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ABSTRACT
We present a new, fast and versatile method, the lateral parameter correlation method,
of invoking lateral smoothness in model sections of one-dimensional (1D) models.
Modern, continuous electrical and electromagnetic methods are capable of recording
very large data sets and except for a few cases, standard inversion methodology still
relies on 1D models. In environments where the lateral rate of change of resistivity is
small, 1D inversion can be justified but model sections of concatenated 1D models
do not necessarily display the expected lateral smoothness.

The lateral parameter correlation method has three steps. First, all sounding data
are inverted individually. Next, a laterally smooth version of each model parameter,
one at a time, is found by solving a simple constrained inversion problem. Identity
is postulated between the uncorrelated and correlated parameters and the equations
are solved including a model covariance matrix. As a last step, all sounding data are
inverted again to produce models that better fit the data, now subject to constraints
by including the correlated parameter values as a priori values. Because the method
separates the inversion from the correlation it is much faster than methods where
the inversion and correlation are solved simultaneously, typically with a factor of
200–500.

Theoretical examples show that the method produces laterally smooth model sec-
tions where the main influence comes from the well-determined parameters in such
a way that problems with equivalence and poor resolution are alleviated. A field ex-
ample is presented, demonstrating the improved resolution obtained with the lateral
parameter correlation method. The method is very flexible and is capable of coupling
models from inversion of different data types and information from boreholes.

INTRODUCTION

Over the past half a century, electrical and electromagnetic
methods have been used to solve a huge variety of envi-
ronmental and hydrogeophysical problems (Fitterman 1987;
Sandberg and Hall 1990; Taylor, Widmer and Chesley 1992;
Albouy et al. 2001; Sørensen et al. 2005; Auken et al. 2006).
More and more, single-site applications of various methods
have given way to the use of continuous, measure-while-
moving methods, both ground based and airborne and it has
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become economically possible to investigate extensive areas
with fairly dense coverage. Among the continuous geoelectri-
cal methods can be mentioned multi-electrode systems for DC
resistivity measurements (Dahlin 1996; Bernstone and Dahlin
1999) and the pulled-array continuous electrical sound-
ing (PACES) system (Sørensen 1996) and others (Panissod,
Lajarthe and Tabbagh 1997). Airborne systems in both fre-
quency and time-domain, today often helicopter-borne, are
finding increased use. The frequency domain HEM method
(Sengpiel and Siemon 2000; Siemon 2001; Tølbøll and Chris-
tensen 2006) and airborne transient systems (Balch et al.
2002; Eaton et al. 2002), including the recent SkyTEM system
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(Sørensen and Auken 2004), have been used in hydrogeophys-
ical investigations to map deep, buried valley aquifers, salt wa-
ter intrusion, capping clays, etc. A general characteristic of co-
ntinuous methods is that they produce very large data sets and
quantitative inversion of the data becomes time consuming.

For a number of reasons, inversion of electrical and electro-
magnetic data still relies on 1D models to a large extent. First
of all, inversion with 1D models is considerably faster than
multidimensional inversion and for large data sets computa-
tion time is an issue even with modern computers. Secondly, a
1D formulation can be justified if the lateral rate of change of
the subsurface resistivity is small, which is often the case in lay-
ered sedimentary environments. Thirdly, inversion programs
for full non-linear 2D inversion, not to speak of 3D inversion,
are simply not commercially available for some data types,
e.g. airborne frequency and time-domain data. Fourthly, even
if they are, as is the case for geoelectrical data, most of them
employ finely discretized models in a regularized inversion,
resulting in smooth minimum-structure models without sharp
boundaries between formation boundaries (Oldenburg and
Li 1994; Loke and Barker 1996; Loke, Acworth and Dahlin
2003). Exceptions are the method presented by Smith et al.
(1999) and by Auken and Christiansen (2004) who developed
a sharp boundary 2D inversion for plane wave and geoelec-
trical data, respectively. Olayinka and Yaramanci (2000) pre-
sented a method for 2D inversion of DC resistivity data using
a set of rectangular blocks of homogeneous resistivity.

The use of 1D inversion techniques for interpretation of
sounding data is of course not unproblematic. The individu-
ally inverted models are likely to suffer from the influence of
2D and 3D structures and even when the 1D assumption is jus-
tified, model sections of concatenated 1D models do not nec-
essarily display much of the expected lateral smoothness. The
challenge is therefore to develop a method that combines the
use of the conventional 1D formulation with lateral continuity
in a quantitative manner. The method should, as a minimum,
allow for the inclusion of different data types and provide a
sensitivity analysis of the model parameter resolution.

