for configurations and were therefore limited
to testing a narrow predefined number of observation
sets. Wöhling et al. (2016) extended the OD analysis to
optimize for multiple new observations of two different
types (hydraulic conductivity and heads) to decrease the
predictive uncertainty of mean travel times for hyporheic
exchange fluxes. Wöhling et al. (2016) optimized the
observation locations using a genetic algorithm (GA)
they developed based on the work of Goldberg (1989).
They could thereby make an effective search to find
the optimal combination given a predefined number of
measurement locations. As a method to calculate the
DW, their study was built on the existing PREDUNC
program build into the PEST suite of utilities (Doherty
2010; Doherty 2013). Similar to previous studies, their
approach was also limited to optimizing for a single
forecast. In practice, multiple targets are often of interest
in OD, especially when multiple stakeholders have
competing interests in a basin. Linear as well as
nonlinear uncertainty analysis is also available through
the pyemu framework (White et al. 2016). The study
also included a section about OD analysis. Here they
used a selection approach, where proposed observations
were added sequentially. They also assumed that new
locations were uncorrelated, why the optimal combination
of observation locations were grouped within a small
area, which is likely not going to be the optimal
solution. Methods to perform linear analysis are also
available directly in model analysis/inversion software
PEST++ (Welter et al. 2015). Such availability will
hopefully lead to a more general application in the
future.

Based on the existing studies, we find that a number
of topics remain to be investigated. The first is linked
to the data redundancy often present in observation data
sets. This redundancy originates from observations having
the same or similar information content with respect to
either the parameters or the forecast of interest. With
respect to groundwater hydrology, the obvious example
would be two proximate hydraulic head measurements
in the same aquifer. Such observations would not
have an unique information content, and one of them
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could likely be excluded from a hydrological analysis
without deteriorating model performance. Formally, this
can be estimated by knowing or approximating the
correlations in the observation data set. Due to lack
of information about the covariance structure of the
new and existing observation data set, this is for
better or worse most often ignored. However, because
this is an inherent part of the analysis, the potential
bias introduced, using an assumed known covariance
structure could degrade the quality of monitoring designs.
Given that data collection, especially in relation to
large distributed groundwater models, often has multiple
objectives, we also believe that the OD methodology
should be extended to include multiple forecasts. Where
multiple forecast could be different model outcomes of
interest, for example, reduction of stream base flow due
to groundwater abstraction, risk of groundwater pollution,
or resulting aquifer drawdown.

Methods
In the following, we provide details of the underlying

assumptions on which the proposed methodology lies.
We then derive the equations needed to estimate the
linear approximation of predictive uncertainty, relate this
equation to the data worth (DW) obtained by collecting
additional data, and use the DW concept to estimate a
new measure of assessing the value of information, the
retrieval of information index (RII). The RII is used to
evaluate bias introduced into the analysis by performing
the analysis using an erroneous covariance function. Using
the DW concept, the analysis is extended to optimize
for multiple forecast scenarios, and it is shown how
this concept can be used to derive probability maps
that identify locations that are likely to be important
for multiple forecasts of interest. The entire analysis is
illustrated using a synthetic case study.

Uncertainty Analysis Using Linear Estimates
Assuming model linearity, the predictive uncertainty

variance of a given forecast (s) can be determined as

σ 2
s = yT C ppy − yT C ppX T (

XC ppX T + C εε

)−1
XC ppy .

(1)

Here X is the actions of a mathematical model used
to simulate a set of observation data. Similarly, y is
the action of the model to produce the forecast. C pp

and C εε are the prior parameter and the data covariance
matrix, respectively. These matrices hold information
encapsulating out imperfect knowledge of the system we
are analyzing. Both matrices are square and diagonal. This
means that the rows and the columns with the same indices
represent the same parameter or observation. The diagonal
elements represent the individual parameter or observation
variances. The larger the diagonal elements are the
larger is the uncertainty. Elements on the off diagonal
represent the interdependency between observations or
parameters. In a model calibration context where a

specific off diagonal element in C pp approximates the
product of the standard deviation of their pertaining
parameters, it means, that the parameters cannot be
estimated individually. For the diagonal elements in
C pp , this means that the specific parameter can only be
estimated with great uncertainty. With respect to C εε high
values in the diagonal of this matrix would mean that the
specific observations are highly uncertain, and high off
diagonal elements would mean that the observations are
potentially redundant, thus providing similar information
about the system analyzed. Thus, if C εε is diagonal, the
underlying assumption is that all observations contain
unique information. This is an obvious flawed assumption
for proximate observations.

Equation 1 builds on assumptions of model linearity.
Most hydrological models are, however nonlinear, and
the elements of X will thereby be dependent on the
parameter values (p) imposed on the model. X can be
approximated by the Jacobian/sensitivity matrix. In the
following, X will therefore be used as symbol for the
Jacobian matrix and y will be used to describe the
forecast sensitivities to changes in the model parameters.
Additional elaboration on how (Equation 1) can be
derived can be found in Appendix S1, Supporting
Information, and a detailed and insightful discussion
of the applicability of Equation 1 and the individual
terms it contains can be found in Anderson et al. (2015,
461–465).

