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Abstract— High-bandwidth magnetic data are normally dis-
torted by ubiquitous 50- or 60-Hz noise from powerlines and
similar sources. The powerline noise can be orders of magnitude
larger than the magnetic signal from targets and must be
culled from data sets prior to interpretation. Suppression of the
powerline noise by simple filtering can result in artifacts and
an unacceptable reduction in resolution of ground-based and
unmanned aerial vehicle magnetic surveys. Removal approaches
such as those based on Biot–Savart modeling are sensitive to
the estimated position of the powerline systems, in addition
to their limited applicability due to the requirement of a DC
source. Moreover, the powerline noise in data acquired from
a moving platform is inherently nonstationary and removal
techniques must be specifically developed with this in mind. We
propose a model-based method that does not rely on a priori
knowledge of the powerline system by fitting and subtracting
a set of sinusoids to the data. These sinusoids are computed
on small windows of data, tied together with regularization
terms within the fitting process to reduce discontinuities between
segments. We further incorporate powerline frequency as a
nonlinear parameter, allowing for fluctuations in the fundamental
frequency as loads on the power grid change. Through synthetic
and field examples, we show that periodic noise can be reliably
removed automatically without the need for filtering or significant
alterations of the frequency content. Powerline noise is reduced
by over 98% in the field example.

Index Terms— Magnetic survey, powerline noise removal, sig-
nal processing.

I. INTRODUCTION

H IGH-RESOLUTION ground and unmanned aerial vehi-
cle (UAV)-based magnetic surveys are becoming

increasingly common, as the benefits to archeological studies,
environmental remediation, detection of unexploded ordnance
(UXO), and local geologic investigation are evident. As exam-
ples, advanced UXO discrimination requires high spatial res-
olution data over small targets [1], [2], detailed archeological
mapping benefits from rapid detailed surveys [3], and even a
relatively simple search for abandoned well heads comprises
a search for isolated targets over potentially large areas [4].
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Advances in fluxgate and other magnetometry have resulted
in practical systems comprising an array of sensors with
high sample rates (see [4]–[8]); 100 Hz or more is easily
achievable. This allows for detailed mapping applications
acquired at high velocities in towed or UAV-mounted sensor
configurations.

Low-bandwidth systems, i.e., with sample rates below
100 Hz, are insensitive to noise from powerlines. The pow-
erline noise occurs at frequencies of 50 or 60 Hz (and har-
monics thereof) which is either out-of-band for the magnetic
sensor or the noise is removed by analog anti-aliasing filters
before sampling. However, the increase in sample rates to
above 100 Hz has a consequence of sampling noise from
local power grids. The powerline contamination can be severe
even in rural environments, with amplitudes of thousands
of nanotesla (nT). With many surveys containing signals of
interest less than 10 nT, the need to reliably remove the
powerline noise is clear.

Frequency filtering is an obvious choice in powerline noise
removal; however, with high acquisition speeds filtering can
result in unacceptable reduction in resolution. Consider an
acquisition speed of 20 km/h; the apparent wavelength of a
50 Hz signal is 11 cm. With sample rates exceeding 200 Hz,
low-pass filtering of powerline noise can result in a factor
of 10 reduction in possible spatial resolution, which can be
exacerbated by the rolloff properties of the designed filter.
Additionally, filtering may produce unwanted Gibbs phenom-
ena from sharp changes in signal amplitude, especially if a
notch filter is employed. In either case, frequency filtering can
unacceptably alter desired anomalies in a wide spatial range.

Model-based removal of powerline noise from magnetic
data offers an alternative approach which does not suffer from
the limitations of frequency filtering. Previous approaches, for
example [9], fit DC powerline magnetic-field effects through
a Biot–Savart approach. However, full solutions of the fields
generated by the powerline itself are strongly sensitive to the
a priori placement of the powerlines themselves, and current
methods are not generalized to time-varying fields.

