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ABSTRACT

Electromagnetic induction (EMI) sensors using sufficiently
low-frequency harmonic sources and sufficiently small loop sep-
arations operate in the low-induction-number (LIN) domain for a
relatively wide range of background conductivity. These systems
are used in diverse near-surface investigations including applica-
tions from soil sciences, hydrology, and archaeology. The special
case of portable multiconfiguration EMI sensors operating at
frequencies ≤ 20 kHz offers the possibility of using a fast linear
deconvolution method to interpret multichannel data sets in three
dimensions. Here, we have developed a fast 3D inversion/decon-
volution method regularized with 3D smoothness constraints and
formulated in the hybrid spectral-spatial domain. Compared with

other linear approaches, the spectral-spatial domain formulation
significantly reduces the computational cost of the processing and
opens the door for real-time 3D interpretation of large data sets
consisting of more than 100,000 data points. First, we test our
proposed algorithm on synthetic data sets computed with the full
Maxwell theory. Then, we apply our method to a real four-con-
figuration EMI data set acquired to map the thickness of peat
layers embedded in a sandy environment. For the synthetic and
the field example, we compared our result with the result obtained
using a standard point-by-point 1D nonlinear inversion approach.
This comparison demonstrates that the proposed methodology
provides superior lateral resolution compared with the 1D non-
linear inversion, at the same time significantly reducing the com-
putational cost of the processing.

INTRODUCTION

Portable loop-loop electromagnetic induction (EMI) sensors op-
erating with harmonic source waveforms (frequency-domain elec-
tromagnetics) are increasingly used to rapidly map the electrical
properties of the uppermost meters of the subsurface for a wide
range of applications. In precision agriculture, Jadoon et al. (2015)
invert data measured by a three-offset loop-loop system used with the
horizontal and vertical coplanar (HCP and VCP) loop configurations
in an irrigated agricultural field site in Saudi Arabia. Rudolph et al.
(2016) investigate how apparent conductivities measured by portable
EMI sensors could be incorporated in the statistical analysis of an
agricultural experiment. Pedrera-Parrilla et al. (2016) analyze the
effect of the near-surface water saturation in delineating soil hetero-
geneities at an olive tree plantation in Spain. There is also a growing
interest in soil hydrologic studies. In a recent review of soil hydrology

methodologies (Vereecken et al., 2015), it is suggested that portable
EMI sensors have considerable potential for studying the variability
of bedrock depth, which is critical for subsurface lateral water flow.
In von Hebel et al. (2014), it is also suggested that EMI sensor time-
lapse surveys have the potential for characterizing hydrologically ac-
tive layers. Some recent studies also showcased a more direct link
between hydrologic parameter and portable EMI sensor data. For ex-
ample, Rezaei et al. (2016) study the link between EMI electrical
conductivity and hydraulic conductivity in a sandy agricultural area
in Belgium. Furthermore, portable EMI systems are considered for
detecting and mapping buried metallic objects in civil engineering
including searching for unexploded ordnances (Shubitidze et al.,
2005; McKenna and McKenna, 2010). Recently, Guillemoteau and
Tronicke (2015) studied the optimal system orientation of a single-
offset portable EMI sensor to map buried utility pipes at the Horst-
walde test site (Germany). El-Qady et al. (2014) evaluate the appli-
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cation of a multifrequency portable EMI sensor for mapping buried
pipelines. For years, portable EMI sensors have also been used in the
field of archaeological prospecting (Scollar et al., 1990). Recently, De
Smedt et al. (2014) use multiconfiguration EMI data to study the pre-
historic landscape at Stonehenge (England), Dabas et al. (2016) com-
pare the result of multiconfiguration EMI data inversion with
electrical resistivity tomography at the archeological site of Vieil Ev-
reux (France), and Simon et al. (2015) investigate the effect of mag-
netic viscosity on multifrequency portable EMI sensor data acquired
at two archeological sites on the Thessaly plain (Greece). In addition,
the growing interest of portable EMI sensors is also documented by
applications in littoral (Weymer et al., 2015) and cryosphere studies
(Dafflon et al., 2016; Hunkeler et al., 2016).
Multiconfiguration portable EMI systems allow for simultaneous

acquisition of data with different loop separations and thereby dif-
ferent volumes of penetration. The recent development of prepro-
cessing tools improving data quality (Delefortrie et al., 2014, 2016;
Thiesson et al., 2014) and improvements in positioning precision
(Böniger and Tronicke, 2010; Guillemoteau and Tronicke, 2015)
allow for interpreting the data sets with imaging routines, which
jointly invert multichannel data sets. Up to now, most imaging ap-
proaches have assumed a horizontally layered medium (Saey et al.,
2012; Grellier et al., 2013; von Hebel et al., 2014; Davies et al.,
2015; Guillemoteau et al., 2016) because (1) the spatial sampling
density is typically not sufficient for 2D/3D inversion approaches
and (2) it is not practical to completely process and invert large data
sets (more than 100,000 data points) with robust 2D or 3D ap-
proaches due to the great computational cost.
A typical EMI data set is composed of several hundred thousand

data points distributed over several hectares (ha). Inverting such a
data set in 3D with a grid resolution of 10–20 cm requires a param-
eter space consisting of more than several tens of million model
parameters. Even with relatively fast approximate methods such
as those presented by Pérez-Flores et al. (2001, 2012) or Kamm
et al. (2013), such 3D inversion efforts would require large compu-
tational costs and memory usage. To overcome these limitations,
Guillemoteau and Tronicke (2015, 2016) have developed and evalu-
ated an approximate 3D forward-modeling algorithm based on
the Born approximation starting from a homogeneous half-space,
which is formulated in the hybrid spectral-spatial domain. This for-
mulation allows forward modeling of more than 100,000 data points
recorded across several 10,000 m2 within a minute. For low induc-
tion numbers (LINs) and for nonmetallic bodies with sizes smaller
than the skin depth, this approximate forward-modeling approach
allows the characterization of the structural properties of the subsur-
face conductivity distribution (Guillemoteau and Tronicke, 2016).
For the special case of low frequencies (f < 20 kHz) and small

loop offsets (s ≤ 2 m), isolated nonmetallic bodies are typically
much smaller than the skin depth, and the LIN condition is fulfilled
in a relatively wide range of electrical conductivity backgrounds.
Such scenarios represent typical subsurface settings as encountered
in soil sciences, archaeological, and hydrologic applications. In this
study, we propose to use the forward-modeling approach presented
and evaluated by Guillemoteau and Tronicke (2016) to reduce the
computational cost required for performing a 3D inversion of port-
able EMI data sets. We also formulate the inverse problem in the
hybrid spectral-spatial domain and apply the multichannel decon-
volution (MCD) method as presented for the 2D direct current (DC)
problem by Møller et al. (2001).