The Concept of DW
Because Equation 1 only holds parameter sensitivities

to modeled targets (observations and forecasts) and not
absolute data values, it can be used to evaluate the value
of existing or new data sets based on their ability to
reduce the uncertainty of a given forecast of interest.
This type of analysis has been documented previously
in the literature (Dausman et al. 2010; Fienen et al.
2010; Brunner et al. 2012; Wallis et al. 2014; Wöhling
et al. 2016). Equation 1 can thereby be used to evaluate
the value of existing and yet to be collected data
sets. For this purpose, we have adopted the DW term
defined as

DW = σ 2
dec

σ 2
base

, (2)

where DW ranges between 0 and 1, hereby expressing
the relative value of individual or combinations of
data points. The term σ 2

dec is the decrease in predictive
uncertainty obtained by adding new data to the set of
observations, and σ 2

base is the base uncertainty corre-
sponding to existing data only. Both terms are determined
using Equation 1, but with different elements.

DW estimates can often be obtained at a low com-
putational burden because the Jacobian matrix contain-
ing forecast sensitivities, existing data, and new data
often only needs to be calculated once. But even
for cases needing multiple evaluations of the Jaco-
bian, the computational burden is limited compared to
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nonlinear methods. The complete Jacobian matrix can be
exemplified as

X all =

⎡
⎢⎢⎢⎢⎢⎣

(
y1

)T

...(
yn

)T

X base

X nd

⎤
⎥⎥⎥⎥⎥⎦

, (3)

where X all is the complete Jacobian matrix containing
forecast sensitivities to one or more forecasts of interest
[(y1)T to (yn )T ]. The term X base is the base Jacobian
matrix containing the existing data set used for model
calibration, and X nd is the Jacobian matrix for the yet to be
collected new data containing one line for each potential
new observation (in total equal to nd). In the present
analysis, X all was estimated using PEST. By extracting
a given forecast sensitivity vector (y i ), corresponding to
forecast i , combined with X base, σ 2

base can be calculated
using Equation 1 (Dausman et al. 2010). To estimate the
DW of a single new observation, X base needs to be
extended with the row from X nd representing the new data
point and σ 2

dec can be calculated. C εε must be adjusted
accordingly. This process is repeated one at a time for
each potential new observation to assess the DW of the
all-potential measurements.

DW Concept: Single Forecast, Multiple New
Observations

Compared to previously published work (Dausman
et al. 2010; Fienen et al. 2010; Brunner et al. 2012; White
et al. 2016), the purpose of the present analysis is to
find optimal combinations of new, yet to be collected,
observations given a single or multiple forecasts of
interest (the latter also distinguishing it from the study
by Kikuchi et al. (2015) and Wöhling et al. (2016)).
We do this usng the methodology outlined in Figure 1,
namely by adding combinations of potential observations
sequentially, and subsequently evaluating their combined
DW. Instead of taking each line of Xnd individually, we
extract combinations of observations, by selecting their
corresponding lines from Xnd (Figure 1, box 3). Because
each line in Xnd holds the sensitivity of a given new
observation to the parameters, selecting multiple lines
will facilitate the DW of combinations of new data. The
number of lines to extract is equal to the number of
observations to be collected. Unfortunately, exploring the
complete set of possible combinations is rarely possible
because these expand to a maximum of nnewmax!

(nnewmax−nnew)!
combinations, where nnewmax is the number of potential
observations locations, and nnew is the maximum number
of new observations to collect. To make a subsample
of the complete set of possible solutions, we introduce
what we call the random selection matrix (Mrs), also
referred to as the pool (see Figure 1). Mrs holds integer
values each corresponding to a specific row of Xnd. The
number of rows in Mrs is equal to the combinations of
measurements to analyze and the number of columns

is equal to the maximum number of new observations
to be collected (nnew). The purpose of Mrs is twofold.
First, we needed a representative set of measurement
combinations that down samples the complete set of
potential combinations. Mrs is therefore generated at
random, by combining indices of potential observation
locations (see Figure 1, box 3), linked to rows in Xnd.
Here, the only restriction is that each row of Mrs only
holds unique values. Second, by repeated use of Mrs

for estimating the DW of multiple forecasts (y1 to yn ),
the value of the same combinations of observations can
be evaluated for different forecasts. This is an efficient
approach to addressing multi-objective problems which
will be described in the following.

DW Concept: Multiple Forecasts, Multiple New
Observations

The DW of a single or combinations of new
observations will change depending on the forecast of
interest because each forecast will depend upon the
uncertainty of different aspects of a model, thereby
showing different sensitivities to each combination of
proposed observations. It is often the case that multiple
targets are of interest when conducting a hydrogeological
investigation. This is especially the case if multiple
stakeholders have competing interests as to the water
resources. For water resource evaluations, forecasts of
interest related to water abstraction may include effects
on stream discharge, aquifer drawdown, or contaminant
migration. For each new set of measurements, the DW for
all forecasts of interest can be calculated (Figure 1, box
2). One way to combine multiple objectives is through
a priority-weighting (e.g., based on estimated cost or
regulatory priority). This can be achieved through the
calculation of a value index (VI) using the following
equation:

