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ABSTRACT

Any geophysical measurement is a filter through which
the distribution of a certain physical parameter in the subsur-
face is seen, and the sensitivity function is a characteristic of
the method that reveals the nature of this filter. Insight into
the structural pattern of the sensitivity function pertaining
to a certain transmitter-receiver configuration provides the
geophysicist with an image that allows an immediate quali-
tative understanding of the characteristics of the method.
The assets and shortcomings of different measuring configu-
rations can be discussed and understood, and the sensitivity
function permits qualified predictions about resolution char-
acteristics of new configurations and measuring strategies. I
evaluated a rapid and accurate method for calculating 3D
sensitivity functions of a homogeneous half-space model for
a wide variety of transient electromagnetic configurations
using the central loop and an airborne offset loop configu-
ration as examples. Computations of 3D sensitivity func-
tions were performed as convolutions in the time domain
between the electric fields from the transmitter and the
receiver, had it been used as a transmitter. The 2D and
1D sensitivity functions are found through numerical inte-
gration of the 3D functions. Beside offering insight into
the resolution capability of the measuring configuration,
the sensitivity functions lend themselves to rapid calcula-
tions of approximate responses and derivatives in various
modeling and inversion strategies.

INTRODUCTION

Electromagnetic (EM) methods, frequency and time domain, are
used for a wide variety of purposes. Time-domain electromagnetic
(TEM) methods — which are the subject of this paper — and in
particular airborne systems, are increasingly used for mineral explo-
ration (Paine, 2003; Macnae, 2007), all aspects of hydrogeophysical

mapping (Munday et al., 2004; Auken et al., 2006, 2009), saltwater
intrusion (Fitterman and Deszcz-Pan, 1998; Jørgensen et al., 2012),
bathymetry (Vrbancich and Fullagar, 2007), mapping of pollution
(Hammack et al., 2002; Beamish and Mattson, 2003; Reid et al.,
2012), geotechnical applications (Christensen and Reid, 2011),
and a variety of other physical planning purposes (Thomsen et al.,
2004). Over the past decades, in particular, helicopterborne TEM
systems have been developed to provide early time measurements
for improved near-surface resolution (Sørensen and Auken, 2004)
and to increase the depth penetration (Nyboe et al., 2010; Nyboe
and Sørensen, 2012).
Any geophysical measurement is a filter through which the

distribution of a certain physical parameter in the subsurface is
seen, and the sensitivity function is a characteristic of the method
that reveals the nature of this filter; it could be described as the filter
weights. Insight into the structural pattern of the sensitivity func-
tions pertaining to a certain transmitter-receiver (Tx-Rx) configura-
tion provides the geophysicist with an image that allows an
immediate qualitative understanding of the characteristics of the
method. It provides a set of concepts, in which assets and shortcom-
ings of different measuring configurations can be discussed and
understood from a perspective of a basic insight into the physics
of diffusion of current into the ground. Knowledge of the sensitivity
function also permits qualified predictions about new configura-
tions and measuring strategies. A rapid and accurate method for
calculating the sensitivity functions of a wide variety of configura-
tions is, therefore, a very useful tool in the development of an under-
standing of the method and will be presented here.
A comprehensive study of the sensitivity functions of frequency-

domain systems is given in Tølbøll and Christensen (2007). How-
ever, with a few exceptions (e.g., Hördt, 1998), less has been written
about the sensitivity functions of transient electromagnetic systems,
probably because it is numerically more challenging to calculate the
sensitivity functions in the time domain than in the frequency
domain. This paper will focus on the sensitivity functions of TEM
systems.
From a historical perspective, approximations to sensitivity func-

tions have been used to provide measures of the lateral and vertical
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extent of the sensitivity, i.e., the footprint and depth of investigation
of the method, respectively. Spies (1989) uses the vertical 1D sen-
sitivity functions to estimate the depth of investigation of EM meth-
ods, and Liu and Becker (1990) and Reid and Vrbancich (2004) use
an infinite-frequency approximation to estimate the lateral extent of
the sensitivity function at the surface for a variety of frequency-
domain configurations. Beamish (2003) formulates measures in
the frequency domain that are an improvement over the infinite-
conductivity estimates. These footprint measures rely on skin depth
measures for vertical and horizontal magnetic dipole transmitters
and the dependence on survey height, subsurface conductivity,
and frequency is investigated.
A more comprehensive way of describing the general spatial res-

olution capabilities of EM systems than just considering integral
measures like the footprint, is through the study of derivatives,
or sensitivities (Chave, 1984; McGillivray and Oldenburg, 1990;
Hördt, 1998). These sensitivities, which are basically the partial
derivatives of EM data with respect to model parameters, describe
how different parts of the earth contribute to the model response,
and thus provide insight into the details of the spatial resolution
capability and response characteristics of a given system, and their
computation requires an accurate 3D sensitivity function to be
available.
In least-squares inversion of EM data, the elements of the Jaco-

bian are calculated as the integral of the sensitivity function over the
model elements. Because of the challenges relating to computation
time, often sensitivity functions of simpler models like a homo-
geneous half-space are used instead of the accurate sensitivity func-
tions of the more complicated models used in the inversion.
However, in several cases, such approximate derivatives will be
quite sufficient to ensure convergence.
Boerner and Holladay (1990) derive an analytic expression for

the 1D sensitivity function of a homogeneous half-space for fre-
quency-domain methods for the tangential electric (TE) mode in
which subsurface currents are parallel to the earth’s surface. They
show that the sensitivity function for a layered 1D model is well
approximated by the half-space sensitivity function if the half-space
conductivity is chosen equal to the apparent conductivity of the
measurement. This is due to the fact that for the TE mode, the elec-
tric field is parallel to the layer boundaries of a 1D earth model and
that the electric field, in contrast to the tangential magnetic (TM)
mode, is only weakly model dependent. The TE and TM modes
arise from a decomposition of the total EM field, e.g., through a
formulation of Schelkunoff potentials (Ward and Hohmann, 1987).
The scaling with the apparent conductivity makes the sensitivity
adaptive in the sense that it reflects the skin depth of the actual
measurement. These approximate sensitivities can be used for rapid
computation of the elements of the Jacobian matrix of the inversion
without degrading convergence performance.
Also in the case of TEM methods with Tx above ground, the

electric field is parallel with the layer boundaries of a 1D earth
and the sensitivity function is only weakly model dependent. The
same adaptive modification can, therefore, be used in relation to
TEM sensitivity functions for the homogeneous half-space.
Based on the observation that the sensitivity function can be re-

garded not only in a differential sense, but also as a weight function
mapping subsurface conductivity into an apparent conductivity, the
use of half-space sensitivity functions in approximate inversion ap-
proaches (imaging schemes) has been demonstrated in several pub-

lications (Gomez-Trevino, 1987a, 1987b, 2002; Pérez-Flores et al.,
2001).
Wang et al. (2009) present an approach to borehole induction

log inversion that reduces computation time considerably. The
most important developments contributing to the speed-up of the
inversion are the subdivision of the full-inversion problem into
overlapping volumes based on the limited extent of the sensitivity
function of the induction log (domain decomposition), and the
use of an approximate method of finding the derivatives. Approxi-
mate derivatives are calculated based on the sensitivity function
of a homogeneous half-space penetrated by a borehole calculated
once at program start and subsequently used in the iterative
inversion.
An approximation that appears quite often in the literature on