Different techniques invoking lateral smoothness of 1D
model sections have been published in the literature: Gyulai
and Ormos (1999) presented a procedure for interpretation of
DC resistivity data using 1D models. Lateral model continuity
is ensured by expressing the model parameters through later-
ally slowly-varying functions expanded into power or har-
monic function series and by solving the inversion problem in
terms of the coefficient of the expansion. Another approach
was described by Santos (2004), who used a 2D roughness
matrix with 1D models to produce laterally smooth models.

Auken et al. (2005) suggested a laterally constrained inver-
sion procedure that simultaneously solves for all 1D models,
including lateral constraints on any number of model param-
eters and model parameter combinations. The output models
are accompanied by a comprehensive sensitivity analysis of
the model parameter resolution that includes the effect of the
applied lateral constraints. Recently, Brodie and Sambridge
(2006) have presented the ‘holistic inversion’ concept in which
inversion is carried out on both model parameters and con-
figuration and calibration parameters. For every parameter, a
regular 2D rectangular grid is defined and the value of model
parameters is defined by their node values. The node values
are found by expressing the parameter values at the measuring
points as spline coefficients relating to the node points and by
simultaneously inverting all data sets.

The dilemma of 1D inversion of large data sets is that:
1 fitting the data with individual models will often produce
model sections that are geologically unlikely;
2 invoking lateral smoothness by expressing the model pa-
rameters through functions defined by a fairly small set of
parameters will not permit complexity where it is in fact re-
solved (Gyulai and Ormos 1999; and – to a certain extent –
Brodie and Sambridge 2006);
3 full, simultaneous inversion of a large number of data sets
can become computationally very heavy (Auken et al. 2005).

In the following sections we will present a new method
for obtaining laterally smoothly varying 1D models which we
have named: the lateral parameter correlation method. The
method is of an iterative nature, separating the 1D inversions
from the lateral correlation. Initially, all soundings are in-
verted individually with 1D models, all with the same number
of layers. Subsequently, the lateral correlation is carried out on
the model parameters, one at a time. A laterally smooth ver-
sion of each parameter is found by solving a simple inversion
problem. Identity is postulated between the model parameters
of the initial inversion and the smooth version and the equa-
tions are solved including a model covariance matrix. The a
posteriori model covariance matrix of the inversion problem
of the correlation provides uncertainty estimates of the corre-
lated parameters. As a last step, all sounding data are inverted
again, now subject to constraints by including the correlated
parameter values as prior values with an uncertainty equal to
the uncertainty estimate on the correlated values.

1D INVERSION OF EM D ATA

There are numerous approaches to the inversion of EM data
with a 1D model consisting of horizontal, homogeneous and
isotropic layers. The one we shall refer to in this paper is

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 57, 899–929



A lateral model parameter correlation procedure 921

a well-established iterative damped approach (Menke 1989).
Formally, the model update at the n-th iteration is given by

mn+1 = mn + [
GT

n C−1
obs Gn + C−1

prior + RTC−1
R R + λI

]−1 ·[
GT

n C−1
obs (dobs − g (mn)) + C−1

prior

(
mprior − mn

)
+ RTC−1

R (−Rmn)
]

(1)

where m is the model vector containing the logarithm of the
model parameters, Gn is the Jacobian matrix containing the
derivatives of the data with respect to the model parameters, T
is the vector transpose (and conjugate, if complex), Cobs is the
data error covariance matrix, Cprior is the covariance matrix
of the prior model, R is the roughening matrix containing 1s
and −1s for the constrained parameters and 0s at all other
places, CR is the covariance matrix describing the strength of
the correlation constraint, λ is the Marquard damping factor,
I is the identity matrix, dobs is the field data vector, g (mn) is
the nonlinear forward response vector of the n-th model and
mprior is the prior model vector. In this study, as in most other
works, the data noise is assumed to be uncorrelated, implying
that Cobs is a diagonal matrix.

1D inversion is carried out with both few-layer and multi-
layer models. In the few-layer inversion, the layer resistivities
and the thicknesses are free to vary and no constraints are
applied to combinations of model parameters, corresponding
to an exclusion of the R-term in equation (1). Generally, the
few-layer inversion aims at minimizing the data misfit using
a specific, small amount of layers. In the multi-layer inver-
sion, the layer boundaries are totally fixed and only the layer
resistivities are free parameters. The inversion is regularized
through vertical constraints – the R-term in equation (1) – en-
suring identity between neighbouring layer resistivities within
a given relative uncertainty.