VIj =
n∑

i=1

wiDWi,j , (4)

where VIj is the value index of observation set j to
the n analyzed forecasts, wi is the weight given to
forecast i , and DWi , j is the DW of observation set j
to forecast i . The weighting is introduced to prioritize
different forecasts. Weighting could be based on economic
valuation of a set of predictions for different impacts
and to different stakeholders. Or the weighting could be
based on qualitative prioritization for a single stakeholder
when designing a management plan. Assuming that these
weights can be defined quantitatively, the combination of
proposed new observations that provides the maximum
VI would be deemed optimal. Alternatively, a continuum
approach can be used, which examines the dependence
of the choice of optimal measurements on the weights
given to different objectives. That is, a manager or
decision maker can choose measurement sets that provide
an acceptable trade-off among several prediction targets
based on results that better communicate the risks and
benefits of different proposed observation plans. Using the
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Figure 1. Selection framework for single or multiple forecasts. Dim refers to the dimension of the matrix. nsets is the number
of observation combinations to test for. nnewmax is the maximum number of potential new observation, nbase is the number
of base/existing observations. nnew is the number of observations in the present step of the analysis.

selection matrix concept allows us to apply OD efficiently
enough that it can be used for these examinations of the
interactions between prediction priorities and observation
network design.

Estimating the Validity of New Sampling Locations
Because the VI in the present study is calculated

for all combinations of measurements indexed in M rs, it
can be used to identify the optimal set of measurements
for any defined number of observations. It can also be
used to look across measurement set sizes to identify the
expected benefit of each additional observation. This can
be repeated for different predictions of interest. Then, the
results can be used to find combinations of measurements
that are optimal as a function of the importance weighting
of the prediction targets. Alternatively, it can be used
to identify observations that are generally likely to be
important to the forecast or forecasts of interest because
they tend to be selected into many optimal observation
sets. This is another common way to consider the selection
of new observations. Essentially, asking the question:
“If I were to add an observation at this location, how
likely is it that it will be useful to support model-
informed decisions?” This approach is less discrete and
more qualitative than selecting specific observation sets;
but, in many cases it may be more informative for
hydrogeologists and stakeholders alike. Some arbitrary

choices are necessary to implement this approach. In
the present case, for example, we chose to identify the
combinations of observations that were within 2.5% of
the most informative observation sets for each forecast of
interest and observation set size. Then, we determined
what fraction of these observation sets included any
given observation as a measure of the probability that
the observation would be informative. This result can
be plotted as a probability contour map to give a more
general indication of the distribution of DW in a multiple-
observation, multiple-decision context. In addition, such
a map will show how accurate the field campaign needs
to be with respect to measurement locations, which can
have important practical implications when planning real
field campaigns. The map can also be used to identify
alternative locations that are likely to inform the forecasts
acceptably well if the highest value locations must be
discounted based on consideration of access (permission
or cost) and other practical aspects of field data collection.

DW Concept: Using a Global Search Genetic Algorithm
Despite the benefits of being able to estimate proba-

bility maps, the limitation of the proposed methodology is
the relatively ineffective random search procedure applied.
Other studies have applied GAs in OD studies (Zhang
et al. 2005; Park et al. 2006; Chadalavada and Datta 2008;
Wöhling et al. 2016). A more general overview of GA
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used in water resource studies can be obtained from Nick-
low et al. (2010). GA is an optimization approach, which
means that the outcome of the analysis will be an OD,
which in the present case will be the combination of mea-
surements that maximize the weighted VI. The random
search approach presented previously has therefore been
compared to the results of a global search GA similar to
that applied by Wöhling et al. (2016), which builds on the
methods documented by Goldberg (1989). The GA was
implemented in Python for the present study. To make
the results comparable to the random search procedure,
we optimized for the VI instead of minimizing the pre-
dictive uncertainty as done by Wöhling et al. (2016). In
the GA, we used the same standard GA selection scheme
as Wöhling et al. (2016), namely selection, mutation, and
crossover. In the present study, we retained 40% of the
population, we used a mutation probability of 5% that we
allowed to increase, in the case we obtained a too uniform
population, and we allowed a 15% chance of selecting out-
side elite candidates. This should most likely be optimized
and adapted to future applications.

Estimating the RII
One of the challenges of the DW concept as outlined

in this study is the estimation of C pp and C εε. A proxy
for the C pp can be estimated by combining numerical
analysis of the model and geological understanding of
the area investigated. However, for most practical cases
of groundwater model analysis, C εε is assumed diagonal,
effectively ignoring potential observation correlations. As
mentioned in the introduction, this can be problematic
for DW analyses. This problem is avoided in sequential
OD approaches, wherein one data point is collected after
each analysis and the sensitivities are recalculated before
collecting more data. However, this is impractical for
real hydrologic investigations. To analyze this potential
problem, we have decided to add two additional indexes.
The first is used to estimate the bias that we introduced
in the measurement selection when applying an incorrect
covariance matrix in Equation 1. This is called the RII.
The RII is a normalized factor used to describe the
bias introduced into the analysis by performing the
analysis using an erroneous covariance function, with
0 indicating that the bias overwhelms the value of the
added data and 1 indicating no influence of this bias.
The RII is thus calculated by selecting the optimal
set of measurements based on an incorrect covariance
matrix. The VI of these points is subsequently calculated
using the true covariance matrix. By normalizing the
biased estimate of VI with the optimal VI obtained by
selecting the same number of new observations using the
true covariance function, an estimate is obtained, which
ranges between 0 and 1. A RII of 0 means that the
selected points pose a zero VI when evaluated using
the true covariance function, and a RII of 1 will mean
that the points selected pose the same VI as the points
selected using the true covariance function. Alternatively,
as shown in the results section, we can use this index to
determine if increasing the number of new data points

collected can compensate for an incorrect covariance
structure; we call this second analysis RII2. The RII2
index is calculated using the largest sample with the true
covariance matrix for reference. For real cases, where the
covariance structure will be unknown, the RII and the RII2
can be calculated using the best estimate of the covariance
structure as reference. This allows for calculating the
sensitivity of the optimization problem to the choice of
covariance matrix.