sensitivity functions is one based on Biot-Savart’s law. The elec-
tric field in the ground from the transmitter is calculated accu-
rately, but the way the subsurface currents influence the Rx is
found through a free-space approximation using Biot-Savart’s
law. This approach was used in Christensen (1995) in calculating
approximate 1D vertical sensitivities for TEM data in an adaptive
approach and extended for approximate 2D inversion in Christen-
sen (1997) and Wolfgram et al. (2003). The Biot-Savart approxi-
mation was also used in Reid et al. (2006) for improved footprint
estimates.
In this paper, accurate sensitivity functions are derived, taking the

full induction into account, and a numerical approach that is quite
general is outlined. The sensitivity distribution for TEM systems
varies significantly with the transmitter-receiver configuration, but
only a limited number of configurations can be shown in a publi-
cation of this type. I have chosen to examine the central loop
configuration, as a ground-based and an airborne system, and an
airborne offset loop system. The principle character of most other
configurations can be inferred from the properties of the two. Sen-
sitivities for vertical- and horizontal-field components and for both
impulse and step response will be investigated. Three-dimensional
sensitivity distributions are visualized through appropriate cross
sections together with images of the matching 2D and 1D sensitivity
functions. Finally, a simple footprint measure is estimated for
some of the sensitivities for which such a simplification can be
justified.

THEORY

System configurations

In the following, I consider circular loop transmitters (Tx) and
dipole receivers (Rx). Furthermore, I restrict the investigation to
Tx/Rx oriented along the x-, y-, or z-axis in a standard right-hand
Cartesian coordinate system with the z-axis pointing vertical down
and the x-axis located at the earth surface in the vertical Tx-Rx
plane, pointing in the direction of flight for airborne systems. In
principle, there are nine different configurations to consider, but
only a few are relevant for TEM systems. Almost all TEM systems
use a horizontal Tx coil (vertical axis) because the response to this
Tx type is much larger than to a horizontal axis coil. Considering
1D earth models, only z- or x-directed Rx dipoles will have a non-
zero response to a z-directed Tx coil. I, therefore, limit my inves-
tigation to the situations with a circular Tx coil with axis along the
z-axis and the Rx dipoles being z- and x-directed.
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Earth model

For simplicity, I only consider a homogeneous half-space earth
model. As will be seen, the structure of the sensitivity functions can
be quite complicated even for this simple model. If conductivity
contrasts are not too high, the structure of the half-space sensitivity
function can be considered as a good approximation to that of a
layered 1D model if the half-space conductivity is chosen equal
to the apparent conductivity at the delay time considered (Boerner
and Holladay, 1990).

Sensitivity functions

The sensitivity function is basically the derivative of a model re-
sponse with regard to the subsurface conductivity. In three dimen-
sions, it defines point sensitivities relating small changes in forward
responses to small conductivity changes in infinitesimal earth vol-
umes. For a given point in the earth, the 3D sensitivity basically
reflects the potential resolution of the conductivity at this point:
the higher the absolute value of the sensitivity, the better the poten-
tial resolution, and vice versa. The sensitivity function can attain
positive and negative values, meaning that the response will
increase or decrease, respectively, with increasing subsurface
conductivity.
In the frequency-domain, the 3D sensitivity distribution S3D is

formally given as the dot product of the induced electric field
strength from the transmitter ETx, and the induced-electric field
strength from the receiver, had it functioned as a transmitter, ERx

(McGillivray et al., 1994). Thus,

S3Dðr; rTx; rRx;ωÞ ¼ ETxðr; rTx;ωÞ · ERxðr; rRx;ωÞ
¼ Ex

TxðωÞ · Ex
RxðωÞ þ Ey

TxðωÞ · Ey
RxðωÞ

þ Ez
TxðωÞ · Ez

RxðωÞ; (1)

where r is the position vector for any point in the half-space; rTx and
rRx are position vectors for the Tx and Rx, respectively; x-, y-, z-
axis are the direction of Cartesian coordinate system and ω is the
angular frequency (see Figure 1). The sensitivity defined above is
the induction sensitivity and the sensitivity for the magnetic field is
obtained by integration, equivalent to division by iω in the fre-
quency domain (Tølbøll and Christensen, 2007).
Using the convolution theorem, the corresponding expression in

the time domain is given as a convolution between the time-domain
electric-field components (e.g., Hördt, 1998):

S3Dðr; rTx; rRx; tÞ ¼ Ex
TxðtÞ �Ex

RxðtÞ
þEy

TxðtÞ �Ey
RxðtÞ þEz

TxðtÞ �Ez
RxðtÞ. (2)

For the half-space model considered here and for a Tx above the
surface, the subsurface electric-field will have only horizontal com-
ponents, so

S3Dðr; rTx; rRx; tÞ ¼ Ex
TxðtÞ � Ex

RxðtÞ þ Ey
TxðtÞ � Ey

RxðtÞ.
(3)

By the same argument as above, the time-domain sensitivity defined
in equation 3 is the impulse response sensitivity, i.e., the sensitivity

for the time derivative of the magnetic field, most often measured in
an induction coil. The sensitivity of the step response, i.e., the mag-
netic field itself, is obtained by integrating the impulse sensitivity
over time.
The definitions in equations 1 and 3 illustrate that the sensitivity

distribution is basically a function of the electric-field distributions.
The fundamental behavior of the electric field in the frequency
domain inside a conductive half-space due to magnetic dipole
transmitters is described by various authors (Kovacs et al., 1995;
Beamish, 2003; Yin and Hodges, 2005; Tølbøll and Christensen,
2007) and shall not be described in further detail here. However,
an important scaling property is that, for a given Tx-Rx geometry,
the induced electrical field depends only on transmitter frequency
and half-space conductivity and remains unchanged for a constant
frequency-conductivity product ωσ. It is consequently possible to
analyze its general behavior as a function of the Tx-Rx configura-
tion and the ωσ parameter, and the same applies to the sensitivity
distribution. This scaling property is noted by Boerner and Holladay
(1990) and is used to express the sensitivity function for a layered
earth as approximately equal to the half-space sensitivity function
for a half-space conductivity equal to the apparent conductivity of
the measurement. In the time domain, this means that, for a given
Tx-Rx geometry, the sensitivity function scales in the ratio between
time and half-space conductivity t∕σ, and the same adaptive ap-
proach can be used. The layered half-space sensitivity function
is approximately the same as the half-space function for a conduc-
tivity equal to the apparent conductivity of the measurement.

Numerical implementation

The practical calculations of the 3D sensitivity distribution poses
a series of challenges in terms of accuracy and computational speed.
The formulas for the frequency-domain subsurface electric field
in a homogeneous half-space are given in Appendix A. The time-
domain sensitivity could be found by calculating the frequency-
domain electric fields for a series of frequencies and wavenumbers,
multiplying the Tx and Rx contributions as shown in equation 1,
and then performing a Fourier transformation from frequency to
time followed by a Hankel transform from wavenumber to space.