The model parameter uncertainty estimate relies on a linear
approximation to the posterior covariance matrix, Cest, given
by

Cest = [
GTC−1

obs G + C−1
prior + RTC−1

R R
]−1

(2)

where G is based on the final model. The analysis is given by
the standard deviations of the model parameters, obtained as
the squareroot of the diagonal elements of Cest (e.g. Inman,
Ryu and Ward 1975).

THE LATERAL PA R A ME T E R C OR R E LATION
METHOD

In the following section, a quick overview is given of the LPC
methodology. More details and a deeper discussion are given

in the subsequent section. The lateral parameter correlation
method consists in the following three steps:
1 Individual inversion: the first step is to invert the soundings
in the ordinary uncorrelated way. The LPC method is then
applied to the individually inverted models.
2 Lateral correlation: having obtained the individually in-
verted models, the correlation is carried out on the model
parameters, one at a time. Correlation can be done not only
on the model parameters: layer resistivities and layer thick-
nesses but also on depths to layer boundaries. The values
of the selected parameter for all models are collected in the
parameter vector p The correlation is formulated as a con-
strained inversion problem where p plays the role of the data
vector and the model vector that we wish to find, pcor, is a
smoother version of p. The forward mapping between p and
pcor is given by

p = I pcor + e (3)

where I is the identity matrix and e is the observational error.
The smoothing is realized by inverting the above relationship
incorporating a model covariance matrix, Cm, containing the
elements

Ci, j
m = σ 2

0 exp(−ri, j ) (4)

where ri,j is the normalized distance between the i-th and the
j-th model position and σ 0 is the standard deviation of the cor-
relation for the model parameter in question. The normalized
distance is defined by

ri, j =
√(

xi − xj

Lx

)2

+
(

yi − yj

Ly

)2

(5)

where Lx and Ly are the correlation lengths in the x- and y-
directions, respectively. Applying no other constraints to pcor,
the solution of equation (3) can be formulated as:

pcor = (
I TC−1

p I + C−1
m

)−1
I TC−1

p p = (
C−1

p + C−1
m

)−1
C−1

p p
(6)

Cp is a diagonal error covariance matrix of the uncorrelated
parameters. Its elements are the variances of the parameters
of the uncorrelated models, i.e., it is built from the diagonal
elements of the posterior covariance matrices of the individual
inversions for the pertinent parameter, Cest, in equation (2).
The standard deviations of the correlated model parameters,
pcor, are finally found as the squareroot of the diagonal ele-
ments of the linear approximation to the posterior covariance
matrix Clpc

est given as

Clpc
est = (

C−1
p + C−1

m

)−1
(7)
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3 Final inversion: as a consequence of the smoothing involved
in the correlation process, the correlated models do not gener-
ally fit the data as well as the uncorrelated models. To remedy
this without giving up the smoothness of the correlated mod-
els, a subsequent constrained inversion of the field data is
performed with the correlated values pcor as a priori values
on the model parameters, the mprior vector of equation (1). The
covariance matrix of the a priori values, the Cprior of equation
(2), is taken to be diagonal, i.e., there is no cross correla-
tion between the laterally correlated parameters and it is de-
fined by the variance of the correlated model parameters, i.e.,
Cprior = diag(Clpc

est ).
Let us consider each step in more detail.

The individual inversions

Normal care should be taken in the individual inversions in
terms of defining a proper data error covariance matrix and
ensuring convergence of the inversion. A priori information
can be included in the inversion at this stage but it is most
often better to save it for the LPC procedure.

The lateral correlation

It is clear that the lateral parameter correlation method can
only be applied to models having the same number of layers.

The standard deviation of the correlation, i.e., the value of
σ 0 in equation (4), should reflect the statistics of the geologi-
cal variability of the area. However, quantitative information
on the geological variability is often very limited, if existing
at all and the value of the standard deviation of the corre-
lation for the different model parameters must therefore be
determined pragmatically and/or on the basis of theoretical
modelling experiments. The correlation lengths, Lx and Ly,
should generally be chosen a few times the largest distance
between any model positions in the considered area. This en-
sures that – in principle – all parameters are correlated with
all other parameters which is a reasonable initial hypothesis.

The Cm matrix needs to be calculated only once for every
data set to be correlated; it is purely geometrical and is the
same for all model parameters. However, the standard devi-
ation of the correlation, σ 0, is in general different for every
model parameter.

