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We develop a technique allowing 3D gridding of large sets of 1D resistivity models obtained after inversion of
extensive airborne EM surveys. The method is based on the assumption of a layered-earth model. 2D kriging is
used for interpolation of geophysical model parameters and their corresponding uncertainties. The 3D grid is
created from the interpolated data, its structure accurately follows the geophysical model, providing a
lightweight file for a good rendering. Propagation of errors is tracked through the quantification of uncertainties
from both inversion and interpolation procedures. The 3D grid is exported to a portable standard, which allows
flexible visualization and volumetric computations, and improves interpretation. The method is validated and
illustrated by a case-study on Santa Cruz Island, in the Galapagos Archipelago.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Airborne Electromagnetic (AEM) surveying can cover extensive
areas in a short space of time, collecting thousands of soundings along
hundreds of kilometers of flight lines. Numerous field surveys, based
on frequency (FEM) and time-domain (TEM) electromagnetics have
been successfully conducted in various complex environments and
reported in literature (e.g. Bosch et al., 2009; Mogi et al., 2009; Steuer
et al., 2009; Supper et al., 2009).

Recent advances to provide 3D imaging of the subsurface (Cox et al.,
2010) are notwidespread andmay not significantly improve the quality
of resistivity mapping (Viezzoli et al., 2010). As a consequence, most
AEM datasets are inverted with a 1Dmodel and are typically viewed as
cross sections or 2D interpolated maps (e.g. Mullen and Kellett, 2007;
(d') Ozouville et al., 2008a; Viezzoli et al., 2008). Some attempts are
made to visualize the results in 3D (Bosch et al., 2009; Palamara et al.,
2010), but without quantification of related uncertainties.

There is a need for an efficient and reliable methodology to
visualize in 3D the structures identified by AEM surveys. To this end, it
is important to understand under which assumptions, a 1D model
description can reasonably resolve 2D and 3D structures.

An early paper on the subject (Newman et al., 1986) calculate the
TEM response caused by 3D electromagnetic scattering and shows
that the thickness of conductive overburdens and the depth to
sedimentary layers beneath volcanic structures can be successfully
resolved with 1D inversion. However, 3D conductors are often
replaced by a conducting layer at similar depth and 1D inversion of
3D structures invariably results in non-unique models. Auken et al.
(2008) studied the problem by calculating the EM forward response
over theoretical 2D/3D buried valley structures and inverted with a
1D laterally constrained least-squares inversion code (Auken and
Christiansen, 2004). It is found that resistivities are well resolved
when the slope of the dipping structures is below 30% and that
resistivity contrasts are not much higher than 1:10. Advances in
inversion techniques improve images of the subsurface and also offer,
crucially, estimates on the model fit and resolution of model
parameters. Spatially constrained inversion (Viezzoli et al., 2008)
implements spatial constraints between models allowing the user to
bias the outcome of the inversion to reflect the geological variability of
the area. The effect of the constraints is that the model description is
3D with local 1D inversion kernels. It is clear that while 1D inversion
does not produce flawless reconstructions of the subsurface, results
over 3D structures are acceptable when the structures aremuch larger
than the footprint of the geophysical system (see Reid et al., 2006).

The problem addressed in this paper is not the 3D visualization of
the inversion results, but of accurately representing a scattered
dataset of 1D models as a 3D grid. In turn, a 3D grid allows volumetric
computations and is convenient to use for 3D visualization. In order to
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produce worthwhile and accurate images, two requirements shall be
addressed by the gridding method:

1. At each 1Dmodel location, the 3D grid should honor themodel—i.e.
resistivity and layer interfaces shall be preserved.

2. Away from the 1D models (between flight lines) the 3D grid of
resistivity should be reliable enough to allow interpretation—i.e.,
uncertainties have to be quantified and should remain below some
quality threshold.