In the following, we first recall the theory and the limitations of
the used forward-modeling approach. Then, we present our formu-
lation of the related inverse problem based on the MCD approach.
After that, we apply our 3D MCD method to synthetic data sets
simulated with the full Maxwell theory by the integral equation
(IE) method. Finally, we apply our 3D MCD approach to a multi-
configuration EMI field data set acquired in Paulinenaue, Germany,
and we compare the results with ground truth data collected in
boreholes. Although the presented MCD inversion approach is
an approximation, the only practical alternative is a 1D inversion
with vertical and lateral constraints. Thus, for the synthetic and field
data sets, the results of our MCD approach are compared with the
results obtained using a full accuracy, point-by-point 1D nonlinear
inversion method. After evaluating and discussing our results, we
provide some final conclusions.

FORWARD MODELING

Motivation

Our approximate 3D forward modeling is based on the linearity
between the subsurface electrical conductivity and the observed ap-
parent LIN conductivity provided by a loop-loop EMI sensor. The
validity of this assumption breaks down, i.e., the problem is non-
linear, for the following cases:

• when the amplitude of the electric field associated to the
eddy current shows a noticeable dependence on the fre-
quency and the conductivity within the volume investigated
by the sensor

• when the electric field associated to the eddy current shows a
significant change of polarization at interfaces within the
volume investigated by the sensor.

The effect of subsurface conductivity and the frequency on the
electric field amplitude can be evaluated for the conductive half-
space background with the LIN criterion given by (J. D. McNeill,
1980, Geonics Ltd. Tech., note TN-6)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμσ∕2

p
≪ 1; (1)

where s is the loop separation, ω is the angular frequency, μ is the
magnetic permeability, and σ is the subsurface electrical conduc-
tivity. Habashy et al. (1993) also provide a criterion to evaluate
the same effect for the case of an isolated body

jkbgdj2D2δ ≪ 1; (2)

where kbgd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iμωσ

p
is the wavenumber of the background when

assuming a diffusive regime, D is the size of the anomalous body,
and δ is the ratio of conductivity between the anomalous body and
the background medium. For the special case of portable loop-loop
EMI sensor using a rather low frequency (<20 kHz) and a rather
small loop separation (≤2 m), these conditions are valid for a wide
range of scenarios dealing with nonmetallic targets.
The second source of nonlinearity, which is associated with the

change of electric field polarization at interfaces, is defined as the
depolarization effect by West and Macnae (1991). Such an effect
does not occur for the case of a horizontally layered medium as
the electric field induced inside the subsurface is parallel to the in-
terfaces. Guillemoteau and Tronicke (2016) confirm this feature by
showing that their linear 3D forward-modeling method provides ac-
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curate responses comparable with the responses of a nonlinear 1D
forward-modeling approach for cases in which conditions 1 and 2
are fulfilled. For 2D/3D subsurface settings, this depolarization ef-
fect is present. For cases fulfilling conditions 1 and 2, Guillemoteau
and Tronicke (2016) also find that linear 3D forward modeling (1) is
capable of modeling the structure and bulk conductivity for 2D/3D
resistive isolated bodies (with respect to the background setting) and
(2) is capable of characterizing the structure of conductive isolated
2D/3D bodies (with respect to background setting) but it underes-
timates their true electrical conductivity. These results show that the
depolarization effect is critical for conductive isolated bodies. How-
ever, in both scenarios, the approximate 3D forward-modeling
approach allows for a correct structural characterization of the sub-
surface conductivity distribution.
Finally, when the conditions given in equations 1 and 2 are ful-

filled, the approximate 3D forward-modeling method is as reliable
as a nonlinear 1D forward-modeling method in a horizontally layered
setting, and, for 2D/3D settings, it allows the correct characterization
of the structural properties of the subsurface conductivity distribution.
Encouraged by these findings, we now pursue the implementation of
a 3D inversion algorithm based on the forward-modeling approach as
presented in details by Guillemoteau and Tronicke (2016).

LIN loop-loop system response

The LIN apparent conductivity reading σa (J. D. McNeill, 1980,
Geonics Ltd. Tech., note TN-6) of a portable EMI sensor can be
modeled by (Guillemoteau and Tronicke, 2015, 2016)

σa;iðx 0; y 0Þ ¼ C
ZZZ

ψ iðx 0 − x; y 0 − y; zÞσðx; y; zÞdxdydz;
(3)

where ψ iðx; y; zÞ represents the 3D Fréchet kernel of the acquisition
configuration i, which describes the instrument height, the loop sep-
aration, the loop-loop geometry, and the orienta-
tion of the instrument, and σðx; y; zÞ is the
subsurface conductivity distribution. The function
C is a constant given by (Guillemoteau and Tro-
nicke, 2016)

C ¼ −
16 πs
μ2ω2m2

; (4)

where m is the magnetic moment of the source. In
equation 3, ðx 0; y 0Þ are the lateral coordinates of
the measurement (e.g., the position of the midpoint
between the two loops) at a fixed height above the
earth surface. In Figure 1, we show a sketch illus-
trating the geometry and the scale of the consid-
ered 3D problem. In addition, in Figure 2, we
show a sketch illustrating equation 3 for the case
of a profile of a multiconfiguration EMI sensor
above an isolated conductive structure. For a con-
stant instrument configuration operating in the LIN
domain, ψ i can be considered as weakly depen-
dent on the subsurface conductivity distribution
and can be evaluated by using the reciprocity theo-
rem introduced byMcGillivray et al. (1994) for the
case of a homogeneous half-space. Tølbøll and