Synthetic Test Case
To test the performance of the proposed method, we

have set up a synthetic test model such that we have con-
trol and perfect knowledge of the covariance of the input
structure as well as the covariance of the proposed new
observations. The model is setup in MODFLOW-2005
(Harbaugh 2005) and is presented in Figure 2. The model
is two-dimensional, with a domain size of 1000 × 1000 m,
subdivided into 100 rows and 100 columns. There is
one layer with a thickness of 100 m. The model has a
constant head BC in the lower left corner of the domain
with a value of 100 m, and a head dependent BC in the
upper right corner, simulated using the river package.
This BC has a head value of 90 m, a bottom elevation
of 85 m and a riverbed conductance of 1 × 10−3 m2/s. A
uniform recharge is distributed over the area with a value
of 1.1574 × 10−8 m/s. The true hydraulic conductivity
field was generated by interpolating from a set of 81
pilot points (e.g., Certes and de Marsily 1991; Lavenue
and de Marsily 2001; Doherty 2003) distributed on a
regular 9 × 9 grid using an exponential variogram with a
sill variance of 0.7544 and a range of 250. The hydraulic
conductivity at each pilot point was simulated based on
the same variogram structure using a log(k ) mean value
of −4. The data set used as base data (forming X base) was
generated from this true model structure by simulating
the steady state heads at the 10 locations marked with
blue dots in Figure 2. This data set also includes the
streamflow discharge, simulated in the river. The head
values were perturbed with a standard deviation of 1,
and the stream discharge was perturbed with a standard
deviation of 20% of the true streamflow. These data are
then used in the subsequent analysis.

The model was calibrated using PEST by applying
singular value decomposition (SVD) as a regularization
methodology. The SVD was set up such that the trun-
cation threshold between the largest and the smallest
eigenvalue to include in the analysis was 5 × 10−7, for
full description of this, see Doherty and Hunt (2010).
Assuming perfect model linearity, this calibration step is
not necessary; however, we choose to include it due to
the slight nonlinearity in our model setup, caused by the
head dependent river BC. The initial value for each pilot
point was assumed to be 1 × 10−4, equal to the mean
of the true field. We estimate the uniform recharge as
a multiplication factor on the true recharge distribution.
The initial multiplication factor was set to one. The initial
recharge estimate going into the inversion was thereby
equal to the true value. The potential new measurements
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Figure 2. (A) Model setup used in the study. The underlying
k -field is the true distribution of hydraulic conductivities
used to generate calibration data set.

comprise estimates of hydraulic conductivity at the 2500
potential sampling sites shown in Figure 2. We chose
hydraulic conductivity estimates as our data because the
true covariance function of these is known and equal to
that used to generate the true model structure.

In total, six forecast scenarios are included in the
analysis. All of these are related to the establishment of a
pumping well (located at the red triangle in Figure 2).
The forecasts comprised six targets: four drawdown
locations; the water balance on the constant head BC;
and the water balance on the spring located at the green
triangle in Figure 2. This well was included in the model
after the calibration step. Subsequently, the parameter
sensitivities to existing and potential new data as well as
the forecast sensitivities were calculated. The sensitivities
to the new data were estimated by calculating how
much the hydraulic conductivity changed at a specific
location when the value of the (pilot point) parameter was
altered.

The model presented in Figure 2 was used for the
majority of the analyses presented. However, for the
analysis presenting the sensitivity to the bias in the
covariance structure (the RII and the RII2), we generated
an ensemble of 10 reference model realizations, and
repeated the analysis on each of these structures. Each
of these realizations had a different “true” structure
determined using the same methodology outlined above,
and using the same variogram function. This will be
further elaborated in the result section.

Figure 3. The figure show the DW of a single new observa-
tion, optimized for two new forecasts. Each point in the cloud
in the left plot represents the DW of a new observation to two
new forecasts. The right-hand side plots show how the opti-
mal sampling location moves through space when changing
the weight in the VI according to Equation 4.

Results
The results section below contains only results related

to optimizing for multiple forecasts. We have also
performed the analysis for single forecasts, and single
new observations. Readers interested in this analysis are
referred to the online supplementary material.