Since the lateral parameter correlation procedure is per-
formed on one model parameter at a time, it is basically
up to the interpreter to determine which model parameters
to include in the correlation. Generally, lateral constraints
will be included on both layer resistivities and thicknesses

or depths to layer boundaries. Correlation of depths to layer
boundaries is often preferable to correlation on layer thick-
nesses because continuity of depths is more relevant when
considering a layered, sedimentary environment (Auken et al.
2005). However, correlation on layer depths may result in
intersecting layer boundaries. In this case, a minimum layer
thickness must be invoked and a choice between the lower
or upper value of the depth to the layer boundary must be
made.

Most often, inversion of electromagnetic data is performed
on the logarithm of the model parameters, partly to ensure
positivity and partly to make the inversion problem less non-
linear. As a consequence, Cest of equation (2) will contain the
variance and covariance of the logarithm of the model pa-
rameters: resistivities and thicknesses. Normally, it would be
appropriate to correlate the logarithm of resistivities but it can
be argued that the correlation of depths/thicknesses should be
done linearly, since the vertical variability of the layer bound-
aries is normally expected to be the same at any depth. While
the variance of the logarithm of resistivities needed for the Cp

matrix of equation (6) is readily available from Cest, we need
to estimate the variance of linear thickness, t and depth, d,
from the variance and covariance of their logarithm given in
Cest. Using that var [f (x)] ≈ [f ′(x)]2 var(x) is correct to the first
order, we find

var (t) ≈ t var(ln t) (8)

var (dk) = var (t1 + t2 + · · · + tk) =
k∑

i=1

k∑
j=1

covar
(
ti , tj

)

≈
k∑

i=1

k∑
j=1

ti tj covar (ln ti , ln tj ) (9)

The above method of lateral correlation of inverted models
does not depend on data lying on a straight line or being
equidistant because the model covariance matrix is based on
the lateral distance between the models. It is also possible to
correlate models obtained by inversion of different data types
and to incorporate information from other sources, e.g., drill
hole information, as long as it can be formulated in terms of
a model (Tølbøll 2007).

As can be seen from equation (6), the matrices to be inverted
are full and for large data sets the inversion problem of the
correlation can become quite large and the solution thereby
time-consuming. This is, however, easily remedied by dividing
the data set into smaller, overlapping segments of appropriate
size.
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The final, constrained inversion

The final inversion with the correlated parameters as a priori
constraints serves to strike a compromise between laterally
smoothly varying models and models that will fit the data well.
The inversion is started with the final model of the individual
inversions as initial models and includes the smooth parameter
values as a priori values with their appropriate variances, so
convergence is very fast and computation time negligible.

The model parameter uncertainty estimate of the final con-
strained inversion will in general be considerable smaller than
for the individual inversions because of the inclusion of prior
information from the correlated parameters. This reflects
the improved determination invoked by the assumed lateral
continuity.

THEORETICAL E XA MPLES

The synthetic data set used for the theoretical examples, is gen-
erated for a multi-electrode DC resistivity system with a unit
electrode distance of 5 m configured to measure in a conven-
tional Wenner electrode array with nine electrode distances of
5, 10, 15, 20, 30, 40, 60, 100 and 120 m.

The forward model, shown in Fig. 1(a), simulates a typi-
cal layered sedimentary environment with a clayey till layer
underlain by resistive sand and heavy, well-conducting clay,
respectively. The thickness of the embedded sand layer in-
creases gradually along the profile from a few metres to more
than 50 m, while the capping clay layer shows only mod-
erate variations. The model is generated using a stationary
stochastic process characterizing the spatial variability of the
earth by von Karman covariance functions (Møller, Jacobsen
and Christensen 2001; Serban and Jacobsen 2001). These
functions enable the construction of complex layered models,
which resemble sedimentary environments to a high degree. In
the generation of the models as statistical realizations, average
layer resistivities are 30, 80 and 10 �m from top to bottom
and the standard deviations for all logarithmic layer resistivi-
ties are 0.5. Average layer thicknesses are 30 and 80 m for the
two uppermost layers and the standard deviation on the thick-
nesses is equal to the mean value. Data are sampled every 5 m
along the 700 m profile and 5% laterally uncorrelated, ran-
dom noise is added to simulate a true data set. Only soundings
located between coordinates 200 and 500 m, where the data
coverage is complete, are included in the inversion. The for-
ward calculations are performed using a 2D finite-difference
code from University of British Columbia (McGillivray 1992)
optimized with respect to the input model characteristics and

the applied electrode configurations. The location of two the-
oretical boreholes that will be used later are also shown in
Fig. 1(a). The conventional data pseudosection with focus
points is shown in Fig. 1(b). The focus depth is defined as half
the Wenner electrode spacing (Edwards 1977).