After a presentation of the methodology to translate datasets of 1D
models into a 3D grid of resistivity, we describe how to quantify the
propagation of uncertainty from both the inversion and interpolation
procedure. The method is validated on a case study in volcanic
settings, the Galapagos Islands.

2. Methodology

The most straightforward technique to represent the resistivity in
3D from a collection of 1D vertical inversion models is to use 3D
interpolation. Currently known 3D interpolation algorithms require
discrete data in all directions, discarding the layered approach used in
the inversion, and leading to a smoothing effect between previously
defined layer boundaries. The other alternative, presented in this
paper, is to interpolate the geophysical model parameters of the 1D
models (layers resistivities and e.g. layer thicknesses) in the 2D
horizontal space.

We start from themodel vectorm=(m1,…,mN,)T, a set ofN vertical
resistivity models obtained after the inversion of N soundings over the
region of interest. Each vertical inversion model mi=(pi,1,…,pi,2L)T is
described by a vector of 2L scalars pi,k describing the resistivity and
geometry (thickness, or depth, or elevation) of the L layers. Inversion

models have the same number of layers throughout the study area. In
some cases, the initial distribution of the geometry parameters is
sufficiently close to normal so that transformation is not necessary
before interpolation. Transformationof variables (e.g. by the logarithmic
function) may be required before interpolation of some parameters, in
particular resistivities. Note m i’=(p’i,1,…,p’i,2L)T, the vector of trans-
formed parameters of inversion model i and m’=(m1’,…,mN’)T the
whole set of transformed inversion models.

Layer thicknesses are not required in the case of “smooth” inversions
with numerous layers whose thicknesses are fixed. To obtain a finite
thickness of the 3D model, the thickness of the last layer (usually
assumed to be infinite) is arbitrarily fixed to two or three times the
thickness of the overlying layer.

The construction of the 3D grid of resistivity can be described by the
succession of two operations. First (Fig. 1A) the 2 L transformed model
parameters p’1,…,p’2L in m’ are interpolated in the 2D horizontal space
to matrices P̂ ′

1;…; P̂ ′
2L, whose size is equal to the number of cells

discretizing the 2D domain. To obtain coherent 3D grids, the discretiza-
tion must be the same for all parameters. These matrices are gathered
into the 2 L-vector M̂ ′ = P̂ ′

1;…; P̂ ′
2LÞ

!
containing all interpolated pa-

rameters (resistivity and geometry)of the layered resistivitymodel over
the study area. In a second phase (Fig. 1B), the 3D log-resistivityfield Ĝ ′

is deduced from M̂ ′. It is represented by a 3D grid composed by
hexahedral cells. The horizontal resolution of the grid is identical to the
resolutionof the 2Dmatrices. Vertically, there is one cell per geophysical
layer so that the resolution of the grid follows the resolution of the
resistivity model in that direction. The vertical coordinates, z, of the cell
vertices are deduced from the digital elevation model (DEM) and the
interpolated geometry parameter.

When dealing with 1D models where layer thicknesses vary, the
choice of the geometry parameter to be interpolated (layer thickness,
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Fig. 1. 3D gridding of resistivity (top to bottom). (A) From the set of 1D vertical inversion models, geophysical model parameters are interpolated in the 2D horizontal space. (B) The
3D grid is constructed from 3D vertex positions and filled with resistivity values from corresponding resistivity maps.
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depth or elevation) has to be made with care. If the geometry of geo-
logical formation is expected to follow the topography, layer thickness
or interface depth is preferred, while interpolation of interface elevation
should be chosen in other cases (Chilès and Delfiner, 2011).

The model parameters are interpolated by kriging. Among linear
predictors, kriging is optimal in the sense that it minimizes the variance
of the prediction error. Moreover, it provides a “prediction” or “kriging”
varianceσKRI

2 which quantifies themagnitude of the interpolation error.
Kriging assumes that the spatial covariance or variogram of the param-
eters is known. An experimental variogramhas to be computed for each
parameter and variogram models have to be fitted.