Multiple Forecasts, Single New Observation
To approach the challenge of optimizing multiple new

observations to multiple new forecasts, we initiate with
the case where we optimize the collection of a single
new observation to multiple forecasts. The results of this
analysis are shown in Figure 3. The DW for each of the
2500 potential new measurements is shown as a cloud
plot. Each point in the cloud represents a single new
observation, and the axes show the DW for each of the two
target forecasts. The right hand side of each plot shows the
contoured VI for the two forecasts, given a specific weight
distribution in Equation 4. The contour plots are marked
with 1 to 6. Subplot 1 shows the case where all of the
weight is given to the forecasts on the x axis, and subplot
6 shows the case where the entire weight is given to the
forecast on the y axis. From subplots 2 to 5 the weight
is shifted by 20% going from 80% weight to observation
on the x axis to 20% weight to that observation. The
optimal new observation in each subplot is marked by a
red circle, and their location in the cloud can be seen from
left hand plots. By tracking the locations in the cloud as
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Figure 4. (A) The DW cloud for two forecasts given multiple sampling locations. (B) The optimal sampling locations for
three new observations by changing the forecast weight in Equation 4, combined with the DW contour for the drawdown 2
forecast. (C) The optimal sampling locations for three new observations with the drawdown 3 DW contour as background.
The diamond shows the optimal single observation location for each of the forecasts.

a function of relative weighting of the two forecasts of
interest, we can visualize the trade-off that is necessary to
satisfy both objectives with different levels of importance.
Figure 3A shows the DW cloud for the CH water balance
and the spring flow forecast. Following the cloud from
point 1 to 4 it can be seen that the sampling site can
be optimized slightly for the spring flow forecast by a
marginal deterioration (shift to the left) of the DW for the
CH water balance. In Figure 3B the cloud is plotted for
the DW of drawdown 2 and 4. Adding 20% weighting to
the drawdown 4 results in a very large increase in DW for
this forecast (shift upward) with a relatively small loss in
DW for drawdown 3. Additional weighting on drawdown
4 adds very little to its DW with slightly greater reduction
in the DW for drawdown 2.

Multiple Forecasts, Multiple Observations
The results for optimizing single-point data col-

lection to support multiple predictions suggest that it
may be beneficial to include multiple new measurement
locations when considering multiple objectives. This is
especially true for mutually exclusive predictions, such
as the example in Figure 3A. To optimize for multiple
new forecasts given multiple new observations, we can
perform a new analysis that is similar to the one presented
in Figure 3. However, now each point in the DW cloud
represents one combination of measurements taken from
the selection matrix. These results are presented for a
forecast scenarios in Figure 4. The cloud of blue points
in Figure 4A is the representation of two new measure-
ments, the cloud of green points shows combinations of
three new observations, the cloud of magenta points is for
four and the red is for five new measurements. Similar to
the one observation case, we can find the combinations
of measurements that outline the cloud by adjusting

the weights given to the individual DW terms in the
determination of the VI. For each cloud, these are marked
with black dots. All series track from right to left as the
weighting of drawdown 2 is reduced from 100% to 0%.

For the specific case with three new observations,
we have elaborated the analysis slightly (Figures 4B and
4C). Here the background contour shows the DW contour
for a single new observation and a single forecast, and
the optimal single observation is marked with a red
diamond. Figures 4B and 4C also show a number of
points in different colors. Each set of points with the
same color show the location of three observations, given
a specific weight distribution in Equation 1. To be able to
compare with the DW contour for each forecast, the same
selected points are shown on both Figures 4B and 4C. In
Figure 4B, the optimal three points considering only the
drawdown 2 forecast is marked with dark blue. Similarly,
in Figure 4C, the optimal three measurement locations
for the drawdown 3 forecast is marked with brown. By
adjusting the color scale to indicate the weight placed on
each prediction, we can see how the distribution of opti-
mal observations changes. An example of the importance
of the forecast weighting can be seen by comparing the
locations of the brown and the orange dots. As men-
tioned, the brown dots mark the optimal locations for the
drawdown 3 forecast; however, by reducing the weight
of drawdown 3 to 80%, one of the sample sites is moved
close to the optimal sampling site for the drawdown 2
forecast (marked with the red diamond in Figure 4B).

Retrieval of Information Index
The results presented above have all been derived

assuming perfect knowledge of the true covariance func-
tion describing the subsurface heterogeneity. Unfortu-
nately, such knowledge is rarely available in reality, and it
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Figure 5. This figure show the RII for the CH water balance forecast for 10 model realizations created using the same
variograms as the model shown in Figure 2. Based on these individual models, the average RII is calculated and presented
below. Finally, the RII2 index is shown in the bottom by averaging over the 10 model realizations. The 10 small plots have
the same axes labels as the large plots.

must therefore be estimated based on prior knowledge or
from existing field data. As part of the present study, we
have therefore estimated the reduction in DW expected
due to selecting data using an incorrect covariance func-
tion. This has been done by rerunning the selection algo-
rithm using covariance functions with increasing degrees
of bias and calculating RII and RII2. This bias was intro-
duced by calculating covariance matrices with a variogram
model, where the range was gradually changed away from
the true value. The analysis was performed on 10 model
realizations and then averaged to get a mean estimate of
the performance. We did this for two different forecasts
to be able to evaluate the consistency of the results (the
second scenario is presented in the online supplementary
material). The results for the CH water balance forecast
are shown in Figure 5. The figure is vertically subdivided
into three parts. The upper section contains the RII for
the 10 individual model realizations. By comparing the
RII for the individual realizations, it is apparent that the
effect of a biased covariance function is highly dependent
on the analyzed model. The averaged result is presented in
the central section of Figure 5. Here the black vertical line