Modeling and subtraction of 50-/60-Hz powerline noise has
been successfully applied to seismic and other geophysical
data as in, e.g., [10]–[14]. Periodic powerline noise is parame-
terized as a sum of sinusoids and cast as an inverse problem.
The resultant fits are subtracted from the data, leaving the
surrounding frequency content intact. This has the benefit of
removal of the powerline noise while minimally affecting the
signals of interest. Such methods of model-based removal
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are not sensitive to the position of the powerline; indeed no
a priori knowledge of the power grid system is required.

We extend these methods to magnetic data acquired from a
moving platform and specifically address the nonstationarity of
powerline noise inherent in long data sets extending over many
seconds or minutes. Direct estimation of the constituent para-
meters is done entirely in the time domain, avoiding Fourier
operations. As a consequence, the method is insensitive to
uneven sample rates, data dropouts (within reason), and time-
varying powerline signal parameters. The proposed method
is applicable to any periodic noise, or indeed generalized to
any noise that can be represented parametrically, for example,
variable electric motor noise from UAV platforms.

Multiple formulations of increasing complexity are pre-
sented based on a single philosophical approach to handle
increasingly difficult scenarios, e.g., a varying fundamental
frequency. We compare and contrast each method and dis-
cuss the applicability of each and present synthetic and field
examples as demonstrations.

II. THEORY

We cast the task of fitting powerline noise as an inverse
problem. In the following, we describe both linear and non-
linear approaches utilizing windows and all-at-once (AAO)
methods to account for increasingly complicated powerline
signals.

Data are assumed to be acquired from a moving platform,
and a single data set consists of multiple linear or sublinear
segments (lines) covering an area of interest. These lines
can be treated as independent time series, containing any
component of the magnetic field or gradient.

A. Linear Windowed Approach

The windowed approach breaks each line (time series) of
data into short segments, for example 1 s, where the funda-
mental frequency, phase, and amplitude of the powerline signal
is assumed constant. Within each window, a set of sinusoids
is fit to the data, resulting in an estimate of amplitude and
phase for the fundamental frequency, f p, and each subsequent
harmonic of interest. In the following, we use the standard
rewriting a cos(2π f t + θ) = A cos(2π f t)+ B sin(2π f t) with
a = (A2 + B2)1/2 and tan θ = −B/A, where a is amplitude,
θ phase, and t time, to remove the nonlinear dependence on
phase. The powerline contribution, dpl, is here presented as
two sinusoids, one for the fundamental 50-Hz signal and one
for the first harmonic at 100 Hz (as our specific instrument
samples up to 230 Hz), however, the approach is general
for an arbitrary number of harmonically related sinusoidal
components, imax

dpl =
imax∑
i=1

Ai cos
(
2iπ f pt

) + Bi sin
(
2iπ f pt

)
. (1)

Let d represent a time-series data vector, for example, total
field or some other magnetic or gradient component. The
observed data vector can be represented as the sum of its
constituent noise components as

d = dsignal + dpl + ε (2)

where dsignal represents the magnetic signal of interest, and ε a
random noise vector, assumed uncorrelated with the powerline
signal.

For a fixed powerline frequency, the powerline contribution,
dpl, can be cast as a linear system with unknown parameters
Ai and Bi

Gm = d (3)

where

G =

⎡
⎢⎢⎢⎣
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)
sin
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)
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)
sin
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)
cos

(
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)
sin

(
2π f pt2

)
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(
4π f pt2

)
sin

(
4π f pt2

)
...

...
...

...
cos

(
2π f ptk

)
sin

(
2π f ptk

)
cos

(
4π f ptk

)
sin

(
4π f ptk

)

⎤
⎥⎥⎥⎦

m = [A1 B1 A2 B2]T

d = [d1 d2 . . . dk]T

and k the number of observed data. We note that this implicitly
assumes the powerline contribution is the dominant source
of 50-Hz energy in the system.

We can solve for a parameter vector m for each window in
a least squares sense via

GT Gm = GT d (4)

using any suitable linear solver such as the Conjugate Gradient
method (see [15]). The resulting parameters are then used
to create a set of predicted powerline data dpl which is
subsequently subtracted from the observed signal as in (2).
We use an exhaustive parameter search to identify f p. To solve
the system, we model a sweep of frequencies, usually between
49.9 and 50.1 Hz, and select the f p resulting in the lowest data
misfit [13].