Figure 1(c) clearly demonstrates that the true model sec-
tion is poorly reproduced using a simple uncorrelated three-
layer inversion approach, except for the capping clay layer
that is close to the true model along the entire profile. In
the profile interval 250–350 m and 425–500 m, the thickness
of the embedded high-resistivity sand layer is overestimated,
probably mostly due to poor depth resolution. Conversely,
due to the presence of 2D effects in the data combined with
high-resistivity equivalence, it is consistently severely underes-
timated between coordinates 350 and 425 m. At the beginning
of the profile, between coordinate 200 and 250 m, the individ-
ual 1D models suffer from a lack of lateral continuity. In all
cases, the poor model reproduction is supported by the model
parameter uncertainty analysis, which indicates that e.g. both
the resistivity and the thickness of the second layer are un-
resolved in the interval 350–425 m, while the underestimated
resistivity appears well determined in the interval 425–500 m
because the layer is thick and close to the surface.

Figure 1(d-f) shows the model section resulting from the
lateral parameter correlation procedure (correlation plus final
inversion) with three different correlation standard deviations
of σ 0 = 45, 14 and 4.5 on the depths to layer boundaries,
respectively. In all three cases, the correlation length along
the profile is 1000 m and the layer resistivity correlation stan-
dard deviation is σ 0 = 1.4. Linear correlation is used for
layer depths, while logarithmic correlation is used for layer
resistivities. By comparison with Fig. 1(c), it appears that the
embedded high-resistivity layer is considerably better repro-
duced in the correlated model sections compared to the un-
correlated model section. The artefacts caused by the high-
resistivity equivalence are reduced and the model fluctuations
in the first part of the profile, which are unlikely to reflect ge-
ological variations, are removed. It appears that a correlation
standard deviation of σ 0 = 14 in this case provides the best
fit to the true model.

The effect of the correlation step of the lateral parameter
correlation procedure is illustrated in Fig. 1(g) where a section
of the models obtained after the correlation but before the fi-
nal inversion, is shown. The analysis shows the corresponding
uncertainty of the model parameters and the plot of residuals
shows the fit between the data and the forward responses of
the correlated model section. Correlation standard deviations
corresponding to the intermediate level in Figure 1e have been
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Figure 1 Synthetic multi-electrode DC resistivity example. (a) True model generated as a statistical realization using von Karman covariance
functions with mean resistivity values (top to bottom) of 30, 80 and 10 �m. (b) Conventional data pseudosection with focus points as white
dots. (c) Uncorrelated few-layer inversion result with analysis section and residuals. Only soundings between coordinate 200 m and 500 m with
complete data coverage (the black box in Fig. 1a) are used for the inversion. In all the following plots, correlation lengths of 1000 m in both x-
and y-directions and a correlation standard deviation of σ 0 = 1.4 on the logarithm of layer resistivities have been used. (d)–(f) lateral parameter
correlation model sections obtained with three different linear correlation standard deviation on depth to layer boundaries: σ 0 = 45, 14 and
4.5, respectively. (g) Model section after correlation but before final inversion for a correlation standard deviation of σ 0 = 14 on the depth to
the layer boundaries. (h)–(j) Model sections as (e) but with borehole information included at profile coordinates 275 m and 425 m; in (h), the
borehole is on the profile, in (i) and (j) the boreholes are 50 m and 100 m from the profile, respectively.
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used. When comparing with the results after final inversion in
Fig. 1(e), it is seen that the model section is overly smooth and
that the residuals are higher. This illustrates that, by adjusting
the models according to the data, the final inversion brings the
residuals down to a level that is only insignificantly higher
than for the uncorrelated inversion.

In Fig. 1(h-j), the lateral parameter correlation procedure
includes supplementary information on the depth to the layer
boundaries of the second layer from the two drill holes, B1
and B2, positioned at profile coordinates 275 m and 425 m.
The borehole information is integrated in the lateral parameter
correlation procedure by defining two models representing the
boreholes with appropriate model parameter uncertainties.
In this case, all model parameters are completely uncertain
except the depths to the boundaries of the second layer. The
two borehole models are included in the parameter vector, p,
of equation (3) before correlation and removed again from
the smooth model vector, pcor, before the final inversion. All
three correlations use the same setting as in Fig. 1(e) with a
fixed depth correlation standard deviation of σ 0 = 14 but the
projected distance from the drill hole to the profile (offset) is
set to 0, 50 and 100 m in Fig. 1(h-j), respectively. Comparing
with Fig. 1(e) it is immediately clear that the inclusion of the
drill hole information leads to a somewhat better reproduction
of the true model. As expected, the thickness of the high-
resistivity layer is closer to the true value in the neighbourhood
of the boreholes and the model parameter determination is
generally improved. For a 50 m offset, Fig. 1(i), the effect of
the supplementary drill hole is somewhat reduced and for a
100 m offset, Fig. 1(j), the effect is no longer significant.