Kriging requires no special assumption relative to the distribution of
the studied parameter. Nevertheless, when the spatial distribution of
the parameter is Gaussian, kriging provides the best linear unbiased
estimator. Therefore it is recommended to apply kriging to variables
whose histogram is not too far from a normal distribution (Chilès and
Delfiner, 2011). Resistivity often has a lognormal distribution and is
therefore transformed into its logarithm. In contrast, the parameter
describing the geometry is often not too far from normality.

Interpolation is performed by kriging with the Gstat package
(Pebesma and Wesseling, 1998). The search radius shall be chosen to
be larger than the spacing between flight lines in order to obtain con-
tinuous 3D model. However, extending it to an unreasonable distance
would slow the kriging algorithmwithout significant improvement. The
resolution of the 2D grids must be adjusted depending on the variability
of model parameters, the expected precision, and the acceptable
computation time. Values of resistivity are predicted as “block” values,
which allows the prediction of averaged values in the cell (Pebesma,
2001). Since the 3D cells of the grid are defined by their vertices, the
parameters of the 3D grid (layer thickness, depth, or elevation) are also
interpolated at cell vertices.

3. Uncertainties and validation

3.1. Management of uncertainties

Two sources of error affect the quality of the 3D grid of resistivity:
the uncertainty on model parameters estimated by geophysical
inversion, and the uncertainty due to the interpolation.

The inversion uncertainty, if provided by the inversion code, can be
incorporated into the grid together with resistivity. Geophysical
inversion based on a least-squares criterion provides an estimation
of the uncertainty on estimated parameters from the linearized
approximation to the covariance of the estimation error (Auken and
Christiansen, 2004). Themagnitude of the inversion uncertainty on pi,k
the k-th model parameter at inversion model i is quantified by the
standard deviationsσINV | i,k. The 1Dmodel at sounding i is extended to
mi=(pi,1, … , pi,2L, σINV | i,1, … , σINV | i,2L)T.

The inversion uncertainty can be due to poor signal quality during
the sounding procedure or a lack of compatibility between the proposed
geophysical model and the measured data during the inversion
procedure (Auken and Christiansen, 2004). In spatially constrained
inversion, an additional source of uncertainty may occur when a
sounding is closely surroundedbyothers,with significant contrast in the
signal. These sources of uncertainty are often likely to be spatially
correlated and as a consequence, the standard deviations should be
propagated by interpolation. Similarly to the inversion model param-
eters pk, the inversion standard deviationsσ INV | k can be interpolated by
kriging, leading to matrices ŜINV j1;…;ŜINV j2L in the 2D horizontal space.

The magnitude of the uncertainty due to the interpolation of
model parameters pk is characterized by the kriging standard
deviations matrices ŜKRI j1;…;ŜKRI j2L.These 2 L matrices are obtained as
by-products of the kriging of the parameters pk.

As explained previously, the inversion variance σ 2
INV|k (x, y)

depends on the quality of the soundings and the success of the
inversion, while the kriging variance σ 2

KRI|k (x, y)depends on the

spatial variability of the parameter and the distance to data points. As a
result, the two variances are considered as independent and can be
summed to form the total uncertainty variance on model parameter pk,
defined as σ̂2

TOT jk x; yð Þ = σ̂2
INV jk x; yð Þ + σ̂2

KRI jk x; yð Þ: If uncertainties
from inversion are handled, the vector of 2D matrices of interpolated
model parameters are therefore extended to M̂ ′ = P̂ ′

1;…; P̂ ′
2L;

!

Ŝ ′
TOT j1;…; Ŝ ′

TOT j2LÞ with total standard deviation matrices defined by
Eq. (1). This leads to the construction of a 3D grid containing not only
resistivity values but also related uncertainty.