Christensen (2007) use this method to evaluate the sensitivity of air-
borne loop-loop systems, and Guillemoteau et al. (2015b) use it for
studying the sensitivity of ground-based, large-offset SLINGRAM
systems. For the present case, the sensitivity function is given by

ψ iðx; y; zÞ ¼ RefEi
t · Ei

rg; (5)

where Ei
t is the electric field induced into a low-conductivity half-

space by a transmitter and Ei
r is a pseudoelectric field generated by

a magnetic dipolewith the position and orientation of the receiver. The
formulas for computing the electric field generated inside a homo-
geneous half-space are given by Tølbøll and Christensen (2007), Guil-
lemoteau et al. (2015a), and Guillemoteau and Tronicke (2015), where
they are derived from a Schelkunoff potential formulation (Ward and
Hohmann, 1988). When the LIN condition is fulfilled, the skin depth
of Ei is much larger than the extent of the illuminated volume. Thus,
small-scale variations (<0.5 s) of electrical conductivity have a neg-
ligible effect on the amplitude of Ei, and the Born approximation is
widely applicable. By following the criterion provided by Habashy
et al. (1993) to evaluate the limits of the Born approximations (equa-
tion 2), this conductivity variation can be larger for smaller 3D anoma-
lous bodies and lower operating frequencies. As stated above, the
special case of a multiconfiguration EMI instrument using rather low
frequencies (<20 kHz) and a rather small loop separation (≤2 m) is
well-adapted to the proposed method. Indeed, the relation between the
LIN conductivity data recorded by such instruments and the real con-
ductivity distribution occurring inside the integral in equation 3 can be
considered as quasilinear for a large range of typical scenarios encoun-
tered in soil science, hydrologic, and archaeological applications.
However, its validity is limited for systems using rather high frequen-
cies (>20 kHz), in conductive environments (>0.5 S∕m), and for
specific applications such as modeling the response of highly conduc-
tive (e.g., metallic) objects, i.e., in cases in which conditions 1 or 2 are
not fulfilled.

Figure 1. Sketch illustrating the 3D problem for interpreting apparent conductivity maps
collected with a portable multiconfiguration EMI sensor. The volume illuminated by the
system is much smaller than the total volume of the problem.
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Forward model in the hybrid spectral-spatial �kx; ky; z�
domain

The continuum expression in equation 3 is implemented in a
discrete algorithm. We compute the LIN conductivity data provided
by a LIN loop-loop sensor at a constant height h and at different
lateral coordinates ðx 0; y 0Þ above a 3D medium composed of Nx ×
Ny × Nz rectangular cells. The 3D integral given in equation 3 also
corresponds to a 1D integral over z of 2D convolution products in
the xy-plane between infinitesimal layers of the Fréchet kernel and
the corresponding layers of the 3D model of conductivity. To ben-
efit from the properties of the convolution product in the spectral
domain, we write this forward problem in the hybrid spectral-spatial
domain ðkx; ky; zÞ (where kx and ky are the spatial frequencies).
First, the 3D distribution of conductivity σðx; y; zÞ is discretized into
Nz layers. Within each layer l, the conductivity is assumed to be
constant in the vertical direction, i.e., σlðx; y; zÞ → σlðx; yÞ. Then,
equation 3 can be written as (Guillemoteau and Tronicke, 2015,
2016)

σa;iðx0;y0Þ¼C
XNz

l¼1

Z Z
∞

−∞
ψ i
lðx0−x;y0−yÞσlðx;yÞdxdy: (6)

Here, ψ i
l is the 2D sensitivity function of the lth layer given by

ψ i
lðx; yÞ ¼

Z
zlþ1

zl
ψ iðx; y; zÞdz: (7)

Equation 6 is a sum of double integrals. In the spectral domain (de-
noted with the ∼ symbol), this simplifies to a sum of products:

~σa;iðkx; kyÞ ¼ C
XNz

l¼1

~ψ i
lðkx; kyÞ ~σlðkx; kyÞ; (8)

where ~ψ i
l is the discrete Fourier transform of the Nx × Ny grid of

sensitivity values in ψ i
l. Then, the lateral distribution of the LIN

apparent conductivity response in the space domain is obtained by
performing the corresponding Nx × Ny discrete inverse Fourier
transform of the resulting left hand side of equation 8.

INVERSE SOLUTION

The general objective of the inversion is to focus the measured
LIN apparent conductivity data as sketched in Figure 2 into con-
ductivity values centered correctly laterally and in depth.

Continuous space domain formulation

We consider the problem of jointly inverting Nc LIN apparent
conductivity data maps, where Nc is the number of different con-
figurations, i.e., different transmitter-receiver geometries such as
HCP/VCP or perpendicular configurations with a receiver oriented
in the inline direction (PERP), and variations in further acquisition
parameters such as variations in loop separation s, system height h,
or even the pitch, the roll, and the yaw (Guillemoteau and Tronicke,
2015) of the system. Figure 3a illustrates such conductivity maps
for four different configurations (Nc ¼ 4) characterized by the same
system height, pitch, roll, and yaw, but by different loop geometries
and loop separations (two PERP configurations with s ¼ 1.1 m and
s ¼ 2.1 m and two HCP configurations with s ¼ 1 m and s ¼ 2 m

noted by PERP/1.1, PERP/2.1, HCP/1, and HCP/2, respectively).
Now, the tomographic problem is to retrieve the true distribution
of conductivity σðx; y; zÞ inside the half-space having Nc observed
data maps. Typically, such inverse problems suffer from instability
due to data noise, systematic error, and the inherent smoothing in
mapping the conductivity structure from a limited number of data
points and configurations. This issue is usually handled by some
combined minimization of data misfit and model constraints. For
inverting DC data, Møller et al. (2001) invoke a Bayesian viewpoint
following Tarantola and Valette (1982). In this study, we use a
weighted sum of a data misfit L2-norm and standard smoothness
constraints (Menke, 1989; Aster et al., 2005).
For each measurement position (x 0; y 0), the data misfit term Φd

measures the sum of the absolute differences between the observed
multiconfiguration LIN apparent conductivities σObsa and the mod-
eled conductivities σMod

a :

jΦdðx 0; y 0Þj2 ¼
XNc

i¼1

½σObsa;i ðx 0; y 0Þ − σMod
a;i ðx 0; y 0Þ�2: (9)