The windowed approach explicitly assumes that the 50-Hz
noise is stationary within each segment. In a real survey, even
1 s of data may be too long and violate this assumption.
Moreover, acquiring data from a moving platform further adds
a temporal component. However, reducing the window size
means reducing the number of cycles available for fitting and
can destabilize the procedure. We therefore use a two-step
approach, whereby a longer window of 1 or 2 s is used to
obtain an initial guess for a second pass with a shorter window,
for example 0.1 s. The initial guess, used as a starting and/or
reference model stabilizes the solution in spite of the larger
condition number of the system.

Independent construction of model parameters in each win-
dow of data will often lead to discontinuities in the recovered
model parameters. These can map into the denoised data as
discontinuities in the first derivative, and less frequently as
jumps in the data themselves. To control this effect, we turn
to a regularized inverse approach.

B. All-at-Once Approach

Although the windowed approach can work well in many
cases where the noise levels are low and the powerline noise
changes slowly, discontinuities and large changes in signal
properties can negatively affect the parameter estimates. Ide-
ally, the recovered sinusoid amplitudes as well as the estimated
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frequency should be allowed to smoothly change as a function
of time. Moreover, the desired signal, dsignal, is not devoid
of 50-Hz energy. Regularization can control and prevent the
overfitting of this 50-Hz energy in the dsignal component. By
solving a large system containing the entire line of data,
we can introduce a smoothness term between the model
parameters. In the linear inverse case (i.e., f p is not included as
an unknown parameter), f p is either fixed or assumed known
as a function of time.

We continue with the philosophy of utilizing windows of
data where the model parameters are assumed constant. With
a window length of greater than 4 samples, the system remains
overdetermined and regularization is not explicitly required,
though can be applied. As the window length decreases,
the conditioning of the system is worsened, and in the extreme
case—as the number of samples per window decreases to less
than 4—the system becomes underdetermined and regular-
ization is required. Regularization in our context is achieved
through the use of derivative terms which improve the condi-
tion number and introduce an a priori estimate of smoothness.

For clarity, we first construct the new system of equations
based on (4) without a regularization term; we then apply
a Tikhonov-based scheme [16] and present the solution. In
order to construct one linear system for an entire line of data
consisting of q windows, we cast (3) as a block sparse system

⎡
⎢⎢⎢⎣

G1

G2

. . .

Gq

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

m1

m2
...

mq

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d1

d2
...

dq

⎤
⎥⎥⎥⎦ (5)

where each Gi , mi , and di is exactly equivalent to the
definition of a single window solution as described in 4.
The solution of (5) is again exactly equivalent to solving
(3) for each window independently for equivalent window
sizes. In order to leverage smoothness, we introduce Tikhonov
regularization.

The solution of (4) is equivalent to minimizing a single-term
objective function given by

φd = ‖Wd(Gm − dobs)‖2
2 (6)

where Wd represents a data weighting matrix containing the
reciprocals of the estimated data standard deviations along the
diagonal. We seek to add a second term containing a squared
model norm such that the objective function, �, becomes

� = φd + βφm (7)

where β is a yet-unknown tradeoff parameter and φm contains
any a priori information about the model such as smooth-
ness or a reference model. In the simplest case, φm is given
by

φm = ‖m‖2
2 (8)

favoring solutions with the smallest recovered model parame-
ters. We can generalize (8) to include a reference model and
any model weighting we wish, such as minimizing the first

derivative, through incorporation of a reference model and
model weighting matrix (Appendix A)

φm = ‖Wm(m − mref)‖2
2. (9)

It is in this weighting matrix, Wm , that we incorporate
smoothness terms, while mref constitutes the reference model,
either implicitly zero or containing the recovered parameters
from the solution using larger window sizes.