Figure 1. The sketch illustrates a central loop configuration and an
airborne offset loop configuration together with 3D, 2D, and 1D
model elements for vertical and horizontal sensitivity functions.

Sensitivity functions of TEM E169

D
ow

nl
oa

de
d 

07
/2

6/
14

 to
 7

8.
14

3.
83

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://library.seg.org/action/showImage?doi=10.1190/geo2013-0364.1&iName=master.img-000.jpg&w=239&h=163


This approach was investigated, implementing the Fourier trans-
form with cosine and sine filters using the fast Hankel transform
theory (Christensen, 1990). However, the aim is to calculate sensi-
tivity functions accurately for a wide interval of delay times, and it
turned out to be difficult to obtain sufficient accuracy at very early
times with the above approach. This can be attributed to the highly
oscillatory nature of the frequency-domain electric fields at high
frequencies.
Instead, I have used the fact that an analytic expression exists for

the electric field in the time/wavenumber domain (see Appendix A),
so only a Hankel transform from wavenumber to space domain is
necessary to calculate the field in time and space. This, of course,
drastically reduces computation time, and the numerically challeng-
ing transformation from frequency (or Laplace) to time domain is
avoided. The sensitivity function is then calculated in the time do-
main as a convolution between the Tx field and the Rx field. This,
however, poses another serious challenge. The character of the time-
domain field at a point in a homogeneous half-space is illustrated in
Figure 2. It is seen that for times smaller than the diffusion time
pertaining to the position and half-space conductivity, the response
is practically zero. Then the amplitude rises extremely abruptly over
a time interval of only fractions of a microsecond and reaches a
maximum, after which the amplitude falls off slowly and the func-
tion becomes very smooth. A discrete sampling of the time-domain
field must be able to capture this behavior, and it is therefore nec-
essary to sample the function very densely with a sampling interval
of the order of 1–10 ns. On the other hand, to be able to find the
sensitivity function at very late times, the field amplitude must be
sampled to very late times of the order of 10 s. An equidistant sam-
pling will therefore contain up to 108–1010 samples and a discrete
convolution that has to be carried out for every single sample in the
3D volume becomes prohibitively time consuming. Various meth-
ods of solving this basic challenge have been suggested in the lit-
erature (e.g., Hördt, 1998). In this paper, the problem is solved by
sampling the electric field logarithmically so that the density is ap-
propriate at early times whereas the sampling distance becomes

large at late times where the function is smooth. The convolution
is then implemented as a numerical integration using local splines
by resampling the Tx and Rx fields to have coincident samples (see
Appendix B).

2D and 1D sensitivity functions

Sensitivity distributions of lower dimensions are found by nu-
merically integrating the 3D sensitivity distribution along relevant
axes, and I shall consider 2D and 1D sensitivities. The 2D sensi-
tivity function relates changes in the response to conductivity
changes of a 2D model element, i.e., a cylinder with infinite extent
in the y-direction and infinitesimal cross section. The horizontal 1D
sensitivity reflects the sensitivity of the TEM system to a vertical,
infinite thin sheet oriented perpendicular to the x-axis, whereas the
vertical 1D sensitivity describes the sensitivity to a horizontal thin
sheet at the depth z. The 3D, 2D, and 1D model elements are illus-
trated in Figure 1.
The 3D sensitivity functions considered here are symmetric

around the plane y ¼ 0 and this is of course used, see equation 4.
To keep computation time at a minimum without compromising
accuracy, the sampling along the integration axes is done using a
hyperbolic sine scheme, meaning that the sensitivity functions are
sampled equidistantly and densely for small distances with the sam-
pling distance increasing away from the center of the system; see
equation 4. The sampling distance close to the axis is chosen suf-
ficiently small and the integration area sufficiently large to ensure a
reliable result:

S2Dðx; z; tÞ ¼
Z

∞

−∞
S3Dðx; y; z; tÞdy ¼ 2

Z
∞

0

S3Dðx; y; z; tÞdy;

S2Dðx; z; tÞ ¼ 2

Z
∞

0

S3Dðx; sinhðvÞ; z; tÞ coshðvÞdv. (4)

By integrating S2D over x, we obtain the vertical 1D sensitivity func-
tion as a function of depth, z. The x-axis is split into two at x ¼ x0,
where x0 is the midpoint between Tx and Rx, and the sinh sampling
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Figure 2. The electric field at r ¼ ð10; 0; 5Þ as a function of time from a vertical-magnetic-dipole source at the surface of a homogeneous half-
space. (a) Linear plot and (b) logarithmic plot.
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is implemented from x0 toward �∞. All numerical integrations
are performed by integrating over 11 points at a time using the
closed 11-point formula of Abramowitz and Stegun (1972), equa-
tion 25.4.20) and then adding the values together. The summation is
truncated when the last term is smaller than a predefined relative
truncation error:

S1Dzðz; tÞ ¼ 2

Z
∞

−∞
dx

Z
∞

0

S3Dðx;y;z; tÞdy;

S1Dzðz; tÞ ¼ 2

Z
∞

−∞
dx

Z
∞

0

S3Dðx;sinhðvÞ; z; tÞcoshðvÞdv;

S1Dzðz; tÞ ¼ 2

Z
x0

−∞
coshðuÞdu

Z
∞

0

S3DðsinhðuÞ;sinhðvÞ; z; tÞcoshðvÞdv

þ2

Z
∞

x0

coshðuÞdu
Z

∞

0

S3DðsinhðuÞ;sinhðvÞ; z; tÞcoshðvÞdv.

(5)

Beside the vertical 1D sensitivity function defined in equation 5, a
horizontal 1D sensitivity function is defined in equation 6:

S1Dxðx; tÞ ¼ 2

Z
∞

0

dz
Z

∞

0

S3Dðx; y; z; tÞdy;

S1Dxðx; tÞ ¼ 2

Z
∞

0

dz
Z

∞

0

S3Dðx; sinhðvÞ; z; tÞ coshðvÞdv;

S1Dxðx; tÞ ¼ 2

Z
∞

0

coshðuÞdu
Z

∞

0

S3Dðx; sinhðvÞ; sinhðuÞ; tÞ coshðvÞdv.

(6)

Computation times

The figures in this paper in the parallel and perpendicular pro-
jections are made from a matrix of 41 samples in depth and 141
samples in the lateral direction; the images in the plane projection
has 141 × 141 samples.
Computation time for the electrical fields from the Tx and Rx is

∼10 ms for every depth level involved in the computations, and in-
terpolation and integration takes up most of the computation time.
For the integration in the y-direction, 70 points are used along the
y-axis, for the integration on the x-direction 140 points are used, and
for the z-integration 50 points are used. The computational cost of
the numerical integration itself is insignificant compared with the
cost of interpolation, which is ∼0.5 ms per point on average. A sin-
gle image in the resolution used in this paper thus takes ∼10 s in the
plane projection, a parallel view takes ∼3 s, and a 2D or 1D sensi-
tivity function takes ∼200 s on a single thread on a 2 GHz
CPU.