Figure 2. Sketch illustrating the linear 3D forward-modeling approach. Example for a profile of multiconfiguration data located at y ¼ 0 m
simulated above a cubic conductive formation.
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The model parameter term Φm of the objective function is based on
common smoothness constraints, and we define the first-order 1D
difference function s1 as

s1ðνÞ ¼ δðνÞ − δðνþ ΔνÞ; (10)

where δ is the Dirac delta function and the variable ν can be either x,
y, or z. Hence, at each lateral position of the model (x; y), the x-
oriented spatial constraint term is the integral over z of the function
s1ðxÞ convolved with the 3D model conductivity:

jΦx
mðx; yÞj2 ¼ λx

Z
∞

0

½s1ðxÞ � σðx; y; zÞ�2dz: (11)

Similarly, for the y- and z-directions, we have

jΦy
mðx; yÞj2 ¼ λy

Z
∞

0

½s1ðyÞ � σðx; y; zÞ�2dz (12)

and

jΦz
mðx; yÞj2 ¼ λz

Z
∞

0

½s1ðzÞ � σðx; y; zÞ�2dz:
(13)

Here, λx; λy, and λz are the damping factors char-
acterizing the relative importance of each model
term with respect to the data misfit term. By as-
suming continuous measurements on a horizon-
tal plane at a constant height h over the ground
surface, the overall objective function Φg can be
written as

Φg ¼
Z

∞

−∞

Z
∞

−∞
jΦdj2dx 0dy 0

þ
Z

∞

−∞

Z
∞

−∞
jΦx

mj2 þ jΦy
mj2 þ jΦz

mj2dxdy:

(14)

Continuous spectral-spatial (kx; ky; z)
domain formulation

By defining the lateral coordinates of the
model grid equal to the measurement grid, i.e.,
by defining ðx 0; y 0Þ ¼ ðx; yÞ, and by using the
Plancherel theorem (Rudin, 1987), the objective
function of the tomographic problem given in
equation 14 can be written as

Φg¼
Z

∞

−∞

Z
∞

−∞
j ~Φdj2dkxdky

þ
Z

∞

−∞

Z
∞

−∞
j ~Φx

mj2þj ~Φy
mj2þj ~Φz

mj2dkxdky:

(15)

Here, and similarly for the forward model, the
symbol ∼; denotes the double spatial Fourier
transform fx → kx; y → kyg. For each spectral
position (kx; ky), the data misfit term is

j ~Φdðkx; kyÞj2 ¼
XNc

i¼1

½ ~σObsa;i ðkx; kyÞ − ~σMod
a;i ðkx; kyÞ�2; (16)

and the model regularizing terms given in equations 11–13 become

j ~Φx
mðkx; kyÞj2 ¼ λx

Z
∞

0

½~s1ðkxÞ ~σðkx; ky; zÞ�2dz; (17)

j ~Φy
mðkx; kyÞj2 ¼ λy

Z
∞

0

½~s1ðkyÞ ~σðkx; ky; zÞ�2dz; (18)

and

j ~Φz
mðkx; kyÞj2 ¼ λz

Z
∞

0

½ ~σðkx; ky; zÞ − ~σðkx; ky; zþ ΔzÞ�2dz:
(19)

Figure 3. Inversion results of the 3D MCD method for a synthetic data set computed
with the IE method. The input model is a rectangular block with a conductivity of σ ¼
0.1 S∕m embedded in a homogeneous background with σ ¼ 0.01 S∕m. The block has a
length of 5 m, a vertical cross section of 1 × 1 m, and it is centered at a depth of 0.8 m:
(a) synthetic IE data, (b) modeled data after 3D MCD imaging, (c) geometry and posi-
tion of the conductive rectangular block shown with the result of the 3D MCD imaging
for a vertical slice at y ¼ 0 m, and (d) result of the 3D MCD imaging. In (c and d), the
red surface represents an isosurface for σ ¼ 0.025 S∕m.
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The discrete spectral-spatial domain formulation

Data are acquired on a plane ðx; yÞ with a constant configuration.
In real data sets, the data space depends on the lateral sampling den-
sity. We consider a map of Nx × Ny multiconfiguration measure-
ments acquired with lateral sampling intervals of Δx and Δy on
a horizontal plane above a 3D conductive subsurface. The model
space is discretized into small elements for which the conductivity
is assumed to be constant. When the problem is posed in the
ðkx; ky; zÞ domain, it is necessary to use the same lateral discretiza-
tion for the data and the model space. Therefore, the 3D model of
conductivity is designed with rectangular cells of sizeΔx,Δy, andΔz
over a 3D medium of volume Lx × Ly × Lz, where Li is the size of
the volume in direction i. It follows that the function ~Φ is sampled
with a minimum interval ofΔkx ¼ 2 π∕Lx andΔky ¼ 2 π∕Ly in the
spectral domain. Thus, once the model and data space are properly
discretized, the data misfit term is given by

j ~Φdðkx; kyÞj2 ¼
XNc

i¼1

�
~σObsa;i ðkx; kyÞ − C

XNz

l¼1

~ψ iðkx; kyÞ ~σlðkx; kyÞ
�
2

: (20)

For a finite number of layers, equations 17–19 are given by

j ~Φx
mðkx; kyÞj2 ¼ λx

XNz

l¼1

Dl½~s1ðkxÞ ~σlðkx; kyÞ�2; (21)

j ~Φy
mðkx; kyÞj2 ¼ λy

XNz

l¼1

Dl½~s1ðkyÞ ~σlðkx; kyÞ�2; (22)

and

j ~Φz
mðkx; kyÞj2 ¼ λz

�XNz−1

l¼1

Dl½ ~σlðkx; kyÞ − ~σlþ1ðkx; kyÞ�2

þDNz½ ~σNz−1ðkx; kyÞ − ~σNz
ðkx; kyÞ�2

�
; (23)

where Dl corresponds to the thicknesses resulting from the vertical
discretization. Hence, the damped least-squares problem minimizing
~Φ ¼ j ~Φdj2 þ j ~Φx

mj2 þ j ~Φy
mj2 þ j ~Φz

mj2 for each spectral number
(kx; ky) is equivalent to an ordinary least-squares problem (Aster et al.,
2005) and can be written as

min ð ~Φðkx; kyÞÞ ¼ min

����
�
~Gðkx; kyÞ
Wm

�
~σ −

�
~σObsa ðkx; kyÞ

0

�����
2

:

(24)

Here, ~Gðkx; kyÞ is a Nc × Nz matrix containing the function
~ψ iðkx; kyÞ and Wm is a matrix of size 3Nz × Nz containing the
smoothness constraints, and it is given by

Wm ¼
2
4 λx ~s1ðkxÞD
λy ~s1ðkyÞD
λzDL

3
5; (25)

where D is a diagonal matrix containing thicknesses of the layers Dl

and L is the first-order 1D smoothness matrix applied to the vertical
direction of the model. The solution ~σ of the linear least-squares prob-
lem formulated in equation 24 is given as

~σðkx; kyÞ ¼ ð ~GT ~Gþ SÞ−1 ~GT ~σObsa ; (26)

where the Nz × Nz smoothness matrix S can be written as

S ¼ WT
mWm ¼ λ2xj~s1ðkxÞj2DTDþ λ2yj~s1ðkyÞj2DTD

þ λ2zDTDLTL: (27)

By setting λx, λy, and λz to vary with the wavenumbers (kx; ky), it is
possible impose a structural anisotropy at a selected scale. However,
in our study, we simulate contexts with minimum a priori informa-
tion. Therefore, we use a constant weight λ ¼ λx ¼ λy ¼ λz for all
the wavenumbers. This means that we do not force the model to show
some structural anisotropy at any scales of variation. The value of λ is
selected using an OCCAM procedure (Constable et al., 1987); i.e.,
we take the largest value that fits the data according to a predefined
amount noise in the data set. As an example, for a final global root-
mean-square (rms) error of 4%–5%, we found a value of λ ≈ 2� 1

for various synthetic data sets, and several real data sets collected at
different field sites. After this problem is solved for each wavenumber
(kx; ky), the 3D distribution of the conductivity in the space domain is
obtained by performing a double inverse Fourier transform of the
solutions:

σðx; y; ½z1 · · · zl · · · zNz
�Þ ¼ F−1½ ~σðkx; kyÞ�: (28)

Thus, we can see that when the problem is formulated in the (kx; ky; z)
domain, the 3D inversion consists of performing Nx × Ny inversions
with kernels of size Nc × Nz. This method requires much less
memory and is much faster than a 3D inversion in the space domain,
which considers Nc × Nx × Ny data and Nx × Ny × Nz parameters
that would require inversion of a ðNc × Nx × NyÞ × ðNx × Ny × NzÞ
matrix.

SYNTHETIC EXAMPLES

We apply our MCD approach to a synthetic data set (Figure 3)
computed using the program Marco440 (Raiche, 2008). Marco440
is based on a 3D IE method and can model EMI responses accord-
ing to the full-accuracy Maxwell theory. In the example, we spe-
cifically look at the instrument used later on for collecting our
field data (DUALEM21s), which measures four configurations si-
multaneously at a frequency of 9 kHz: two PERP (with a x-oriented
receiver) configurations (PERP/1.1 and PERP/2.1) with loop separa-
tions of s ¼ 1.1 m and s ¼ 2.1 m, and two HCP configurations
(HCP/1 and HCP/2) with s ¼ 1 m and s ¼ 2 m. The conductivity
model (see Figure 3c) consists of a conductive rectangular block
(σp ¼ 0.1 S∕m) elongated in the y-direction and embedded in a
homogeneous background with a conductivity of σb ¼ 0.01 S∕m.
The synthetic data set consists of four 40 × 40 m maps of x-directed
lines with an inline sampling interval of Δx ¼ 0.1 m and a crossline
sampling interval of Δy ¼ 0.5 m. In Figure 3a, we show the syn-
thetic IE data for the four configurations acquired at a height of
h ¼ 0.25 m. The data maps are displayed for an area of 10 × 10 m

centered across the conductive body. Following Guillemoteau and
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Tronicke (2016), the used 3D forward-modeling approach needs a
sufficiently dense data sampling and a minimum map size to avoid
any artifacts resulting from the transformation to the spectral domain.
Hence, for the inversion, the space and the data have been gridded
with 0.1 m × 0.1 m ×Dz blocks, whereDz corresponds to the thick-
nesses of 40 layers. The functionDz increases with depth to resemble
the decrease in resolution with increasing depths of such surface-
based EMI data. The size of the maps and the models is extended
to 100 × 100 m; i.e., data have been extrapolated.We set the extrapo-
lated data equal to the background responses of each channel. The
sensitivity functions for the 3D MCD were preliminarily computed
for a frequency of 9 kHz, a height of h ¼ 0.25 m, and for a homo-
geneous half-space with a conductivity of σ ¼ 0.01 S∕m. This set-
ting corresponds to a rather LIN (≈0.03), and we can thus use the
half-space sensitivity function for the LIN approximation.
The 3D MCD takes three minutes with a MATLAB code running

on a single standard working station. The result of the MCD is a 3D
model of electrical conductivity over the extended 100 × 100 m

area, but it is shown in Figure 3d over a smaller area focusing on
the anomalous body. We see that the isosurface σ ¼ 0.025 S∕m can
retrieve the structure of the conductive body. A vertical slice of the
solution located at y ¼ 0 m is shown in Figure 3c and 3d with the
true model that serves to compute the synthetic data. This synthetic
example shows that the 3D MCD method permits a reconstruction
of a realistic distribution of electrical conductivity in the ground
from multiconfiguration signals recorded at the ground surface.
However, the maximum value of conductivity shown in the final
3D image is approximately 0.04 S∕m, which is less than the true
electrical conductivity of the rectangular block. This result must
be expected from the limitation of the forward-modeling approach
(Guillemoteau and Tronicke, 2016).
We performed an additional test with a synthetic data set com-