After construction of the model weighting matrix, the linear
system to be solved in (4) becomes(

GT WT
d Wd G + βWT

mWm
)
m

= GT WT
d Wd dobs + βWT

mWmmref (10)

which can similarly be solved with any appropriate sparse
linear solver [15], [17].

C. Inclusion of the Fundamental Frequency as an Unknown
Parameter

We may include the fundamental frequency f p as an
unknown parameter at the expense of making the system
nonlinear. Despite this complication, the nonlinear solution can
reduce the computational load significantly as the frequency
parameter need not be exhaustively searched. Experiments
show that four to six linearized solutions replace a parame-
ter sweep requiring potentially many linear solutions. More
significantly, the estimates of the fundamental frequency are
improved.

We again formulate the solution with Tikhonov regulariza-
tion, adding in frequency as a free parameter. The system can
be solved with any nonlinear method; we present a Gauss–
Newton method here [15].

The formulation is similar to (10), but is instead iteratively
solved for a model update, δm, with linearized steps. Each
iteration solves the linear equation(

JT WT
d WdJ + βWT

mWm

)
δm

= JT WT
d Wd

(
dobs − F

[
m(n)

])
− βWT

mWm
(
m(n) − mref

)
(11)

with

m(n+1) = m(n) + δm (12)

where J is a Jacobian matrix explicitly defined in Appendix B,
F[·] is the forward model operator which maps an element
from the model space to the data space, given by (3), and
m(n) is the recovered model at the nth iteration (see [18]).

D. Selection of Tradeoff Parameter

Inclusion of model weighting in an overdetermined system
results in challenges in selection of tradeoff parameter, β.
In an overdetermined case, the optimal value of β is zero;
the addition of regularization necessarily will increase the
data misfit value, φd . Selection criteria such as the L-curve
[19] or generalized cross validation (see [16]) will drive the
recovered β to zero, while discrepancy principle approaches
based on φd (see [17]) are invalid as the “optimum” misfit
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is undefined. Since the definition of smoothness in model
parameters between windows is somewhat arbitrary, so will
be the choice of β. We suggest choosing a β such that the
frequency spectrum is maximally flat in the range of 50 Hz
and harmonics after subtraction of the computed powerline
model. This prevents overfitting of the 50-Hz signal present
in magnetic anomalies.

III. EXAMPLES

A. Synthetic Example

We simulated a set of synthetic total-field data comprising
the signals from 11 dipoles of varying depths and magne-
tizations, selected to represent signals as varied as small,
near-surface ferrous targets (as shallow as 0.5 m) to deeper
geologic sources (at 500-m depth). In magnetic data, the depth
of the source behaves as a low-pass filter, thus the deeper
sources result in broader or longer-wavelength anomalies. The
data simulate one acquisition line sampled at 225 Hz with
a 5-m/s driving speed for 100 s, or 500 m, with a power-
line positioned at 300 m perpendicular to driving direction
whose signal decays as distance-squared. The fundamental
frequency smoothly changes with time following a sinusoidal
drift pattern: f p = 50 + 0.01 sin(2π/100t). For visual clarity,
additional noise (e.g., Gaussian) is not shown in this particular
simulation, but does not materially affect the final result. We
included the first harmonic at 1% of the fundamental amplitude
to match empirical observations. In these simulations, we used
a window length of 100 ms.

Fig. 1 shows the results from the four methods as described.
In general, the windowed approaches have superior removal
of powerline signal in between the anomalies (i.e., in windows
containing only a sinusoidal signal), while the AAO methods
affect the anomalies of interest less. Depending on the target
anomaly amplitude, the error introduced through the use of
this method is acceptable—predominantly under 1 nT. Larger
misfits occur directly over magnetic targets; this is due to
overfitting of the 50 Hz signal inherently present in broadband
magnetic anomalies. In general, the powerline contribution is
reduced to between 0.5% and 2% of its former amplitude.

As the exact noise contribution is known in the synthetic
case, we compute the energy of the real and predicted pow-
erline signal before and after processing. The energy, E , of a
signal f (t) over an interval [t1, t2] is given by

E =
∫ t2

t1

| f (t)|2 dt . (13)

The difference of the energy loss between the true and
predicted powerline signal divided by the energy of the true
signal yields an estimate of recovery error, which vary between
0.007% and 0.069% depending on the method.