THE SENSITIVITY FUNCTIONS

In the following, I consider sensitivity functions for two typical
TEM configurations: a ground-based and an airborne central loop
configuration and an airborne offset loop configuration used by
many fixed wing systems. See Figure 1 for a sketch of the two con-
figurations. The space allotted to a journal paper does not permit
more configurations to be considered, but the sensitivity functions
pertaining to other configurations can, with a bit of good will, be
inferred from these two examples.

A word about plotting conventions for the figures of sensitivity
functions: As a function of delay time, transient electromagnetic
fields cover a huge dynamic range, and this property is even more
pronounced for sensitivity functions being convolutions between
electric fields. In each frame of the following figures, the amplitude
is, therefore, normalized with the maximum of the absolute value at
the pertinent delay time. To avoid wobbly contours due to a limited
computational accuracy, the zero contours are implemented as con-
tours of the value �0.001.

Diffusion of current density and sensitivity functions

To illustrate some basic concepts, Figure 3 shows four plots: one
of the current density, one of the Biot-Savart-type step response
sensitivity function, and one of the true step response sensitivity
function — all plots for a ground-based, ideal coincident vertical-
magnetic-dipole configuration. The fourth plot is for a ground-based
central loop configuration with a Tx radius of 50 m. All four plots
show frames for the delay times of 20, 80, and 320 μs.
For any delay time t, the current density has the largest and the

true sensitivity function the smallest vertical extent, whereas the
Biot-Savart-type sensitivity function lies in between. This means
that if one uses the spatial extent of the current density to estimate
penetration depth — as has been done in the past — it will be
severely overestimated. Also, the Biot-Savart approximation to the
sensitivity function will overestimate the vertical extent of the true
sensitivity function (Reid et al., 2006), and if used in an imaging
procedure to find an approximate subsurface conductivity structure
from measured data, a scaling factor must be introduced to avoid
underestimating model depths (Christensen, 1995).
All three plots for the coincident vertical-magnetic-dipole con-

figuration preserve their shape for increasing delay times t, their
spatial extent being proportional to diffusion length, i.e., ∝

ffiffi
t

p
.

For the true sensitivity function, the sensitivity is small in an earth
volume within a cone with a vertical axis centered at the center of
the configuration. Furthermore, at all delay times, the maximum of
the sensitivity is at the surface, meaning that maximum sensitivity
does not coincide with the maximum of the current density. The
latter observation disqualifies another popular misconception,
namely that the maximum sensitivity diffuses into the ground with
increasing delay time. Rather one should think of the sensitivity at a
time t2, as a stretching of the sensitivity function at the time t1 with a
factor of

ffiffiffiffiffiffiffiffiffiffi
t2∕t1

p
. The shape is preserved and the maximum sensi-

tivity stays at the surface, but the contribution from depths greater
than a certain limit becomes relatively larger.
The true sensitivity function for a central loop configuration

with a Tx radius of 50 m illustrates that, for increasing Tx loop
radius, the width of the sensitivity function increases for early times,
whereas for later times, the sensitivity function becomes less depen-
dent on the Tx radius. The value of the sensitivity function is also
more evenly distributed than in the coincident dipole case. How-
ever, the depth extent is only weakly dependent on the Tx loop
radius.

The effect of transmitter height

In Figure 4, the 3D step response sensitivity function for a central
loop system is shown for several heights for a constant delay time of
10 μs and a half-space conductivity of 0.05 S∕m. The figure illus-
trates that the lateral extent of the sensitivity function increases with
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height, whereas the vertical extent is fairly much the same for all
heights.
Taking the 10% contour as a measure of the width of the sensi-

tivity function, the width as a function of height is plotted in
Figure 5. For the height interval shown here, the width increases
approximately proportional to the Tx elevation.

The central loop configuration

In Figures 6, 7, 8, and 9, the sensitivity distributions are illustrated
by a horizontal section through the 3D sensitivity at the surface (the
plane z ¼ 0), a vertical section of the 3D sensitivity through the line
connecting the Tx and Rx (the plane y ¼ 0), the same vertical section
through the 2D sensitivity, and a plot of the horizontal 1D sensitivity
function. Impulse and step response sensitivities are shown. The
sensitivity functions are plotted for only one delay time.
First, let us consider the simple configuration of a ground-based

central loop configuration with a transmitter radius of 20 m. Figure 6
illustrates the 3D, 2D, and horizontal 1D behavior of a ground-
based central loop configuration for the z-component for the step
and the impulse response.
Comparing the 3D and 2D sensitivity functions in Figure 6, it is

seen that the 2D sensitivity function is overall smoother and later-

ally slightly wider. The 1D lateral sensitivity function has its maxi-
mum at the center of the configuration, except for a small local
minimum at the center. The sensitivity functions for the impulse
response display an additional zero crossing. This is to be expected,
considering that the impulse response is the time derivative of the
step response. The effective width of the sensitivity function is com-
parable to that of the step response; the positive central area shrinks
a bit to make room for the negative side lobes.
Though an x-directed receiver coil at the center of a circular loop

will have a zero response over a 1D earth, the 3D sensitivity dis-
tribution has positive and negative values, see Figure 7. However,
the integral of the 3D sensitivity function over x and y for any depth
z will, of course, be zero. The sensitivity functions for the step re-
sponse of the x-component is considerably more complicated than
that of the z-component. It is symmetric about the plane x ¼ 0 and
has a positive and a negative volume of high amplitude surrounded
by volumes with negative and positive values of smaller amplitudes.
This character can be seen in both the 3D, 2D, and 1D sensitivity
functions (Figure 7). The 1D lateral sensitivity function shows that,
essentially, the x-sensitivity effectuates a lateral differentiation of
the conductivity structure, meaning that the x-response is more sen-
sitive to lateral changes in conductivity than the z-response. For a
central loop configuration, a nonzero x-component of the response
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Figure 3. (a) Vertical section through the current
density for a ground-based coincident vertical-
magnetic-dipole configuration. The contour lines
are for the (scaled) values of 0, 0.1, 0.25, 0.50, and
0.75. (b) Vertical section through the step re-
sponse true sensitivity function for a ground-
based coincident vertical-magnetic-dipole con-
figuration. The contour lines are for the (scaled)
values of 0, 0.1, 0.25, and 0.50. (c) Vertical sec-
tion through the step response true sensitivity
function for a ground-based coincident vertical-
magnetic-dipole configuration 0.1, 0.25, and
0.50. (d) Vertical section through the step re-
sponse true sensitivity function for a central loop
configuration with Tx radius of 50 m. The contour
lines are for the (scaled) values of 0, 0.1, 0.25, and
0.50.
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indicates that there are lateral gradients in the conductivity distri-
bution and that the earth is not 1D. In the case of data being inverted
with a 1D model, a nonzero x-component is only of qualitative use;
in 2D and 3D inversion, the x-component can be included together
with the z-component to improve resolution.
In the same way as previously seen for the z-component, the

impulse response sensitivity function for the x-component has addi-
tional side lobes of alternating sign, thereby increasing the effective
order of lateral differentiation while preserving the overall lateral
dimensions.
The 1D vertical sensitivity functions will be presented after the

next section.