puted for the same four-configuration system, but for a more com-
plex distribution of electrical conductivity and
also using a realistic level of noise. The input
model is a checkerboard-like structure embedded
inside a layered medium (Figure 4). The back-
ground layered medium consists of two layers:
a rather conductive surface layer (σ1¼0.05S∕m)
with thickness of d1 ¼ 0.2 m and a half-space
with conductivity of σ2 ¼ 0.01 S∕m. The check-
erboard structure is located in the second layer,
and it is composed of 1 × 1 × 1 m cubes with
conductivity of σc ¼ 0.1 S∕m. Similar to the
previous synthetic example, data have been si-
mulated by the IE method for a system height
of h ¼ 0.25 m. The inline sampling is Δx ¼
0.2 m, and the interline distance is Δy ¼ 0.5 m.
The profiles are parallel to the x-direction, and
the acquisition direction is toward increasing
the x-coordinates. Gaussian noise with a standard
deviation of 0.2 mS∕m was added to the mod-
eled data to simulate realistic field data. The
modeled noisy data are shown in Figure 5a after
interpolation to a 0.1 × 0.1 m grid.
We invert this data set by using our 3D MCD

approach, and we compare the result with the re-
sult obtained by a point-by-point 1D nonlinear
inversion approach. The 1D inversion was per-

formed using an in-house algorithm (Guillemoteau et al., 2016)
with 25 layers and vertical smoothness constraints. For the 3D
MCD method, we used the same sensitivity function characteristics
as for the previous synthetic case (a frequency of 9 kHz, a system
height of h ¼ 0.25 m, and σ ¼ 0.01 S∕m). For the 3D and the 1D
inversions, the synthetic data were fitted to within an rms error of
4%. The resulting modeled data are shown in Figure 5b and 5c.
First, the 3D MCD approach is computationally more efficient than
the 1D inversion of the full data set (minutes versus days). More
importantly, comparison of the vertical (Figure 6a and 6b) and the
horizontal slices (Figure 6c and 6d) demonstrates the benefit of the
3DMCD approach for imaging such a complex distribution of elec-
trical conductivity. As expected, the 1D approach shows significant
artifacts, whereas the smooth model provided by the 3D MCD ap-
proach focuses the local structure correctly in the horizontal direc-
tions. In the vertical slice, we see that neither of the 1D nor the 3D
inversion approaches are able to accurately reconstruct the vertical
variations present in the input model (e.g., the interface between the
uppermost layer and the cubes) because our data sets are limited
and, thus, do not allow us to resolve such details. On the other hand,
such dual-configuration-type data sets (2 HCP and 2 PERP configu-
rations) are less ambiguous for mapping small-scale lateral varia-
tions as demonstrated in Figure 6c, in which we notice that the
final image is in good agreement with the true horizontal distribu-
tion of conductivity. Similar to the first synthetic example, the elec-
trical conductivity of the cubes is underestimated relative to the true
conductivity of the target due to the limited accuracy of the used
forward-modeling approach and because of the constraints of the
inversion. However, the conductivity of the uppermost layer is cor-
rectly estimated confirming that the present modeling approach is as
precise as a standard nonlinear 1D method in a horizontally layered
LIN context.

Figure 4. Different visualizations of the input model for the second synthetic example,
composed of 41 conductive 1 × 1 × 1 m cubes forming a checkerboard-like structure
embedded inside a layered medium consisting of two homogeneous layers. The top
of the cubes are located at a depth of z ¼ 0.3 m. The cubes are characterized by a con-
ductivity of σc ¼ 0.1 S∕m, and they are embedded in the second layer with a conduc-
tivity of σ2 ¼ 0.01 S∕m. The first layer of the background medium is characterized by a
thickness of d1 ¼ 0.2 m and a conductivity of σ1 ¼ 0.05 S∕m.
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FIELD EXAMPLE

Now, we apply our 3D MCD approach to a
field data set acquired in Paulinenaue, Germany,
using a DUALEM21s instrument. As discussed in
the previous section, the DUALEM21s operates at
a frequency of 9 kHz with a maximum loop sep-
aration of 2.1 m. According to these parameters,
our MCD approach is limited to environments
with conductivities lower than <0.5 S∕m because
the induction number reaches a value of 0.28 for
the s ¼ 2.1 m channel. However, as discussed
by Guillemoteau and Tronicke (2016), our for-
ward-modeling approach can be applied in many
archaeological or agricultural studies in which the
electrical conductivity is often less than 0.5 S∕m.
This is the case for the field site studied here,
which consists of peat layers and lenses deposited
in a sandy background. In this area, the subsurface
shows strong vertical and lateral changes of elec-
trical conductivity between the sand (which can be
rather dry near the surface) and the peat layers.
However, the maximum measured apparent con-
ductivity is approximately 0.1 S∕m.

Acquisition and preliminary processing
In the field test of the MCD method, data were

recorded at a constant height and with a regular
lateral sampling as far as possible. The instru-
ment was mounted on a cart to control and fix
the instrument height as well as to reduce acquis-
ition-related noise. During data acquisition, the
position of the cart is measured by using a self-
tracking total station comparable to Böniger and
Tronicke (2010). Data are recorded at a rate of
5 Hz resulting in an inline data-point spacing
of approximately 0.1 m. The distance between
profiles is 0.5 m. This sampling density is suffi-
cient to avoid artifacts, when interpolating the
data onto a regular grid as required for applying
our MCD approach. In the following, the x-axis
is defined parallel to the profiles.
The recorded data set consists of 4 × 97;470 ¼

389;880 data points recorded across a nonsquare
area, and it is shown in Figure 7a–7d after being
interpolated onto a regular 0.1 × 0.1 m grid. The
shape and the rather small size of the survey area
illustrate the typical issues that have to be con-
sidered before applying the MCD method. First,
our data have to be extrapolated over a larger
square map to be accurately handled by our 3D
MCD algorithm.We extrapolate the data to reduce
the edge effect at the border of the actual area and
to obtain a sufficient map size for the MCD ap-
proach. Note that because the footprint of the EMI
system is small compared with the area covered
by the maps, the extrapolated data have no influ-
ence on the result in which data have been re-
corded, except close to the border of the maps. In

Figure 5. Comparison between (a) the input noisy synthetic data and the modeled data
after (b) the fast 3D MCD method, and (c) the 1D nonlinear inversion. The 1D and 3D
methods provide models that fit the synthetic data with an rms error of 4%.