shows the range of the true covariance function. The upper
row of this subplot is the estimated RII for two observa-
tions. As expected, when we approach the true covariance
function (range of 250), the points selected result in RII
values close to 1, meaning that the observations selected
have the same DW (but not necessarily the same loca-
tion) as the observations selected using the true covariance
function. As more bias is introduced, the RII deteriorates,
thereby resulting in lower DW of the selected points than
calculated. However, even with a highly biased covariance
function (in the range of 1000). The RII approaches 0.9
meaning that the DW obtained with the points selected
using a highly biased covariance function is still close
to the DW obtained using the true covariance function.
In this plot, special notice should be given to the case
where new data points are assumed uncorrelated. This
is the case where a diagonal data covariance matrix is
implemented in Equation 1. Using the case with two new
observations (the upper row of the RII average figure)
we see that the RII obtained with the assumption of no
correlation has similar performance as the highly biased
covariance functions. However, the bias introduced by
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Figure 6. Probability contour maps together with the optimal sampling locations for random selection approach as well as
points selected using the GA. The contour plots show the probability that a given observation location is part of the optimal
2.5% sampling locations given two to five new observation locations. The upper row shows a case where sequential selection
would not result in optimal sampling, and the lower plot show a case where sequential sampling is expected to give the same
result as the methodology suggested here.

assuming uncorrelated observations gradually increases,
as more observations are included into the analysis. The
same pattern cannot be observed for the remaining covari-
ance structures. Based on this, it is evident that, as the size
of the new data set increases, it becomes more important
to include some representation of the covariance structure,
even if this representation is somewhat biased.

The lower subplot of Figure 5 shows the average
RII2 value. Compared to RII we, have now normalized
with the reference scenario of five new data points
selected using the true covariance function. Based on
this, we can determine if increasing the number of
observations collected can compensate for a biased
covariance structure. This is indeed the case, and it
can be seen by comparing the results for four new
observations chosen with a covariance function with
low bias (range 200 and range 300). The RII2 has
approximately the same value as that calculated with five
observations selected with a high bias (800 and above).
Again, here we should notice that this is not the case when
assuming new observations to be uncorrelated. Selecting
five observations that are assumed uncorrelated have only
slightly higher RII2 than three observations selected using
a range close to the true covariance structure.

New Observation Probability Maps
Based on the DW clouds such as that shown in

Figure 4 we can derive the optimal locations for acquiring
new data. This is done by calculating the VI for all
combinations of measurements using Equation 4 with
a proper weight distribution depending on the focus

of the study. For the VI of the spring flow and the
drawdown 3 forecast, given an equal weight of 50%
to each, the optimal sampling sites can be derived
from Figures 6A–6D for two to five new observations.
Similarly, the optimal sampling sites using the same
weight distribution are shown for the combined forecast
of the spring and CH water balance (Figures 6E–6H).
For reference, the selected points are compared to those
selected using the GA. For two to four new observations,
there is a clear consistency between the points selected
using the random selection approach and the points
selected using the GA. This is not the case for five new
observations. The explanation for this can be twofold.
First, the explanation may lie in an incomplete search
of the set of possible solutions. Second, it can be
explained by an equivalence, where multiple combinations
of measurements have equal or close to equal VI. For
the spring flow and drawdown 3 forecast, this is due to
the first of these explanations: the VI for the five points
selected with the GA is 0.20 while the VI for the random
approach is 0.18. For four new observations, the VI values
are 0.18 for the GA and 0.17 for the random search. The
same VI is thereby obtained for four observations selected
with the GA as for five points selected with the random
search. Moreover, we see that the VI does not increase
significantly going from four to five new measurements.
For the spring and CH water balance forecast, the VI for
five new observations is 0.21 for the GA and 0.18 for
the random search approach. Corresponding VI values
for four new observations identified using the GA and
random search approaches are 0.18 and 0.17. Again, we
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get the same VI for four observations selected with the
GA as we do for five points selected with the random
search. However, based on the random search method we
can determine how likely it is that a given observation is
part of the optimal set. This is shown by the background
contours. These probabilities are derived from the DW
cloud similar to those seen in Figure 4. Here we selected
the 2.5% of the combinations of measurements with the
highest VI from the cloud of two to five measurements
and located these observations in space. The probabilities
were then estimated by calculating the chance that a
given observation would be included in this optimized
subset. Based on these results, it is possible to identify
areas where new observations are likely to contribute to
an increased VI. Because these contour plots are held
relative to the number of new observations in the set,
they will change with the number of new observations.
Based on these probability contours it is evident that the
optimal combinations of measurements are most often
located in areas likely to have a positive effect on the
VI. The only exception is one of the randomly selected
observations (Figure 6D). As mentioned, this is caused
by an incomplete search of the all possible observation
sets. It would be worthwhile expanding this investigation
to more problems, including problems with extensive
existing data sets, to see if this result is generally true.
If so, it could point to a cost effective approach to
determining the optimal locations for measurements and,
to some degree, the optimal number of measurements
to add.