Ŝ 0
TOT jk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŝ 02

INV jk + Ŝ 02KRI jk
q

ð1Þ

To facilitate interpretation, log-transformed parameters such as
resistivities are back-transformed by exponentiation (in the Gaussian
case, they are therefore median estimators). The related uncertainties
are expressed by the Standard Deviation Factors (STDF) obtained by
exponentiation of the log-resistivity total standard deviations. For
parameter pk at location (x, y) of the discretized 2D space, the standard
deviation factor is obtained from Eq. (2), where

STDFk x; yð Þ = exp σTOT jk x; yð Þ
! #

ð2Þ

Under the assumption that the error on log-resistivity is Gaussian
and independent on the kriged estimate, the (1-α) confidence interval
canbe inferredwithEq. (3),where p̂k x; yð Þ = exp p̂ ′k x; yð ÞÞ

$
is theback-

transformed estimate p̂′k x; yð Þ and zβ is the normalized Gaussian value
corresponding to the cumulative probability ð1−α

2
Þ. With zβ= 1, we

obtain the 68% confidence interval.

p̂k x; yð Þ
STDFk x; yð Þzβ

≤pk x; yð Þ≤ p̂k x; yð Þ⋅STDFk x; yð Þz β ð3Þ

The confidence intervals of parameters that have not been trans-
formed (e.g. layer thicknesses) can be derived directly from the total
variances. These confidence intervals are however approximations
because thicknesses are not exactly Gaussian.

3.2. Validation of the 3D grid

Two aspects deserve to be addressed in order to validate the 3D
resistivity grid. Before kriging, the applicability of the interpolation
method to the given data set must be investigated. After kriging, the
consistence of the interpolated parameters and inversion models
should be estimated.

In order to validate the prediction method, the collection of 1D
models is split into two subsets S1 and S2 similar to the white and
black squares of a chessboard (Fig. 2). Parameters of inversion models
falling within the “black” squares (within S2) are predicted from
values falling within the “white” squares (within S1). For the method
to be relevant, artificial gaps of data have to be at least as big as natural
gaps, determinedby spacingbetweenflight lines. At inversionmodel i in
S2, themisfit between estimated values and original model parameters,
the prediction error e(i), is obtained from Eq. (4).

e ið Þ = p̂ 0
k xi; yið Þ−p 0

k ið Þ ð4Þ

Where p'k(i) is the k-th parameter of the i-th inversion model, and
p̂′k xi; yið Þ the estimate at model location (xi, yi). If the statistical model
is compatible with the dataset and the variogram model fits the
experimental model, errors calculated on S2 should have a zero mean
and for variance the kriging variance σ̂2

KRI (Chilès and Delfiner, 2011).
Moreover, interpolated model parameters values should be found at
68% probability within the interval # σ̂KRI from the estimates. As an
additional precaution, it is recommended to repeat the operation
switching S1 and S2. Under those conditions, kriging is considered
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applicable to the dataset, and predicted values p̂ ′k xi; yið Þ will be
provided with the confidence interval # σ̂KRI xi; yið Þ at 68%.

After krigingwith all data (S1 and S2), the fit between interpolated
parameters and the inversion models should finally be estimated. If
the validation step was successful and the horizontal resolution of the
grid sufficiently fine, the fit between 2D matrix of interpolated
parameter pk and original 1D models is expected to be good. It can be
assessed with the root mean square error (RMSE) expressed in Eq. (5)
where pk(i) stands for the value of parameter k at the i-th 1D inversion

model and p′k(x, y) the estimate of parameter pk at location (xi,yi) of
the 2D discretized horizontal space, the closest to the ith 1D inversion
model.