Figure 6. Comparison between (a) the fast 3D MCD imaging and (b) the point-by-point
1D nonlinear inversion for a vertical slice located at y ¼ 0 m. Comparison between
(c) the fast 3D inversion and (d) the point-by-point 1D nonlinear inversion for a hori-
zontal slice located at z ¼ 0.5 m. In panels (a and b), the true interface between the two
layers and the surface of the cubes are shown by the black lines. In panels (c and d), the
true lateral positions of five selected cubes are highlighted. Note that the 1D inversion
produces a worst-case lateral resolution by modeling the conductive blocks exactly be-
tween the actual positions of the conductive blocks.
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addition, we have to consider that data were recorded in the vicinity
of a metallic fence, and somemanmade metallic objects are present in
the subsurface (see Figure 7a–7d). Because the MCD approach is not
adapted for imaging such small metallic objects and to limit the im-
aging artifacts related by these objects, the affected data are muted
locally. Then, the resulting data gaps are reinterpolated. We also
removed 4 m at the end of each profile to avoid artifacts related
to the fence. The resulting data maps are shown in Figure 7e–7h.
The range of measured LIN apparent conductivity values varies from
1–5 mS∕m (in sand-dominated areas) to 50–100 mS∕m (in peat-do-
minated areas).
In addition to the EMI measurements, 62 drillholes were avail-

able along nine profiles that are shown by the dashed lines in Fig-
ure 7a, and for one of the profiles (y ¼ 10 m), a ground-penetrating
radar (GPR) profile was collected. The drillholes were positioned
across the peat deposit to evaluate its thickness. The GPR section
was collected in the constant offset mode with a nominal center fre-
quency of 100 MHz and processed using a basic standard process-
ing flow including frequency filtering and amplitude scaling. Here,
the GPR data serve to continuously detect the bottom of the peat
layer between the drillholes along the profile y ¼ 10 m. In addition
to the GPR constant offset profile, several GPR common-midpoint
(CMP) soundings were performed over the peat deposit to evaluate
its GPR velocity.

Inversion results

The 3D inversion of the collected data set determines the electrical
conductivity within a 100 × 100 × 50 m grid with a sampling
of 0.1 m × 0.1 m ×Dz, where Dz is the thickness of 40 layers that
increases with depth. Thus, the parameter space consists of 1000 ×
1000 × 40 ¼ 40 × 106 cells. The 3D inversion of the 4 × 1000×

1000 interpolated data (originally 389,880 collected data points)
for determining the electrical conductivity for these 40 × 106 param-
eters takes three minutes on a standard modern laptop computer. As a
comparison, a point-by-point 1D nonlinear inversion of the original
389,880 data points with 40 layers takes some days in our MATLAB
implementation. Optimized implementation will reduce this time, but
still the 1D nonlinear inversion will take a significantly longer time.
In Figure 8, we compare the result of the 3D inversion along the nine
selected profiles with the peat-thickness data as provided by the drill-
holes. We see that the 3D MCD model is in accordance with the
ground truth provided by the boreholes. Overall, the 3D inversion
of this four-configurations EMI data set provides a good idea of the
spatial extent of the dry sand (σ < 0.01 S∕m), the saturated sand
(0.01 < σ < 0.03 S∕m), and the peat layers (σ > 0.05 S∕m).
For a selected profile at y ¼ 10 m, we also compare the result of

the 3D inversion with the result of the 1D nonlinear inversions and a
GPR profile acquired along the same line (Figure 9). In Figure 9a,
the modeled data for the 1D and fast 3D EMI forward-modeling
methods are compared with the observed data. The 1D and 3D in-
version methods have been set to provide a comparable data fit with
an rms within 4%–5%. In Figure 9b and 9c, respectively, we show
the results of the point-by-point 1D stitched inversions along the
profile and the result of the linear 3D inversion. In Figure 9d, we
show the constant offset GPR profile. A time-to-depth conversion
and a topographic correction have been performed assuming a con-
stant GPR velocity of 0.04 m/ns, which has been derived from the
analysis of the CMP soundings performed over the peat layer. A
rather clear GPR reflector is related to the interface between the
bottom of peat deposit and the sandy background. After the time-
to-depth conversion, this reflector is in good agreement with the peat
thickness data obtained by the drillholes along the considered profile.
This result confirms the rather low GPR velocity in the peat layer.

Figure 7. DUALEM21s data set collected in Paulinenaue, Brandenburg, Germany: (a-d) original data set contaminated by local anomalies
related to metallic objects and (e-h) edited and extrapolated data in which isolated anomalies related to metallic objects have been removed. In
panel (a), the dashed lines indicate the nine profiles in which the 62 drillhole soundings have been performed.
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The depth to the bottom of the peat layer from the GPR profile is
shown together with the drillholes results over the conductivity sec-
tions obtained by the inversion of EMI data in Figure 9b and 9c.
Overall, we see that the results of the 3D MCD method show

better agreement with the drillholes and the GPR results than the
results of the point-by-point 1D nonlinear inversion (compare Fig-
ure 9b and 9c). Indeed, despite a point-by-point data fit comparable
with the data fit of the 3D MCD method, the 1D method shows
several kinds of artifacts, which are not visible in the results of
the 3D MCD method. The first kind corresponds to the rather slight
lateral instability of the 1D inversion results (see the white circle in
Figure 9b) inherent to a point-by-point inversion. Because these
high-frequency lateral artifacts are weak and of limited scale, they
are not critical for the geologic interpretation. It is possible to sta-
bilize these small-scale lateral variations by using a laterally con-
strained 1D inversion approach (Santos, 2004; Auken et al., 2005).
The second kind of artifact is more critical for the interpretation,
and it is related to 2D/3D formations (see the rectangles highlight-
ing several zones in Figure 9a and 9b). Zone 1 corresponds to a
situation in which the system is over the resistive dry sand but
starts to be sensitive to the nearby peat layers. For a given geom-
etry, the larger the lateral extent of the illuminated volume, the
earlier the peat layer is detected in the profile. Hence, we see
(e.g., black dots in Figure 9a) that the HCP2 configuration is
the first one to detect the peat layer along the profile, and that
the PERP1.1 is the last. As a consequence, the 1D inversion results
in a deep conductive body laterally shifted relative to its true po-
sition (artifact 1 in Figure 9b). Zone 4 presents a similar context as
zone 1 for a transition between a thin peat deposit and a thicker
peat deposit. Zones 2, 3, and 5 (especially zone 3) show complex
2D/3D responses due to lateral variations of the conductivity that
are smaller than the footprint of each configuration. For example,