There exists an ambiguity between frequency and phase
in the recovered solutions. This is exacerbated when the
powerline frequency is estimated first and not allowed to vary
within the inverse solution. The effect can be seen in Fig. 1(a),
for example, where large discontinuities are required in the
phase to fit the data given a fixed f p.

TABLE I

FIELD EXAMPLE INVERSION PARAMETERS FOR LINEAR (L) AND NONLIN-
EAR (NL) WINDOWED AND AAO SOLUTIONS. SEE APPENDIX A FOR

A FULL DESCRIPTION OF THE ALPHA PARAMETERS

B. Field Example

We present a field example from an archeological site near
Ørregård, Denmark. The field site contains a high-tension
powerline crossing subperpendicularly to the acquisition lines
which induced at maximum an approximate 1000-nT signal
into the data, compared to a much smaller 10–50-nT signal
from the archeological remains.

Data were acquired with the tMag system
(https://hgg.au.dk/instruments/tmag/) utilizing vector magnetic
sensors in a gradient configuration towed 10 m behind an
all-terrain vehicle (ATV). The array consists of eight
vertical magnetic gradiometers, each utilizing two sets of
three-component fluxgate sensors, separated horizontally by
50 cm broadside to the driving direction and 1 m vertically.
Positioning is achieved through two roving differential GPS
units mounted on the frame and one base station GPS near
the survey area. Acceleration and attitude information is
recorded with an inertial measurement unit also mounted on
the frame. Data were sampled at 225 Hz with a nominal
driving speed of 18 km/h, maximum 20 km/h. Nominal line
spacing was 2.25 m to ensure full coverage on the field,
though significant variation exists due to driving conditions.
All data components were acquired; we show the total field
data as an example.

The survey was conducted as an archeological investigation
of an iron-age settlement. Fortunately, the primary area of
interest was south of the most significant powerline interfer-
ence; however, the large amplitudes of the signal interfered
with the bias corrections so harmonic removal was nonetheless
necessary. We note that the 50-Hz signal is present throughout
the geographical area of the survey.

The raw data first had relevant gain corrections applied.
Then each of the harmonic removal methods was applied
according to the parameters listed in Table I. Results for a
single sensor along a single line are shown in Fig. 2, with
detailed windows shown in 3. For map plotting (Fig. 4), data
were subsequently processed with a windowed (30 m) bias
calculation and gridded with an inverse-distance weighting
algorithm at a 0.1 m cell size.

Each of the described methods adequately removes the
50-Hz noise from the data; over 98% of the powerline ampli-
tude is removed. Because the total signal varies smoothly, there
is little difference between the recovered solutions; in fact it is
difficult to choose a ‘best’ method based solely on line results.

It is illustrative to compare the recovered models between
the linear and nonlinear solutions. In the linear case [Fig. 2(a)
and (b)], f p is fixed, yet it and phase are inextricably linked,
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Fig. 1. Synthetic results. (Top) Simulated observed data in blue with the recovered data overlain. The absolute value of the difference between the two curves
is shown in red corresponding to the axis on the right. (Middle) True and recovered fundamental frequency with the same color scheme. (Bottom) Recovered
amplitude and phase for each solution method. The windowed approaches have superior removal of powerline signal between the anomalies, while the AAO
approaches are more faithful to the magnetic signature of the modeled dipoles. (a) Linear windowed. (b) Linear AAO. (c) Nonlinear windowed. (d) Nonlinear
AAO.

so variability in f p will necessitate corresponding changes
in phase. This severely restricts the amount of smoothing
possible. In contrast, the phase shows fewer discontinuties

across the line in the nonlinear solutions [Fig. 2(c) and (d)].
For the same reasons, the linear windowed and AAO solutions
are similar, as the algorithm has a limited ability to adjust
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Fig. 2. Ørregård field example results. (a) Linear, windowed solution. (b) Linear AAO solution, using the same frequencies as (a). Differences between the
two linear solutions are within ±2 nT. (c) Nonlinear, windowed solution with frequency as a free parameter. (d) Nonlinear, AAO solution. Black boxes in (a)
and (d) correspond to the zoomed data plots shown in in Fig. 3

phase. However, the linear AAO solution has slightly better
noise characteristics relative to the windowed case.