RMSE pkð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i=1
p̂k xi; yið Þ−pk ið Þ

$ %2
s

ð5Þ

4. Case study: Galapagos Islands, Ecuador

4.1. Presentation of the survey

In the frame of the project Galapagos Islands Integrated Water
Studies (GIIWS) a large variety of investigations are under progress on
the main inhabited island of Galapagos Archipelago, Santa Cruz. This
basaltic island, whose last significant shield-building phase has been
dated to approx. 500,000 y.b.p (Bow, 1979) is arid with the exception
of the highlands. Rapid population growth rates have promoted the
use of expensive desalination techniques while the lack of a sewage
system leads to high contamination levels in the basal aquifer. There is
an obvious need for a better understanding of hydrogeological
processes on the island. To this end, an extensive SkyTEM survey
has been conducted on the southern windward side of Santa Cruz
(Fig. 3). Thousands of soundings have been collected along the
500 km of flight lines. Due to the nature of airborne surveys, the
distribution of soundings is inhomogeneous, with a high density of
soundings along flight lines (one sounding every ~10 m), and gaps of
data in between (usually 250 m wide). Results revealed interesting
buried low-resistivity bodies in Santa Cruz, presented by Auken et al.
(2009) and (d') Ozouville et al. (2008a).

The soundings have been newly processed and inverted using the
Spatially Constrained Inversion scheme (SCI) (Viezzoli et al., 2008) to a
19 layer “smooth” resistivity model, where the layer thicknesses are
distributed logarithmically from the surface down to 250 m below
topography. While the use of a spatially constrained inversion scheme
is not compulsory, it provides more consistent sets of neighboring

Fig. 2. Validation of the prediction method using data split into two subsets S1 (blue)
and S2 (red). Values at locations of S2 are predicted from S1. Example from SkyTEM
data set collected by (d') Ozouville et al. (2008a). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Location of SkyTEM survey: Santa Cruz Island, Galapagos Archipelago. Red dots show the flight lines, yellow box shows the data extent in Fig. 6. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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models, and leads to the construction of more coherent 3D grids of
resistivity.

For each layer, experimental variograms are computed for the log-
transformed resistivity and the standard deviation from inversion. Fig. 4
presents the twovariogramsused for thefirst layer. The parameters of the
variogram models for all the 19 layers are gathered in Table 1. The
variograms of log-transformed resistivity fit well to isotropic Matérn

models (also known as K-Bessel models) with shape parameter ν=1
(Chilès andDelfiner, 2011; PebesmaandWesseling, 1998). The variogram
model reads γ hð Þ = CN + CF 1− h

a K1
h
a

$ %& '
where CN is the nugget effect,

K1 is themodified Bessel function of the second kind of orderν=1., a and
CF are the model parameters, and h is the distance. The variograms of
standard deviation from inversion σINV fit better to the isotropic
exponentialmodel defined byγ hð Þ = CN + CF 1− exp − h

a

$ %& '
(Pebesma

and Wesseling, 1998). As presented in Table 1, the variograms of log-
transformedresistivity, donotpresent anugget effect (CN=0), and the sill
(CF in this case) increases for deeper layers. This is interpreted as the
consequence of the sharp resistivity contrasts induce by sea water
intrusion. The variograms of standard deviation from inversion σINV

present a nugget effect, which represent the random component of
inversion error. For deeper layer, a rise of the scale parameter a is
observed, whileCF and CN decrease. This correspond to a smaller sill and a
larger range and traduces that for deeper layers,σINV is less variable and
more spatially correlated.

4.2. Validation of the method

Before interpolation of parameters and construction of the 3D
model, the applicability of the prediction method was investigated for
the Santa Cruz survey. As described in Section 3.2, the data set was
split into two halves, S1 and S2, with a 1 km-resolution regular grid
(Fig. 2). Parameter values at locations of S2 were predicted from the
parameter values in the subset S1.

As depicted in Fig. 5A, the misfit of predicted values of resistivities
in S2 have a mean close to zero and a variance of σ 2=0.08, which is
close to the average prediction variances on this parameter σKRI

2 =0.1.