in such a context, the HCP responses show an anomaly composed
of a central downward peak surrounded by two upward peaks. The
PERP responses show a single noncentered upward peak. Once
the four configurations of the present system are taken together,
we can see (clearly in zone 3) that the two PERP noncentered up-
ward peaks coincide with the first noncentered upward peaks of
the two HCP anomalies. To fit this max-min-max feature of the
HCP channels, the 1D inversion has to define more conductivity
at the flanks and less conductivity in the middle. Furthermore, to
fit the left-skewed PERP signal, the 1D inversion has to increase
the conductivity more on the left side than on the right side. In
contrast, the 3D linear inversion fits all these signal forms with
a single local maximum in conductivity at x ¼ 25 m.
Overall, the 1D outcome can lead to an interpretation of the thick-

ness of the peat deposit, which is not in accordance with the trend
observed by our borehole and GPR data. The presence of these ar-
tifacts as well as the good 1D data fit clearly illustrate how the 1D
nonlinear inversion can be more limited than the present 3D linear
approach even in a weak 2D/“quasi-1D” context as often encoun-
tered in soil sciences or hydrology. To summarize, in the present
context, the nonlinear 1D and the MCD provide approximate sol-
utions, but the MCD correctly images the structural characteristics
present at our field site (Figure 9c). By merging the results obtained
by the 3D inversion of EMI data, the GPR profile analysis and the
drillhole peat-thickness data, we could build the geologic model as
shown in Figure 9d.

DISCUSSION

Limitations of the 3D linear MCD method

Our method assumes the validity of the LIN approximation; i.e.,
sensor spacing, source frequency, and ground conductivity together

must fulfill equation 1. Moreover, it underesti-
mates the conductivity of isolated bodies that
are more conductive than the background. Data
must be sampled densely and with high relative
position accuracy to honor the sophisticated 2D
lateral deconvolution of signal waveforms. Be-
cause the computation is based on deconvolution
via the 2D Fourier transform, the data domain
must be large, and the method does not work well
close to the edges of the measured grid. Even for
a large grid in a generally moderate-conductivity
regime such as the field example above, some
preprocessing is mandatory, in which responses
from metallic object (not fulfilling equation 2)
are recognized and removed. In addition, the grids
are padded by smooth extrapolation to rectangular
grids as needed for a 2D Fourier transform.

Merits of the 3D linear MCD method

As long as equations 1 and 2 are fulfilled, it al-
lows the robust characterization of structural prop-
erties of the subsurface conductivity distribution.
The inverse computations are almost instantane-
ous. The kernels ψðx; y; zÞ can be precomputed
for a specific field instrument. The remaining for-
ward and inverse Fourier transforms and matrix

Figure 8. Results of 3D MCD imaging of our field data set visualized using selected
inline and crossline slices through the final 3D model. The vertical slices are compared
with the peat thickness as observed in boreholes (black vertical bars). The locations of
the profiles are illustrated in Figure 7a.
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multiplications will run at a speed similar to the rendering of the as-
sociated displays of the resulting 3D model cube. It follows that this
method is a natural near-instant inversion of LIN-EMI data. Sub-
sequently, users may choose also to do nonlinear modeling such
as the much slower point-by-point 1D inversion, keeping in mind that
it will fail where the fast 3D MCD predicts rapid lateral variations.

Extending the application domain to higher
conductivity

If the subsurface is characterized by high conductivities resulting
in induction numbers exceeding the LIN condition, it is possible to

compute sensitivity kernels using a Born approximation not relative
to conductivity fulfilling the LIN condition but relative to this higher
average conductivity. This will extend the validity of the MCD pro-
vided that the 3D conductivity anomalies are not too strong (accord-
ing to equation 2).

CONCLUSION

A fast 3D MCD method was applied to electromagnetic loop-
loop data. Synthetic tests performed at LINs, as it is found in many
applications including soil sciences, hydrology, and archaeology,
showed that the inversion method gave a very satisfactory resolution

Figure 9. Comparison between the 3D MCD imaging, the 1D nonlinear inversion result, a GPR profile, and the peat thickness observed in
several boreholes for a selected profile at y ¼ 10 m: (a) observed and modeled data along the profile. The 1D and 3D inversions were set to fit
the data with a relative rms within 4%–5%. The rectangles delimit areas where the 2D/3D effects are identified. The black dots correspond to
the position at which the system detects the lateral contrast located further in the profile, (b) result of the point-by-point 1D nonlinear inversion
for 25 layers with vertical smoothness constraints. The rectangles delimit the 2D/3D artifacts related to the lateral variation of conductivity,
(c) result of our 3D MCD method, (d) GPR section on the same profile, and (e) geologic interpretation.
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of structure at wavelengths of the order of the tool length. This con-
trasted the commonly used point-by-point 1D nonlinear inversion
that suffers from notorious 2D/3D artifacts, and it even gave oppo-
site polarities when applied to a laterally oscillating test pattern.
A field test confirmed these findings. A four-configuration data
set sampled with spacing of 0.1 × 0.5 m was interpolated to
0.1 × 0.1 m and extrapolated to 1000 × 1000 samples before de-
convolution. The fast 3D MCD delivered simple structure in good
agreement with 62 drillings and produced a data fit within 4%–5%.
For comparison, the 389,880 sounding points were inverted by a 1D
nonlinear inversion method. The resulting model volume showed
several examples of artifacts characterized by small-scale variations
in conductivity.
Where the LIN condition is fulfilled and contrasts are moderate,

our 3D inversion approach will yield significant lateral focusing of
conductivity structure and vertical resolution, depending on the
number of configurations available. Where contrasts and induction
numbers are higher, this inversion will not be quantitatively correct,
but the lateral focusing will still reveal the most important structural
characteristics. We therefore propose that regularly sampled loop-
loop EMI data are routinely subjected to this very rapid inverse
modeling method. Often this inversion will be of sufficient quality;
under all circumstances, it will provide a first estimate before so-
phisticated nonlinear inversion procedures — preferably multidi-
mensional — are applied.
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