An airborne offset loop configuration

The offset loop configuration is used by several airborne systems,
e.g., TEMPEST (Lane et al., 2000) and GEOTEM (Pedersen and
Thompson, 1991). I shall consider a generic configuration at the
delay time 200 μs with a circular Tx loop with a radius of 10 m
at an elevation of HTx ¼ 100 m and z- and x-directed Rx dipoles

at an elevation of HRx ¼ 80 m trailing 100 m behind the Tx loop.
The configuration is sketched in Figure 1.
In Figures 8 and 9, plots corresponding to Figures 4 and 5 are

shown for the offset configuration; i.e., Figure 8 shows step and
impulse response sensitivity functions for the z-component and Fig-
ure 9 the corresponding functions for the x-component. In the plot
frames of the two figures, the Tx loop is placed at x ¼ 50, whereas
the Rx dipoles are placed at x ¼ −50. Notice that the x-coordinate
interval is twice as wide as in Figures 6 and 7. This is necessary
because the configuration is offset and airborne, and the vertical
exaggeration is a factor of two.
Looking at the z-component, the first thing to be noticed is that

the sensitivity is negative within a vertical cylinder with the Tx-Rx
line as diameter. The subsurface electric fields from the Tx and Rx
are circular, centered on the Tx and Rx, respectively, and the angle
between the field vectors is numerically larger than π∕2, making the
dot product negative. In the 2D sensitivity function, the negative
zone persists at early times, but at the delay time of 200 μs consid-
ered here, it has disappeared. The 1D lateral sensitivity function
displays the typical M-shape with a pronounced central minimum.
This shape explains the typical, well-known M-shaped anomaly
measured over a discrete vertical conductor. The impulse sensitivity
function for the offset configuration has one more zero crossing in
the vertical direction and the 1D lateral sensitivity function has
small negative side lobes. As for the central loop configuration,
the overall extent of the impulse sensitivity function is approxi-
mately the same as for the step response.
The sensitivity functions for the x-component are more compli-

cated than any of the previous ones. The step response sensitivity
function has a central positive volume centered below the Rx. Em-
bedded in the positive sensitivity is a volume of a quite complex
shape with negative sensitivity in front of the Tx. The sensitivity
function is also negative behind the positive volume. This structure
persists in the 2D sensitivity function. The lateral 1D sensitivity
function is nonsymmetrical with a positive and a negative lobe.
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Radius = 20 m; t = 10 µs; σ = 0.05 S/m

Figure 4. Vertical section through the 3D sensitivity function for the
step response of the z-component of a central loop configuration as a
function of Tx height. The contour lines are for the (scaled) values of
0, 0.1, and 0.5. Radius of the circular transmitter loop is 20 m, delay
time is 10 μs, and half-space conductivity is 0.05 S∕m.
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Figure 5. The width of the 3D sensitivity function for the step re-
sponse of the z-component of a central loop configuration as a func-
tion of Tx height. Radius of the circular transmitter loop is 20 m,
delay time is 10 μs, and half-space conductivity is 0.05 S∕m.
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a) b)Figure 6. The 3D, 2D, and horizontal 1D sensitiv-
ity functions for the z-component of a ground-
based central loop configuration. Tx and Rx posi-
tions are in (0,0). (a) Step response and (b) im-
pulse response. The sensitivity functions are
scaled to have a maximum absolute value of
one and the contour lines are for the (scaled) val-
ues of 0, 0.2, 0.4, and 0.6. Radius of the circular
transmitter loop is 20 m, delay time is 200 μs, and
half-space conductivity is 0.05 S∕m. The scaling
constants are given in the plot frames as F0.
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a) b)Figure 7. The 3D, 2D, and horizontal 1D sensitiv-
ity functions for the x-component of a ground-
based central loop configuration. Tx and Rx posi-
tions are in (0,0). (a) Step response and (b) impulse
response. The sensitivity functions are scaled to
have a maximum absolute value of one and the
contour lines are for the (scaled) values of 0,
0.2, 0.4, and 0.6. The radius of the circular trans-
mitter loop is 20 m, delay time is 200 μs, and half-
space conductivity is 0.05 S∕m. The scaling con-
stants are given in the plot frames as F0.
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a) b) Figure 8. The 3D, 2D, and horizontal 1D sensitiv-
ity functions for the z-component of an airborne
offset loop configuration with a circular Tx loop
with a radius of 10 m at an elevation of 100 m
and Rx dipoles trailing 100 m behind and 20 m
below the Tx loop. The Tx and Rx positions are
indicated with a white cross and circle, respec-
tively. (a) Step response and (b) impulse response.
The sensitivity functions are scaled to have a maxi-
mum absolute value of one and the contour lines
are for the (scaled) values of 0, 0.2, 0.4, and 0.6.
The delay time is 200 μs and half-space conduc-
tivity is 0.05 S∕m. The scaling constants are given
in the plot frames as F0.
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a) b) Figure 9. The 3D, 2D, and horizontal 1D sensitiv-
ity functions for the x-component of an airborne
offset loop configuration with a circular Tx loop
with a radius of 10 m at an elevation of 100 m
and Rx dipoles trailing 100 m behind and 20 m
below the Tx loop. The Tx and Rx positions are
indicated with a white cross and circle, respec-
tively. (a) Step response and (b) impulse response.
The sensitivity functions are scaled to have a maxi-
mum absolute value of one and the contour lines
are for the (scaled) values of 0, 0.2, 0.4, and 0.6.
The delay time is 200 μs and half-space conduc-
tivity is 0.05 S∕m. The scaling constants are given
in the plot frames as F0.
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As seen before, the impulse sensitivity functions for the x-compo-
nent have one more zero crossing in the vertical direction. They are
the most complicated ones considered so far, and the negative side
lobes of the 1D lateral sensitivity function are more pronounced.
The complicated shape with positive and negative values of

the x-component sensitivity function explains why it is often quite
difficult to include x-component data together with z-component
data in 1D inversion of TEM data; for an increasing degree of
multidimensionality of the subsurface conductivity distribution,
the x-component leaves the domain where a 1D assumption is via-
ble much sooner than the z-component. The challenges and the use-
fulness of including the x-component in the 1D inversion of TEM
data are analyzed in Kirkegaard et al. (2012), whereas Smith and
Keating (1996) present a case for the usefulness of x-component
data in looking for discrete conductors due to its sensitivity to lateral
conductivity changes in the subsurface.