A

B

Fig. 4. Sample variograms (red dots) and models (blue lines) used for the interpolation
of the first layer. (A) For the log-transformed resistivity log(R), a first orderMatérn or K-
Bessel model (ν=1, a=92 m, CF=0.33, CN=0) fits well to the data. (B) For the
standard deviation from inversion σINV, an exponential model is more appropriate
(a=7.28 m, CF=4.15E-3, CN=3.05E-4). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Variogram model parameters of the log-transformed resistivity (R, [ohm.m]) fitted to
1st order K-Bessel model, and σINV fitted to exponential model for the 19 layers of the
Santa Cruz SkyTEM dataset. CN is the nugget, a the scale parameter, and CF the variance
of the continuous component.

Layer Variogram model of log(R) Variogram model of σINV

Bessel model Exponential model

CN a [m] CF CN a [m] CF

1 0 92.6 3.28E-01 3.05E-04 7.3 4.15E-03
2 0 87.8 2.81E-01 5.26E-04 6.9 3.40E-03
3 0 87.3 2.42E-01 5.10E-04 6.6 3.46E-03
4 0 106.6 2.64E-01 2.50E-04 6.7 2.85E-03
5 0 107.6 2.82E-01 2.91E-04 6.8 2.77E-03
6 0 105.0 2.92E-01 2.56E-04 6.9 2.77E-03
7 0 131.5 3.60E-01 2.86E-06 6.8 2.11E-03
8 0 172.9 5.61E-01 2.45E-05 6.9 2.08E-03
9 0 164.5 5.38E-01 3.79E-05 6.9 2.06E-03
10 0 163.5 5.10E-01 3.58E-05 6.8 2.02E-03
11 0 159.1 5.00E-01 2.59E-05 6.8 2.01E-03
12 0 152.5 4.91E-01 0.00E+00 7.1 1.56E-03
13 0 127.5 4.15E-01 0.00E+00 7.1 1.55E-03
14 0 114.3 3.85E-01 0.00E+00 7.5 1.09E-03
15 0 100.4 4.09E-01 0.00E+00 7.5 1.07E-03
16 0 94.1 5.57E-01 9.11E-06 7.6 1.06E-03
17 0 97.5 7.51E-01 3.16E-05 9.7 2.92E-04
18 0 80.0 8.85E-01 3.34E-05 10.0 2.89E-04
19 0 68.8 1.36E+00 4.67E-05 10.9 2.84E-04

A

B

Fig. 5. Analysis of misfit between original models and interpolated from S1 subset over
S2 area using resistivity of the 1st layer as an example. (A) Misfit has a mean close to
zero and standard deviation close to the average value of σK. (B) Misfits increase with
distance to inversion models and remains within about±σK at 68%.
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In Fig. 5B, the misfit logically increases with kriging variances (i.e., with
distance to data points in S1), but remains within the±σKRI confidence
interval at 68%. Thismeansnot only that prediction is relatively accurate,
but also that the estimation of uncertainty providedbykriging is reliable
on this dataset. The behavior is similar for all other parameters of this
model without marked differences. Yet, prediction performs better for
layers where the distribution of resistivity is closer to log-normal.
Finally, we tested that inverting the two subsets S1 and S2 had no
significant effect on preceding conclusions. As a consequence, the
interpolation method can be considered as applicable on this dataset.

After kriging of parameters with the whole dataset, the agreement
between interpolated 2Dmatrices ofmodel parameters and1D inversion
models is quantified. For this dataset interpolated at 30 m resolution,
averagedRMSEof log-transformed resistivity is 0.06, corresponding toan
error factor of 1.06 for resistivity, which is acceptable.

4.3. Management of uncertainties

Once the model is built, the analysis of uncertainties away from
data (i.e. between flight-lines) is made possible from the prediction of
standard deviationσKRI, available at each cell of the 2Dmatrices (Fig. 6A).
As expected, the kriging standard deviation increaseswith the distance to
flight lines. It is shown that in this context, values of log-transformed
resistivity, interpolated between the 250 m-spaced flight lines, have a
kriging standard deviation of about 0.1. When combining interpolation
uncertaintywith inversionuncertainty (Fig. 6B), theuncertainty increases
but remainswithin an acceptable range,with a total standard deviation of
about 0.2 (STDF=1.2).