Discussion
In the present study, a framework is presented for

assessing the value of yet to be collected data with the
purpose of maximizing the DW for multiple forecasts of
interest, and analyzing the sensitivity to their absolute
locations. As mentioned in several of the studies cited,
both the strength and the limitations of the proposed
method lie in the assumption of model linearity. The two
main advantages of this are: we do not need to know
or to make assumptions for the actual value of the data
(that have not been collected yet); and the computational
burden is limited because the results do not rely on
a high number of potentially computationally expensive
forward model runs. Fienen et al. (2010) showed the
need to have a dense pilot point parameterization when
performing linear DW analysis. For field applications of
the methodology proposed in this study, the same would
apply. We did not include this analysis in the proposed
analysis, since we designed our model such that we, in
principle, did not have any representation from structural
uncertainty.

The proposed method ignores potential conceptual
model uncertainty. Other studies (Neuman et al. 2012;
Xue et al. 2014) have shown that forecast uncertainty
can be biased and/or affected by an ignoring conceptual
model error. The proposed methodology and other studies
would therefore benefit from an extension to account for

multi-model realizations. This would require an analysis
of multiple model realizations, which is beyond the scope
of the present study, but could be a target for expansion
of the proposed methodology.

Compared to other studies (e.g., Dausman et al.
2010; Wallis et al. 2014; Wöhling et al. 2016) we have
limited our search to a single type of measurement.
This allows for analyzing the importance of knowing the
correlation of the potential new measurements. Moreover,
by restricting our search to measurements of hydraulic
conductivity, we could use the true covariance function
on which the model was built as a reference. By
gradually introducing increasing levels of bias in the
covariance structure we could analyze how this effected
the selected measurement locations. Doing this, we found
that the selected measurement locations had limited
sensitivity to the chosen covariance structure. Even with
highly biased covariance structures we still obtained
a RII of close to 0.9. Moreover, we also found that
the largest bias was introduced by assuming that new
measurements were uncorrelated. The negative effect of
assuming uncorrelated measurements also increased with
the number of measurements, which can be explained
easily with the increasing redundancy introduced as
more observations are included. Unfortunately, the true
covariance function can rarely be determined in practice.
We therefore analyzed if a biased covariance structure
could be compensated by an increase in sample size. We
found that the RII2 obtained from a sample size of 4 using
the true covariance function was similar to the RII2 with a
sample size of 5 using a highly biased covariance function.
Again, it would be useful to extend this investigation to
more measurement types and hydrogeologic conditions.
But, if it is found to be generally true, then it confirms
the general expectation that we can compensate a biased
assumption of correlation with an increased number of
samples. For the special case where new data was
assumed uncorrelated, this is not the case. Increasing
the sample size from four new observations to five
could not compensate for the assumption of uncorrelated
measurements. Therefore, when performing OD studies,
we suggest always to include some assumption of
observation correlation. Unfortunately, measurements of
hydraulic conductivity as used here, are not commonly
collected in hydrological studies. Here the dominant
observation types are hydraulic head data and streamflow
measurements. Correlation structures for hydraulic head
measurements can be assessed from the data sets directly,
for example, using variogram models fitted to observation
data or prior knowledge. Correlations and/or cross-
correlations between head and flow measurements can
also be evaluated using the numerical model using first-
order second-moment methods. A methodology to do this
is outlined in Kunstmann et al. (2002).

In the present case, we had knowledge of the true
correlation between potential new measurements. As
mentioned, this will rarely be the case in a practice.
To analyze the importance of the assumed correlation
structure, the RII and RII2 indexes can be used to
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evaluate the bias introduced by different assumptions on
measurement correlations, and an estimate can be obtained
on the expected bias introduced. In practice, this is done
by selecting the best approximation to the true covariance
function (either based on expert knowledge, from existing
data or through numerical analysis). The RII and the
RII2 indexes are then calculated, using this reference,
by gradually diverging from this (e.g., by changing the
assumed correlation length of the variogram). For cases
with multiple different types of measurements (e.g., heads
and hydraulic conductivity measurements), this becomes a
more challenging problem. However, methods to estimate
the correlation between different measurement types were
suggested in the previous section.

Most of the present study builds on a random search
procedure to find the optimal combination of potential
new measurements. The benefit of this method is that it
allowed us to estimate a probability map showing how
likely it would be that a given location would increase the
VI. From a practical application standpoint, such probabil-
ity maps are valuable because measurements in the field
rarely can be made at the exact location proposed by the
optimization procedure. The probability maps can thereby
be seen as a guide to determine best alternatives. How-
ever, in cases where the number of potential measurement
locations is high, the random selection method becomes
inadequate due to the poor scaling as the number of new
measurement locations increase. Wöhling et al. (2016),
acknowledged this by utilizing a GA global optimization
scheme similar to the one applied here. By comparing the
optimal data points selected using the GA and the ones
selected using the random search approach, we conclude
that for a sample size of 2500 potential new measure-
ments, a population of 1.000.000 samples was insufficient
to locate the optimal combination of measurements when
selecting five potential new locations. For selection of
four potential new measurements, both routines selected
approximately the same points, or at least selected mea-
surement sets with very similar VI values. Analyzing the
probability contour maps, it should, however, be noted
that these do indicate the points selected with the GA as
potentially valuable. This shows that the probability maps
are more robust than the selection of optimal locations.
To further document this, a video sequence showing
how the probability maps behave with a reduced sample
size is provided in the supplementary material. For the
present case, it is shown that approximately the same
maps are obtained down to a sample size of 200.000
combinations (see Video S1). The effectiveness of the
random search procedure will be highly affected by the
number of potential new measurements. In the present
case, we had a sample size of 2500 potential locations.
This will often be much more than what is proposed in
a field case. Reducing this size will render the random
search much more effective. However, we do suggest
comparing the probability maps with points selected using
the GA.