F IELD EXAMPLE

In Tølbøll and Christensen (2006), the lateral parameter cor-
relation method has been applied along profile lines on heli-
copterborne frequency domain electromagnetic (HEM) data.
Furthermore, an example of combined lateral correlation of
HEM profiles and borehole data is documented in Tølbøll
(2007). Here we shall look at an example involving ground
based radiomagnetotelluric data with areal coverage.

Our field example illustrates the use of the lateral param-
eter correlation method on data from a radiomagnetotelluric
investigation in the Grundfør area, Denmark. The area is char-
acterized by Quaternary sediments of sand and clay in the up-
per 100 m of the subsurface. Data were collected in 1995 in
collaboration with Universität zu Köln, Institut für Geophysik
und Meteorologie, Germany, with their RMT equipment that
was developed by Imre Müller, Centre d’Hydrogéologie, Uni-

versité de Neuchâtel, Switzerland. The instrument measures
scalar radiomagnetotelluric data at four frequencies: 16.8,
53.0, 126.8 and 183.0 kHz and soundings with the electric
field in both the north-south and the east-west direction,
were recorded. Here, only the data with the electric field in
the north-south direction are used. The radiomagnetotelluric
method, the instrument and the survey technique is described
in Tezkan (1999) and Tezkan, Hördt and Gobashy (2000).
Data were collected in a 200 m by 450 m area on 21 profile
lines with typically 45 soundings per line. The line spacing was
10 m and soundings were made with a density of 10 m (a few
with 5 m intervals) along the profiles, a total of 906 soundings.

Data were inverted with multi-layer models with 20 layers.
The inversion was carried out using a L1-norm optimization
which produces blocky models (Farquharson and Oldenburg
1998). Regularization was imposed by claiming identity be-
tween the log(resistivity) of neighbouring layers within an un-
certainty of σ 0 = 1.4. Inspection of the model sections along
the profiles showed that a 3-layer model would be adequate
for few-layer inversion. Initial models for the 3-layer inver-
sion were estimated from the 20 layer model (Tølbøll and
Christensen 2006).

Computation time on a single-thread process, 2 GHz Pen-
tium 4 CPU for the initial uncorrelated inversion was 30 s for
the multi-layer models and 1.6 s for the 3-layer models. Cor-
relation of the 20 layer resistivities of the multi-layer models
took 158 s and 45 s for the 3-layer models. The final inversion
required 30 s for the multi-layer models and 1.7 s for the 3-
layer models. The second inversion thus took approximately
the same time as the first uncorrelated inversion. This is un-
common and only happens because 1D radiomagnetotelluric
inversion is so exceedingly fast.

Figs 2(a) and 2(c) present the uncorrelated inversion
results of Line-10 traversing the centre of the area ob-
tained using the multi-layer model and the 3-layer model,
respectively, while Figs 2(b) and 2(d) show the corre-
lated models. For the multi-layer models, a value of
σ 0 = 1.4 was adopted for log(resistivities) while for the 3-layer
model a value of σ 0 = 1.0 was used. Depths to layer bound-
aries in the 3-layer model were linearly correlated with values
of σ 0 = 1.4 and σ 0 = 14 for the top and the bottom layer
boundary, respectively. The uncorrelated multi-layer and 3-
layer inversions are very similar, mostly due to the fact that a
L1-norm was used in the multi-layer inversion, both for the
initial and the final inversions. The correlated version of the
multi-layer model section shows the expected lateral smooth-
ness and it is also seen that smoothness increases with depth.
This is due to the increasing uncertainty of the resistivities of
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Figure 2 Model section for Line-10 from the inversion of the radiomagnetotelluric data from Grundfør, Denmark. (a) Uncorrelated multi-layer
inversion result; (b) correlated multi-layer inversion result; (c) uncorrelated 3-layer inversion result; (d) correlated 3-layer inversion results.
Log(resistivities) have been correlated with a value of σ 0 = 1.4 for the multi-layer models and σ 0 = 1.0 for the 3-layer models and depths to
the layer boundaries in (d) have been linearly correlated with a value of σ 0 = 1.4 and σ 0 = 14 for the top and bottom boundary, respectively.