The effect of waveform

Above, the sensitivity functions for the ideal step and impulse
responses have been illustrated, i.e., the magnetic field response B
and the derivative of the magnetic field response dB∕dt from a
current that has been on forever and then turned off infinitely fast
at time zero. In real life, the rate of change of the Tx current is of
course finite and the measured responses are found as convolu-
tions between the ideal response and the time derivative of the
Tx current.
For the simple case of a linear turnoff ramp, the measured off-

time response in an induction coil dB∕dt can be found as

dBmeas

dt
¼ Bðt − toffÞ − BðtÞ

toff
; (7)

where t is measured from the start of the ramp and toff is the ramp
time. For t close to toff , t ¼ toff þ Δt, we have

dBmeas

dt
¼ Bðtoff þ Δt − toffÞ − Bðtoff þ ΔtÞ

toff

¼ BðΔtÞ − Bðtoff þ ΔtÞ
toff

;

dBmeas

dt
≈
BðΔtÞ
toff

(8)

because BðΔtÞ ≫ Bðtoff þ ΔtÞ. At very early times in the off-time,
the dB∕dt response — and thereby also the sensitivity function —
resembles that of a step response scaled with toff . As delay time
increases, the response will smoothly change from being B-like
to becoming more dB∕dt-like; at late times t ≫ toff , the response
— and thereby also the sensitivity function — is essentially that of
an ideal impulse response.
If a linear turn-on ramp of the current is included, the measured

response becomes

dBmeas

dt
¼ Bðt − toffÞ − BðtÞ

toff
−
Bðtþ twÞ − Bðtþ tw − tonÞ

ton
;

(9)

where tw is the width of the current waveform from start of turn-on
to start of turnoff and ton is the length of the turn-on ramp. If
ton ≪ tw, we have for off-time measurements

dBmeas

dt
≈
Bðt − toffÞ − BðtÞ

toff
−
dB
dt

ðtþ twÞ. (10)

At very early times in the off time, ðtþ twÞ ≫ ðtÞ and the last term
vanishes so the sensitivity to the length of the ramp is very small. At
late times, where ðtþ twÞ is of the same order of magnitude as t, the
measured response can be written,

dBmeas

dt
≈
dB
dt

ðtÞ − dB
dt

ðtþ twÞ. (11)

This is the well-known so-called run-on effect, and the sensitivity
function will therefore be the difference between the two impulse
response sensitivity functions of which the first term is the domi-
nating one.

Issues involved in defining a footprint

For simple all-positive sensitivity functions like the ones consid-
ered in Figure 4, it is straightforward to define a footprint, but the
sometimes highly complex nature of the sensitivity distributions
poses some challenges with regard to a reasonable definition of
the footprint. As an example, consider the definition of the footprint
as the interval where the value of the sensitivity function is above a
certain limit, e.g., 10%. When the sensitivity function has zero
crossings and negative subvolumes this definition become ambigu-
ous. Defining the footprint in terms of the lateral area within which
the integral of the sensitivity is above a certain limit suffers the same
difficulties. With positive and negative values, the integral is not
necessarily a monotoneous function of integration area and also this
definition becomes ambiguous. Under all circumstances, the full
sensitivity function offers much more information than can be ex-
pressed through a footprint measure.

The 1D vertical sensitivity functions

In Figure 10, the 1D vertical sensitivity function of a ground-
based central loop configuration is shown for the three delay times
of 10, 100, and 1000 μs. The figure illustrates the scaling of the 1D
sensitivity function. The sensitivity function for the three delay
times have similar shapes in a log-log plot, but the surface ampli-
tude decreases and the depth extent increases with increasing de-
lay time.
In Figure 11, the 1D vertical sensitivity functions are shown for

the configurations considered above to demonstrate similarities and
differences. All sensitivity functions have been normalized to have a
maximum absolute value of unity. It is evident in Figures 6–9 that
the vertical extent of the sensitivity functions is rather similar for all
configurations, and this is confirmed in Figure 11. Considering the
very different 3D sensitivity distributions, it is surprising that the 1D
vertical sensitivity functions should be that similar for the step re-
sponse of the ground-based central loop and the airborne offset loop
configurations.
Comparing the z-component step and impulse sensitivity func-

tions, it is seen that the impulse sensitivity functions have a neg-
ative lobe at depth, small for the ground-based central loop
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configuration, but much more pronounced for the airborne offset
configuration. This explains why impulse response apparent resis-
tivity curves display a small minimum before ascending to higher
values, and vice versa. It is also seen that the step response 1D
vertical sensitivity functions for the x-component for the offset
configuration are quite similar to the ones for the z-component,
a surprising result considering the evident differences in the 3D
sensitivity distributions.
The fact that the 1D vertical sensitivity functions for the step re-

sponses do not seem to depend much on whether the configuration
is ground based or airborne or whether one considers the z- or the
x-component means that — theoretically, in principle — the sub-
surface conductivity is sensed and weighted in the same way in 1D
inversion. However, the practically obtainable resolution and pen-
etration depth for transient systems depends on many different fac-
tors. A comprehensive discussion is complicated and not the focus
of this paper. However, I will mention a few of the main points re-
lated to the sensitivity functions described here.
It is well known that signal-to-noise properties and uncertainties

of the configuration parameters such as Tx height or Tx-Rx dis-
tance differ widely for different systems. Both will directly or indi-
rectly influence the obtainable vertical resolution, which can
therefore be very different for different actual existing systems.
An airborne system will have lower signal strength than a
ground-based system, other system parameters kept constant,
and it will be lower the higher the survey elevation, meaning that
the signal-to-noise ratio (S/N) will decrease with height. Also, the
signal strength of the x-component is most often smaller than that
of the z-component, and the ambient noise is typically 5–10 times
higher (McCracken et al., 1986; Spies, 1988; Nyboe and Sørensen,
2012), again meaning that the S/N will be inferior. Likewise, the
uncertainty of the configuration parameters such as Tx height or
Tx-Rx distance for, e.g., a fixed-wing airborne system with a trail-
ing bird is considerably higher than the corresponding parameters
of a rigid helicopter borne system. All these issues must be taken

into account when assessing the resolution properties of actual
TEM instrumentation.

Half-space sensitivity functions for calculation of
approximate derivatives

The sensitivity function, being the derivative of the response with
regard to changes in conductivity within a model element, can be
used in an approximate linear mapping, a Born approximation, of
anomalous conductivity into changes in measured response, e.g.,
for the purpose of answering questions of detectability. With the com-
putational approach of this paper, the sensitivity functions are readily
available. However, considering the limited accuracy of the Born
approximation for nonlinear problems, such as the TEMmethod, and
the fact that accurate 2D and 3D responses can be obtained quite
rapidly with modern computer programs, the most important role
of the sensitivity function is in the immediate visual assessment of
the distribution of sensitivity for a given method and thereby an initial
qualitative assessment of the resolution capabilities.
A very important role for the sensitivity functions — of more

practical value — is to provide approximate derivatives in a quan-
titative inversion. Approximate derivatives will quite often serve
just as well as more accurate ones in the inversion with no loss
of convergence (Boerner and Holladay, 1990), and calculating
the derivatives from the half-space sensitivity functions is consid-
erably faster, thus speeding up the inversion process. An example
shall be given here of using the 1D sensitivity function to compute
the derivatives in a 1D inversion of TEM data.
Figure 12a shows the derivatives of the step response with regard

to layer conductivity for five different multilayer models: the refer-
ence model is a homogeneous half-space with a conductivity of
0.02 S∕m; and in the other four models, the conductivity of the
layer at 36–44-m depth is perturbed to become 0.03, 0.04, 0.01,
and 0.0001 S∕m. The configuration is an airborne central loop con-
figuration at a height of 30 m with a Tx radius of 10 m and the delay
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Figure 10. The vertical 1D sensitivity functions of a ground-based central loop configuration for the three delay times of 10, 100, and 1000 μs
for (a) the step response and (b) the impulse response. The cusps of the latter indicate sign changes. The radius of the circular transmitter loop is
20 m, and half-space conductivity is 0.05 S∕m.
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Figure 11. Normalized vertical 1D sensitivity functions for the three delay times of 10, 100, and 1000 μs. Left column is step response and right
column impulse response sensitivity functions. (a and d) The z-component of the ground-based central loop configuration with a Tx radius of
20 m, (b and e) z-component of the airborne offset loop configuration. The offset loop configuration has a circular Tx loop with a radius of 10 m at
an elevation of 100 m and Rx dipoles trailing 100 m behind and 20 m below the Tx loop. The red stars in the step response plot are for the central
loop configuration for a delay time of 1000 μs for comparison, and (c and f) x-component of the airborne offset loop configuration.