The frequency spectra comparison before and after process-
ing demonstrates the usefulness of the technique. Care must
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Fig. 3. Inset data from Fig. 2. The powerline contribution has been reduced over 98%, though some beating still remains due to a slight offset in modeled
frequency. (a) Inset 1 from Fig. 2(a). (b) Inset 2 from Fig. 2(a). (c) Inset 1 from Fig. 2(d). (d) Inset 2 from Fig. 2(d).

be taken, however, as the Fourier transform of an entire
line of data violates required assumptions about stationarity.
We therefore show the transforms (amplitude spectra) of a
single window of data, where we previously have assumed
stationarity within that timescale. Fig. 5 shows the results
of such a window in the region of the strongest powerline
signal before and after processing. The observed data are
dominated by the 50-Hz signal, while the post processed
data are consistent with an amplitude spectrum expected of
magnetic gradient data of this type. We note that we have
overfit the 50-Hz signal slightly, showing the usefulness of
examining the spectra in selecting an optimal tradeoff.

Fig. 4 shows gridded data before and after processing
with the nonlinear AAO technique. Note the large signal
contamination from the powerline, extending from southeast to
northwest, in Fig. 4(a). This signal is eliminated in Fig. 4(b).
Not only does this ease visual interpretation in the areas
adjacent to the powerline, but also eliminates much of the
artifacts from the subsequent bias-correction processing step
caused by the large noise amplitude [striping seen parallel to
the long axis of the survey in Fig. 4(a)].

IV. DISCUSSION

Each of the four methods described here has advantages and
disadvantages. Although the windowed approaches generally
have a lower remaining 50-Hz content in between target

anomalies, they underperform at the anomalies themselves.
The opposite is true for the AAO solutions. The anomalies
from magnetic targets have a broadband signal in the Fourier
domain, including a 50-Hz component. Regularization in the
AAO methods helps to avoid overfitting the 50-Hz component
in these areas. In deference to the need for a minimum of dis-
tortion in these targets, we prefer the nonlinear AAO approach,
especially if one plans to do further detailed processing such
as parametric inversion (see [20]).

Both the windowed and AAO approaches have similar
performance in terms of speed; however the AAO is generally
slightly faster as there is less overhead in memory manage-
ment. Comparison between the linear and nonlinear solutions
depends on how exhaustively the fundamental frequency is
searched at the beginning of the linear solution; if f p is
coarsely estimated, the linear solution can be four or five
times faster than the nonlinear approach. A 100-s line of
data takes approximately 4–6 s to process for nonlinear AAO
solutions on an i7 processor (the algorithms are written in
Python 3.6), whereas the linear cases take roughly double
the time including the frequency search of 100 frequencies.
The entire field survey shown here ran in approximately six
minutes. We note that we use sparse matrix operations to
conserve memory, which can have an impact on efficiency.

In the examples shown here, we processed each of the eight
gradiometer packages independently. While the timing is accu-
rately controlled, each sensor package is on an independent
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Fig. 4. Ørregård field example in map view. (a) Total field data before
harmonic removal, after bias correction. (b) Total field data after nonlinear
AAO solution and subsequent bias correction.

hardware clock; for systems built around a master clock,
the performance can be further improved by processing the
entire array at once.

Fig. 5. Amplitude spectra of a single window of data near the powerline
source before and after processing.

In most magnetic surveys, a base station is deployed to
measure background diurnal changes in the magnetic field to
be subtracted during data processing. Although the base station
would ideally be placed in a noise-free area, the practical limits
of many surveys preclude this. If the base station has a similar
sample rate to the survey instrument, the recorded data can
be used to further constrain the estimates of f p and improve
performance. Careful inspection of the remaining signal in the
field data set shows beating in the regions with the strongest
powerline contribution; this is due to a slight offset in the
estimated f p from the true frequency. The use of a base station
may be an effective way to control this effect.