These results were presented for the 1st layer of the geophysical
model. Conclusions remain roughly the same for other layers, at the
exception of deeper layers where an increase of kriging standard
deviation is observed. This loss of accuracy is due to sharp resistivity
contrasts for these layers,which is a consequence of seawater intrusion.
Yet, largermisfit on resistivity is restricted to a fringe located at the end
of the area of detection of sea water intrusion.

4.4. 3D visualization

The 3D grid is exported into binary VTK file format, which allows a
flexible visualization in VTK-compatible software such as Paraview ®

(www.paraview.org). The VTK file containing all geometry and data
(resistivity, uncertainties on resistivity and thickness) is easily loadable
on a standardmachine (tested on 2.4 GHz Intel Core 2 Duo®,with 4 GB
RAM).

Fig. 7 shows the combined 3D view of “classic” cross-sections,
together with a subset of cells extracted by a threshold on resistivity
between 30 and 70 ohm.m, and covered by the shaded relief map of a
high-resolution DEM ((d’) Ozouville et al., 2008b). This image
highlights the 3D geometry of a large low-resistivity body, first
identified by (d') Ozouville et al. (2008a). This feature covers about

Fig. 6. Uncertainty on log-transformed resistivity of the first layer. The area corresponds to the yellow perimeter outlined on Fig. 3. Left (A): kriging standard deviation σKRI increases
away from flight lines (red crosses). Right (B): the total standard deviation σTOT combines uncertainties from inversion and kriging. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. 3D view of SkyTEM survey on Santa Cruz Island reveals the geometry of a large
6 km3 low-resistivity formation, extracted with a 30–70 ohm.m threshold on resistivity
values and draped by a high resolution DEM ((d’) Ozouville et al., 2008b). The red line
on inset shows the location and orientation of the virtual camera. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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50 km2 and appears to be relatively continuous, with a total volume of
6 km3 and a mean thickness of about 30 m. The 3D map of total
uncertainty on resistivity (Fig. 8), expressed as standard deviation
factor, illustrates that this feature is well resolved, with a mean STDF
of 1.2.

Although the execution of exploration drill holes is still missing to
validate this hypothesis, available climatic and geological data can be
compatible with the existence of a water saturated and potentially
clayey formation, which could fit in the resistivity range of this feature.

5. Conclusions

To date, most airborne AEM datasets are inverted with a 1D model
description and most of them are visualized as 2D interpolated maps.
Numerous extensive AEM datasets have been collected in various 3D
geological contexts. They have proven to perform successfully as long
as 3D heterogeneities in the subsurface are bigger than the footprint
of the soundings.

The methodology presented in this paper allows 3D visualization
of inversion models and volumetric computations. The 2D interpola-
tion by kriging of themodel parameters is based on the “layered-earth
approach.” It ensures a good coherence with 1Dmodels and conserves
the vertical resolution of the inversion, while providing fast grid
generation and lightweight files. The quantification of errors com-
bines uncertainties from interpolation and inversion. Using a volcanic
case-study, we showed that for a flight line spacing of 250 m, the total
uncertainty remains within an acceptable range. However, the
uncertainty may increase with larger line spacing and sharp contrasts
in resistivity.

Because themethod is fast and simple, a 3D grid of resistivity can be
easily built from extensive surveys covering large scale 3D geological

structures. Visualization options include thresholding of resistivity and
uncertainty, allowing the user to extract different 3D geological bodies
based on resistivity ranges and conceal the data with high uncertainty.
This is a step toward enhanced interpretation of AEM datasets.

Matlab ® and R ® scripts for the implementation of the 3D
gridding scheme are available from the authors. The scheme is also
implemented in the Aarhus Workbench software package.
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