E178 Christensen

D
ow

nl
oa

de
d 

07
/2

6/
14

 to
 7

8.
14

3.
83

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



time is 160 μs. The effect of the anomalous conductivity in the
perturbed layer is clearly seen. Scaling the derivative in the per-
turbed layer, we arrive at Figure 12b. It is seen that the sensitivity
functions are quite similar, but also slightly different: the ones per-
taining to an increase of conductivity in the perturbed layer are
higher at early times and vice versa. This is due to the fact that
the electric field in the subsurface is influenced by the perturbed
conductivity because, at a delay time of 160 μs, the sensitivity func-
tion encompasses the perturbed layer. Plotted in the same frame is
the 1D sensitivity function calculated with the program presented in
this paper and averaged over the model layers. It is seen that it is
very similar to the derivative function for the half-space model with
only very minor deviations close to the surface, most likely due to

numerical inaccuracies in the integration of the 3D sensitivity func-
tion. It is also clear that it will serve as a good approximation to the
(scaled) derivatives for all five models.
The fact that the derivatives, to a first approximation, only vary

moderately with varying subsurface conductivity, reflects that the
electric field varies only moderately with the conductivity structure
in a 1D earth, and that the current density is proportional to the
electric field strength times the conductivity j ¼ σE (Boerner
and Holladay, 1990).
In Christensen (2002), the half-space sensitivity function was

used as a weighting function in the mapping from a 1D conductivity
structure to apparent conductivity based on an adaptive principle,
i.e., to use a half-space conductivity for the weighting function
equal to the apparent conductivity of the response. At any delay
time, the step response of any layered structure is — per definition
— the half-space response of the configuration used for the appar-
ent conductivity at that delay time. The approximate forward map-
ping was then used in a standard inversion formulation to produce a
fast inversion procedure which, despite being approximate, is sur-
prisingly accurate, the deviation from full-accuracy modeling being
only approximately 5% on average (Christensen et al., 2009).

DISCUSSION

The half-space sensitivity functions of this paper are strictly valid
only for this model, but they may serve as reasonable guidelines for
more complicated earth models, and with some care, the results can
be generalized to other system configurations.
The 3D sensitivity distribution of a given configuration reveals its

fundamental characteristics, i.e., the way changes in subsurface
conductivity structure will be manifest in the measured data. How-
ever, as demonstrated by Gomez-Trevino (1987a, 1987b), the sen-
sitivity functions also serve as weighting functions directly between
the conductivity distribution itself and the measured data, most
represented through the apparent conductivity. With this in mind,
the sensitivity functions provide a rich and detailed qualitative
insight into the fundamental assets and limitations of any TEM
configuration, an understanding that is necessary for system design
and a critical appreciation of modeling and inversion results.

CONCLUSIONS

The most important characteristics of the TEM sensitivity func-
tions can be summarized as follows:

• Impulse response sensitivity functions have one more sign
change than the step response functions, but otherwise they
have approximately the same lateral and vertical extent.

• The sensitivity function for the x-component is in general
considerably more complicated than that of the z-compo-
nent, and the sensitivity function of the offset loop configu-
ration is more complicated than of a more compact
configuration such as the central loop configuration.

• The lateral extent of the sensitivity distribution increases
with Tx height for a constant ratio between delay time
and conductivity t∕σ, and for a constant half-space conduc-
tivity and height, it increases with time, reflecting the diffu-
sion of the EM fields.

• The lateral 1D sensitivity functions for x-component data es-
sentially performs a lateral differentiation of the conductivity
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Figure 12. Step response derivatives for five 1D models: a homo-
geneous half-space with a conductivity of 0.02 S∕m and four
models with a perturbed conductivity of 0.03, 0.04, 0.01, and
0.0001 S∕m in the depth range 36–44 m. (a) No scaling with per-
turbed conductivity. The configuration is an airborne central loop
configuration at a height of 30 m with a Tx radius of 10 m and
the delay time is 160 μs. (b) Scaled with perturbed conductivity
together with the derivatives calculated using the 1D sensitivity
function (open circles).
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structure along the measured profile. For the detection of
lateral conductivity changes, the x-component is, therefore,
superior to the z-component, but for the same reason, one
should only include x-component data in a 1D inversion
if the geologic setting is quite close to a true 1D situation.

Surprisingly, considering the differences between the 3D sensi-
tivity functions of different Tx-Rx configurations, the step response
1D vertical sensitivity functions are quite similar.
Simple footprint measures can be defined based on 3D, 2D, and

1D sensitivity functions by outlining the width of the part of the
sensitivity function that exceeds a relative absolute value of, e.g.,
10% (or another arbitrary value). A footprint measure was thus
defined from the 3D sensitivity function of a central loop configu-
ration as a function of height. However, for more complicated sen-
sitivity distributions with positive and negative sensitivities of the
same order of magnitude, such as for the x-component of the central
loop system and z- and x-components of offset configurations, a
simple footprint measure has little informative value.
The 1D, 2D, and 3D sensitivity functions for the homogeneous

half-space can be calculated quite rapidly and lend themselves
easily to numerical integration over the volumes of a discretized
model to provide approximate derivatives to be used in inversion
procedures with 2D or 3D models with limited conductivity
contrasts.

APPENDIX A

THE ELECTRIC FIELD WITHIN A
HOMOGENEOUS HALF-SPACE INDUCED
BY A VERTICAL-MAGNETIC-DIPOLE
SOURCE AND A CIRCULAR LOOP

In the quasistatic approximation, the electric field within a homo-
geneous and isotropic half-space due to a magnetic-dipole source
can be calculated using standard methods (Ward and Hohmann,
1987). Presented below are equations for a dipole source of moment
M located at a height h above the surface of a half-space of con-
ductivity σ.
In the frequency domain, for a vertical-magnetic-dipole source

oriented in the positive z-direction, the total-electric field within
the half-space Eθðr; z;ωÞ has radial symmetry with respect to
the z-axis. In cylindrical coordinates the azimuthal component of
the electric field is given by

Eθðr; z;ωÞ ¼ −
iωμM
2π

Z
∞

0

λ2

λþ u
e−λhe−uzJ1ðλrÞdλ; (A-1)

where ω is the angular frequency, μ0 is the free-space magnetic per-
meability, λ is the free-space wavenumber, u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ iωμ0σ

p
is the

wavenumber in the half-space, and J1ðλrÞ is the first-order Bessel
function.
In the case of a horizontal circular transmitter loop of radius a,

the electric field is given by the dipole expression multiplied with
the factor J1ðλaÞ∕ð½1∕2�λaÞ:

Eθðr;z;ωÞ¼−
iωμM
2π

Z
∞

0

λ2

λþu
e−λhe−uz

J1ðλaÞ
ð1∕2Þλa J1ðλrÞdλ.