the deeper layers in the first uncorrelated inversion and the
fact that the correlation is imposed with the same standard
deviation for all layers. It is seen that the lateral smooth-
ing also affects the final L1-norm inversion of the multi-layer
models by making them less blocky than the initial L1-norm
inversion. The correlated 3-layer model section also shows
increased lateral smoothness but now displays approximately
the same standard deviation for all layers because the un-
certainty of the resistivities in the initial uncorrelated 3-layer
inversion are of the same order of magnitude. Notice that for
both multi- and few-layer inversions, the lateral correlation
does not remove the more conductive feature at a depth of
10 m at profile coordinate 240 m. This is due to the fact that
the resistivities of the initial inversion are well determined by
data.

All model sections in Fig. 2 show a top layer with a thickness
of ≈ 2 m and a resistivity of ≈50 �m: a clayey moraine till.
The second layer is a high resistivity layer of 100–200 �m
and a thickness of 15–30 m: a sandy formation. The bottom
segment has resistivities of 40–70 �m: a sandy formation with
more fine grained material.

To further illustrate the effect of the lateral correlation, con-
toured maps of the mean resistivity in the depth interval 2–5 m
are shown in Fig. 3(a–c) calculated from the 3-layer models.
In Fig. 3(a), the mean resistivity is based on the uncorrelated
models of the initial inversion. In Fig. 3(b), the mean resistivity
is based on the models obtained from correlation only along
profile lines and in Fig. 3(c) it is based on models resulting
from correlation in the entire plane. Naturally, the maps cre-
ated based on the correlated models in Figs 3(b) and 3(c)
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Figure 3 Contoured map of the mean resistivity in the depth interval
2–5 m based on the 3-layer models. (a) Uncorrelated 3-layer models;
(b) 3-layer models correlated only along the profile lines; and (c) 3-
layer models from the entire survey correlated in the plane.

appear smoother. Note, however, that the sandy area at east-
ing coordinate 250 to 350 m and northing coordinate -30 to
100 m framed by clay retains its clear definition, also in the
case of correlated models. The feature shown in this depth
interval is found almost identically for depth intervals down
to 20 m depth (not shown) and shows a sand body framed by
clayey material. The importance of correlating not only along
profile lines, but in the entire plane, can be seen by comparing
Figs 3(b) and 3(c). In Fig. 3(b), correlation is done only along
the horizontal profiles while Fig. 3(c) shows the same map,
now created with correlation in the entire plane. Even with a
data set as regularly spaced and dense as the one shown here,
it is apparent that correlation only along profile lines gives a
striped character to the map in certain places while the map

resulting from correlation in the entire plane does not show
preferential direction. For more sparse and irregular data sets,
the advantage of correlating in the entire plane would be even
more obvious.

D I S C U S S I O N

The fundamental characteristic of the lateral parameter cor-
relation method is that it separates the inversion from the
lateral correlation. This makes the method much faster than
other methods of lateral correlation relying on a simultane-
ous inversion of a large number of soundings including lateral
constraint in every iterative step. In typical applications, the
number of model parameters in the 1D model is much smaller
than the number of models and in the lateral parameter corre-
lation approach, there will only be as many large-scale inver-
sions as there are model parameters – plus one to invert the
model covariance matrix C−1

m of equation (6). The computa-
tion time for the final inversions is negligible because they are
initialized with the results of the individual inversion.

Let us assume that we have N data sets, each to be inverted
with 1D models with P parameters and that NIT iterations are
needed for convergence. Let us also assume that the compu-
tation time for matrix inversion is proportional to the cube of
the matrix size. Then the computation time for the simultane-
ous inversion methods will be ∝(P·N)3 · NIT. For the present
lateral parameter correlation method, the computation time
will be ∝[P3 · N · NIT + (P + 1) · N3 + P3 · N · NIT2],
where the first term is the time used for the initial uncorre-
lated 1D inversion, the second term is the time used in the
lateral correlation procedure and the last term is the time used
for the final 1D inversion. NIT2 is the number of iterations in
the final 1D inversion and is considerably smaller than NIT.
Evidently, the second term, (P + 1) · N3, is dominating in the
lateral parameter correlation procedure, so the ratio between
computation times is R ≈ [(P · N)3 · NIT]/[(P + 1) · N3]
≈ P2 · NIT. Assuming NIT = 10, we have for a 20-layer
multi-layer model: R = 4, 000. For 3-layer models there are 5
model parameters and we have: R = 250; for 4-layer models
we get R = 490. For very large surveys, the inversion problem
of the correlation can be segmented into overlapping regions
to reduce computation time.