The performance of the method could be greatly
increased if new observation locations could be selected

sequentially, as done by White et al. (2016). However, as
pointed out several times in this study, the new locations
will be correlated, thereby making sequential selection
inadequate (this was already acknowledged by Carrera
et al. (1984)). However, the performance of sequential
selection will be dependent on the problem analyzed.
By comparing the two forecast scenarios in Figure 9
it is evident that the sequential selection will work
better for the forecast of constant head and spring flow
than for the forecast of spring flow and drawdown 3.
Analyzing these types of forecasts, it is evident, that
the both forecasts in the former case are predominantly
flux driven, where in the latter case, they are flux
(spring flow) and transmissivity (drawdown 3) driven,
respectively. This could therefore indicate that sequential
selection is sufficient, when the same processes drive
the multiple forecasts. Another particular case where
sequential selection could be preferred is in the presence
of forecast nonlinearity. Here forecast nonlinearity is
defined as the scenario where the forecast may be
dependent on the information gained by making new
measurements. The obvious case is where the assumed
model structure is biased, and the new observation
corrects this bias. This could be exemplified by a borehole
leading to an update of an otherwise fixed model structure.
Depending on the prior availability of data and on the
model, such an update will often be necessary after
data collection. It could therefore be preferred to make
a combined analysis, where the selection of new data
points is limited in sample size. After data collection,
an evaluation should be performed to determine if the
data collection should result in model updating. After
the potential model update, a new series of potential
measurement locations could be selected, based on a
second round of OD analysis. Ultimately, this will
rely on experience and judgment of the hydrogeologist
and it will be constrained by time and budgetary
considerations.

The suggested methodology could be extended to
include both multiple types of measurements, and a
monetary trade-off. Such a trade-off should be included
in cases where different types of measurements are
considered that have different costs (and, potentially,
different uncertainties and information contents). An
example of this could be a comparison between the
value of indirect geophysical measurements versus direct
measurements in the form of boreholes. The indirect
measurements can often be acquired at a reduced cost, but
potentially also with a higher uncertainty. By including
the trade-off between price and uncertainty into the
analysis, the optimal combination of measurement types
can be determined. A similar approach could be used to
determine the optimal number of new data of a single type
in a cost/benefit framework.

Conclusions
In the present study, we have extended an existing

method for OD of data collection to reduce uncertainties
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in hydrological model forecasts. Compared to previous
studies, we have allowed for optimization for multiple
forecasts, which we believe to be of real practical
benefit. Here the main finding shows that an optimal
compromise between multiple targets can often be found
in a way that maximizes the value of the data with
respect to the forecasts. We have also included a
detailed analysis of the importance of knowing the true
correlation between candidate measurement locations.
Based on this analysis, we show that an assumption of
uncorrelated measurements will have a negative impact on
the value of the selected candidate locations. Moreover,
this negative impact will increase with the total number
of new measurements selected. Based on these findings,
we therefore advocate that estimates of measurement
correlations should always be included in the analysis
when selecting multiple new measurements. This is the
case even if this can only be based on expert judgment or
limited field data.

In this study, we optimized data sampling using both
a random search procedure that considered the entire
set of possible measurement combinations and a GA
approach to search through measurement set space. In the
current study, we included 2500 potential new measure-
ment locations, and considered 1 million combinations
of these observations. Using this sample size, we were
unable to find the optimal set of measurements for sets
larger than four measurements with the random search
approach. The size of the pool of potential measurement
sets will have to be increased for more complex problems,
but would be decreased if fewer potential measurements
were considered. In contrast, for our investigation,
the GA approach was capable of finding optimal data
sets efficiently. Based on this, we suggest that the GA
approach be used first, to identify important observations
to include in the random search analysis. Then a random
search analysis should be conducted to generate maps
showing the probability of a given observation to be part
of the optimal set. Such maps can be highly valuable in
a field case, because they allow a hydrogeologist to find
alternative optimal locations in the case where the elite
candidate locations are inaccessible. Ultimately, it would
be beneficial to derive the probability maps or direct
estimates of a Pareto front showing trade-off among
different forecasts from the results of the GA. This should
therefore be a target for further investigations.
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Appendix
All calculations related to the OD in the present

analysis have been implemented in Python. This includes
both the random search procedure, and the GA. These
scripts can be obtained on request from the first author.
When this study was completed, the authors became
aware of the existing Python package DEAP (Fortin et al.
2012) which incorporated GA methods similar to the
ones developed in this study. In future applications, we
would consider using this framework instead of the one
developed as a part of this study.
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Appendix S1. Theoretical background and additional
results.
Video S1. Robustness of probability maps with decreasing
sample size
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