(A-2)

Projection onto the x- and y-axes yields the Cartesian compo-
nents:

Exðr; z;ωÞ ¼ −
y
r
Eθðr; z;ωÞ and

Eyðr; z;ωÞ ¼
x
r
Eθðr; z;ωÞ.

(A-3)

For z ¼ 0; h ¼ 0, an analytical solution exists for the integral in
equation A-1 (Ward and Hohmann, 1987). However, in the general
case, the Hankel transforms in equations A-1 and A-2 can only be
evaluated numerically. The calculations are performed using the op-
timized fast Hankel transform filter coefficients of Christen-
sen (1990).
The time-domain expression corresponding to equation A-1 is

given by an inverse Fourier transform:

eθðr; z; tÞ ¼ −
μM
2π

d
dt

Z
∞

0

�
1

2π

Z
∞

−∞

e−uz

λþ u
eiωtdω

�

× λ2e−λhJ1ðλrÞdλ. (A-4)

Let us consider the Fourier integral in the brackets. By the sub-
stitution iω → s, the Fourier transform is expressed as an inverse
Laplace transform:

F ¼ 1

2π

Z
∞

−∞

e−uz

λþ u
eiωtdω

¼ 1

2πi

Z
i∞

−i∞

exp
�
−z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ μσs

p �

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ μσs

p estds. (A-5)

With the change of variable

λ2 þ μσs ¼ μσs 0; ds ¼ ds 0; s ¼ s 0 − λ2∕μσ; (A-6)

we have

F ¼ 1

2πi

Z λ2

μσþi∞

λ2

μσ−i∞

exp
�
−z ffiffiffiffiffiffi

μσ
p ffiffiffiffi

s 0
p �

λþ ffiffiffiffiffiffi
μσ

p ffiffiffiffi
s 0

p es
0te−

λ2

μσtds 0

¼ 1ffiffiffiffiffiffi
μσ

p e−
λ2

μσt ·
1

2πi

Z λ2

μσþi∞

λ2

μσ−i∞

exp
�
−z ffiffiffiffiffiffi

μσ
p ffiffiffiffi

s 0
p �

λ∕ ffiffiffiffiffiffi
μσ

p þ
ffiffiffiffi
s 0

p es
0tds 0. (A-7)

Abramovitz and Stegun (1972, formula 29.3.88) give the inverse
Laplace transform:

L−1
�

e−k
ffiffi
s

p

aþ ffiffiffi
s

p
�

¼ 1ffiffiffiffiffi
πt

p exp

�
−
k2

4t

�

− aeakea
2terfc

�
a

ffiffi
t

p þ k

2
ffiffi
t

p
�
; (A-8)

whereby
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F ¼ 1ffiffiffiffiffiffi
μσ

p e−
λ2

μσt
�

1ffiffiffiffiffi
πt

p e−
z2μσ
4t

−
λffiffiffiffiffiffi
μσ

p e
λffiffiffi
μσ

p ·z
ffiffiffiffi
μσ

p
e

λ2

μσterfc

�
λ

ffiffiffiffiffiffiffiffiffiffi
t∕μσ

p
þ z

2

ffiffiffiffiffiffiffiffiffiffi
μσ∕t

p ��

¼ 1

μστ
ffiffiffi
π

p e−ðλτÞ2e
−

�
z
2τ

�
2

×
�
1 − λτ

ffiffiffi
π

p
eðλτþz∕2τÞ2erfc

�
λτ þ z

2τ

��
; (A-9)

with τ ¼ ffiffiffiffiffiffiffiffiffiffi
t∕μσ

p
. The function expðx2Þ · erfcðxÞ can be calculated

in a numerically stable fashion, e.g., through the series expansion
from Abramovitz and Stegun (1972, formula 7.1.26).
Neglecting the differentiation d∕dt, the e-field from the step

(step-on) response is given as

eθðr; z; tÞ ¼ −
M
2π

1

στ
ffiffiffi
π

p
Z

∞

0

e−ðλτÞ2e
−

�
z
2τ

�
2

×
�
1 − λτ

ffiffiffi
π

p
eðλτþz∕2τÞ2erfc

�
λτ þ z

2τ

��

· λ2e−λhJ1ðλrÞdλ. (A-10)

The step response (step-off) is given by e−ðtÞ ¼ eð∞Þ − eðtÞ and
because eð∞Þ ¼ 0, we have

eθðr; z; tÞ ¼
M
2π

1

στ
ffiffiffi
π

p
Z

∞

0

e−ðλτÞ2e
−

�
z
2τ

�
2

×
�
1 − λτ

ffiffiffi
π

p
eðλτþz∕2τÞ2erfc

�
λτ þ z

2τ

��

· λ2e−λhJ1ðλrÞdλ. (A-11)

APPENDIX B

CONVOLUTION AS NUMERICAL INTEGRATION

Instead of calculating the convolution between the time-domain
components of the electric field, equation 3, as a discrete convolu-
tion of equidistantly sampled values, the convolution can be calcu-
lated as a numerical integration of a function given by its discrete
values:

hðtÞ ¼
Z

t

0

fðt 0Þgðt 0 − tÞdt 0. (B-1)

In the initial calculations, the functions f and g are sampled log-
arithmically, but in the convolution integral B-1, the function g is
inverted and the two functions are no longer sampled at the same
points, so they have to be resampled. In the first half of the interval
½0; t�, f is sampled densely, whereas g is sampled more sparsely, and
vice versa in the second half of the interval. The f needs to be re-
sampled at the sample points of g in the last half of the interval, and
g needs to be resampled at the sample points of f in the first half of
the interval. This is illustrated in Figure B-1.

In the practical implementation, it is advantageous to choose the
sampling density as defined by a certain number of samples per
octave (and not per decade) because that ensures that the midpoint
of the time interval ½0; t� is a sampling point for f and g.
For each delay time t, the principle steps of the computations are

as follows:

1) Choose the earliest time te, to be sampled and the sampling den-
sity as several samples per octave Noct.

2) With this choice of logarithmic sampling, compute the func-
tions f and g using the fast Hankel transform filters of Chris-
tensen (1990) using equation A-11.

3) Compute the product fðt 0Þgðt 0 − tÞ, resampling the functions as
suggested above.

4) Assuming the product to be represented by third degree local
splines between the sample points, perform an analytic integra-
tion of the splines; the total integral can then be expressed
through the spline coefficients.

The calculation should not start with the very earliest time t ¼ te
because the functions will be insufficiently sampled. Starting with
the delay time ti, i ¼ 2 · Noct will ensure that there are enough sam-
ples at the earliest delay time to give an acceptable accuracy.
In the calculations of this paper, the sampling density was chosen

as 2/octave, corresponding to ∼6.5 samples per decade in time, cor-
responding to ∼13 samples per decade in space, and the earliest
time was chosen as te ¼ 10 ns.
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