The fact that the data inversion and the correlation are
separated means that the correlation takes place exclusively in
the model space which makes it easy to correlate models from
different methods: parameters from all the methods are just
concatenated in the construction of the p vector and the Cp

matrix. It also makes it easy to include information from other
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sources, e.g. resistivity levels or the depth to layer boundaries
from logs in boreholes. After the correlation, the correlated
parameters and their variances will just have to be separated
again and included in the final data inversion of each method.

As shown in the second example (see Fig. 3), it is important
to be able to correlate data sets with areal coverage over the
entire area and not just along profile lines. The lateral param-
eter correlation approach does not require data to be along
profiles; the mathematical formulation does not distinguish
between areal and profile oriented correlation.

The price paid for the separation of the inversion and the
correlation is that cross-correlation information between the
model parameters of the individual inversions is discarded.
Only the diagonal elements of the individual posterior covari-
ance matrices are assembled to form the data error covariance
matrix of the correlation inversion – the Cp matrix of equation
(6). If data errors are laterally correlated, e.g., from dimen-
sionality effects, the uncertainty of the model parameters will
also be laterally correlated. However, in the lateral correlation
procedure we assume that the errors on the parameters (now
as data in the lateral correlation procedure) are uncorrelated.
The effect of this is that the posterior uncertainty of the corre-
lated parameters will be underestimated. After the correlation
problem has been solved, the covariance matrix of the prior
parameters in the final inversion is composed from the diag-
onal elements of the correlation posterior covariance matrix.
In this way cross-correlation information of the correlated
parameters between the different locations is neglected. The
former is probably more serious than the latter but it is be-
yond the scope of this paper to quantify the actual loss. As the
theoretical examples show, the lateral parameter correlation
method has the desired effect so it may tentatively be accepted
that the cross-correlation information between the model pa-
rameters of the individual inversions is of minor importance
compared with the variances.

The three steps of the lateral parameter correlation method
can be seen as the first steps of an infinite iterative proce-
dure that alternates between data inversion and correlation.
However, numerical experiments indicate that there is no sig-
nificant gain in going beyond the first three steps used here.

The theoretical examples demonstrated that extreme mod-
els from the first 1D data inversion can affect the lateral pa-
rameter correlation result. If, for example, the parameters of
a certain layer are subject to equivalence, then, due to data
errors, the layer thickness can become extremely thin or ex-
tremely thick. In the first case, the uncertainty of the thickness
is very large so the thickness will not affect the correlation
very much, i.e., the value of the thickness after the correlation

procedure will be determined by the values of the parameter
at neighbouring soundings and the lateral smoothness con-
straint. If, on the other hand, the layer becomes thick, its
uncertainty can become relatively small and the erroneously
thick layer will influence its neighboring soundings in an un-
desired way. However, other methods of lateral correlation
will have the same problem if it is caused by data errors,
dimensionality effects or an insufficient noise description.

Only examples involving electrical and electromagnetic
methods have been shown in this paper but evidently, the LPC
method may be attractive also in other contexts of pointwise
1D inversion of massive data sets.

CONCLUSIONS

The lateral parameter correlation method is a fast and robust
method of obtaining laterally smooth model sections from 1D
inversion that will still fit the data. Even though covariance
information between the model parameters is neglected, the
lateral parameter correlation procedure works satisfactorily
and does in fact impose lateral continuity between the model
parameters in a proper way and without artefacts: well de-
termined parameters have more influence than more poorly
determined parameters. The method offers a posterior vari-
ance estimate of the parameters of the final inversion.

The lateral parameter correlation method is simple and in-
volves only a few large-scale inversions. It is thus much faster
than methods where all sounding data are inverted simulta-
neously, in typical applications by a factor of 200–400. For
very large data sets the non-sparse LPC inversions can be seg-
mented by considering overlapping intervals. The correlation
formulation of the LPC method is the same for correlation
along profile lines and correlation in the plane and thus avoids
cumbersome selection criteria sometimes found in other for-
mulations.

The final result does to some extent depend on extreme
models from the individual inversions and the lateral param-
eter correlation method thus accentuates the demand for a
good noise model and a well-defined inversion for the indi-
vidual inversions.

It is easy to combine models from different EM methods and
also to incorporate information from other sources (resistivity
logs, layer boundaries from drill holes, etc.) as long as it can
be formulated in terms of a 1D model.
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