One possible alternative to solving an AAO solution is
to use overlapping windows and solve each independently.
The recovered parameters are then interpolated between the
windows and the subsequent signal subtracted. This does not,
however, adequately address the issue of overfitting 50-Hz
signal in the target anomalies in general. We submit that the
AAO methodology presented here is a more direct means of
controlling this overfitting.

In future instrumentation with even higher sample rates,
the methodology here can be trivially extended to an arbitrary
number of harmonics, at the cost of processing time. For com-
parison, it is common in direct current/induced polarization
and surface nuclear magnetic resonance processing to model
several tens of harmonics.

We note that while vibrational noise is almost always
below 50 Hz, translation and rotation of the sensors (if using
gradient or vector data) will result in further nonstationary
characteristics of the signal. The coupling of the powerline
into the sensor will change over timescales less than practical
window lengths. We control the effect through correction with
an inertial measurement system; however application of the
methods described here on instruments without this capability
will benefit from further study.

The examples shown in this article focus on powerline
signals, but indeed the methods presented are equally applica-
ble to any periodic signal. In fact, so long as the signal to
be removed is capable of being represented parametrically,
the method holds. We foresee strong applications in the
emerging field of drone magnetometry, where variable noise
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from the electric motors on UAVs can be removed using this
method.

V. CONCLUSION

We have developed a methodology for rapid attenuation of
powerline influences in magnetic data through a model-based
approach. By fitting and removing windowed sinusoidal sig-
nals from the data, we can reduce the powerline contribution
by over 98%, as seen in the synthetic and field examples.
This method does not require any a priori knowledge of the
powerline parameters, including spatial location. In addition,
the method does not rely on frequency filtering, meaning no
Fourier-introduced aberrations are present. We propose that
the nonlinear AAO method presented here is in general the
best technique for powerline removal when considering the
tradeoff between minimizing distortion of target anomalies
versus maximum signal removal in anomaly-free regions.

APPENDIX A
EXPLICIT FORMULATION OF THE MODEL WEIGHTING

MATRICES

The model weighting matrix used in both the linear and
nonlinear solutions is an aggregate matrix formed by the sum
of its constituents

Wm =
∑

αi Wi (14)

where αi is a scalar weighting term.
The matrices corresponding to the reference model are

diagonal with ones on the elements corresponding to the
relevant parameters. In this application, we usually weight the
cosine terms (αc) equally, and the frequency term (α f ) a few
orders of magnitude higher. For the case with five parameters
given as

m = [A1 B1 A2 B2 f ]T (15)

the aggregate matrix is constructed as

Wp = diag
(
αc αc αc αc α f

)
. (16)

For the AAO approach, the diagonal would be repeated for
as many windows as are present.

The AAO approach can also include derivative terms in a
finite-difference or finite-element sense, Wdc and Wdf. Using
(15)

Wdc =
⎡
⎢⎣

1 0 0 0 0 −1
1 0 0 0 0 −1

. . .

⎤
⎥⎦ (17)

with every fifth row equaling zero, corresponding to the
frequency terms. Wdf has an equivalent structure, however,
with every fifth row comprising the only nonzero elements.
The aggregate model weighting matrix from (16) and (17) is
therefore

Wm = Wp + αdcWdc + αdfWdf. (18)

APPENDIX B
EXPLICIT JACOBIAN FORMULATION

The nth column of the Jacobian Jn can be analytically
formulated as follows:

J0 = cos(2π f t) (19)

J1 = sin(2π f t) (20)

J2 = cos(4π f t) (21)

J3 = sin(4π f t) (22)

J4 = −2π A1t sin(2π f t)

+ 2π B1t cos(2π f t)

− 4π A2t sin(4π f t)

+ 4π B2t cos(4π f t) (23)

where t is a vector of times corresponding to the data vector
d such that

d = F[m(t)]. (24)
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