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S U M M A R Y
Adaptive noise cancelling of multichannel magnetic resonance sounding (MRS) signals is
investigated. An analysis of the noise sources affecting MRS signals show that the applicability
of adaptive noise cancelling is primarily limited to cancel powerline harmonics. The problems
of handling spikes in MRS signals are discussed and an efficient algorithm for spike detection is
presented. The optimum parameters for multichannel adaptive noise cancelling are identified
through simulations with synthetic signals added to noise-only recordings from an MRS
instrument. We discuss the design and the efficiency of different stacking methods. The
results from multichannel adaptive noise cancelling are compared to time-domain multichannel
Wiener filtering. Our results show that within the experimental uncertainty the two methods
give identical results.

Key words: Time-series analysis; Fourier analysis; Hydrogeophysics Magnetic field;
Instrumental noise.

I N T RO D U C T I O N

Since the late 1980s magnetic resonance sounding (MRS) has
steadily evolved towards being a competitive technique for non-
invasive investigations of groundwater resources. In particular, the
method allows for a direct determination of the water content of
the subsurface (Legchenko & Valla 2002). The main obstacle cur-
rently limiting a more widespread use of the method is the very
low signal-to-noise ratio of MRS signals recorded in proximity to
anthropogenic installations.

The first generations of MRS instruments were single channel
instruments. With single channel instruments, both magnetic reso-
nance excitation and signal recording is done with a single loop and
various forms of filtering can be used to suppress noise, in particular
powerline harmonics (Legchenko & Valla 2003).

Recently, a new generation of multichannel MRS instruments
with multiple loops have been constructed (Walsh 2008; Dlugosch
et al. 2011). The primary loop is still used for magnetic resonance
excitation and signal recording. In addition, a number of reference
loops, physically displaced from the primary loop, measure only
noise. Parts of the noise recorded by the reference loops will be
correlated with the noise in the primary loop. With proper signal
processing, the noise in the reference coils can be filtered into a
replica of the noise in the primary coil and when the replica is
subtracted from the primary loop record, the desired MRS signal
remains.

One method of performing the signal processing is adaptive noise
cancelling (Farhang-Boroujeny 1998). The basic set-up for a two-
channel adaptive noise cancelling system is shown in Fig. 1. The
primary sensor measure the signal of interest, s(k), corrupted by

additive and uncorrelated noise, n1(k). A reference sensor, physi-
cally displaced from the first sensor, measures only noise, n2(k). If
the two noise signals are correlated, an adaptive algorithm can ad-
just the filter to make the output y(k) as similar to n1(k) as possible
by minimizing the error signal, e(k). Under optimum circumstances
the error signal is then equal to the original signal, s(k).

Adaptive noise cancelling can be applied using different algo-
rithms and set-ups but it is only one particular method of performing
signal processing of multichannel MRS signals. Another method is
multichannel Wiener filtering but it not yet clear which technique
performs best under which circumstances. The first purpose of this
paper is to discuss the optimization of adaptive signal processing
algorithms and compare the results with multichannel Wiener filter-
ing. MRS signals are often corrupted by very intense noise spikes
from electrical discharges. The second purpose of this paper is to
give an analysis of this noise source.

All the signals in this paper have been recorded with NUMIS
Poly (IRIS Instruments, Orleans Cedex 2, France). This is a multi-
channel MRS instrument with one primary and three reference data
channels. The data are sampled with a frequency of 19200 Hz. All
channels are equipped with tunable analogue bandpass filters with
a bandwidth of ∼150 Hz and sampled by 16 bit analogue to digital
converters.

A NA LY S I S O F N O I S E S O U RC E S

MRS measurements are disturbed by a number of different noise
sources. The two most important are powerline harmonics and
discharges from both natural and anthropogenic sources, that is,
thunderstorms and electrical installations such as motors and fences.
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Figure 1. Schematic overview of adaptive noise cancelling with a two-channel set-up.

Other noise sources include low-level atmospheric noise and noise
in the MRS receiver electronics. For multichannel MRS measure-
ments the noise sources must be classified according to whether the
noise in the primary loop and the reference loops is correlated or
not, as this determines the primary way of attenuating the noise.

Short electrical discharges gives rise to an impulsive excitation
of the bandpass filters with a subsequent near-exponential decay
known as spikes. An example of spikes is shown in Fig. 2. It could
be anticipated that spikes are linearly correlated between the loops,
however, our experiments have shown that the situation is more
complex than that. Fig. 2 shows an example of a noise-only, that is
without excitation, simultaneous record of the primary loop and the
three reference loops. The spike at 115 ms (labelled ‘B’) is found in
all four channels whereas the spike at 20 ms (labelled ‘A’) is present
in the primary loop and reference channels 2 and 3 but completely
absent in reference channel 1.

One possible explanation for this phenomenon is that two differ-
ent discharge mechanisms are responsible for the two spikes. The
‘B’ spike most likely originate from a discharge in the far-field as it
has been recorded by all channels, whereas the ‘A’ spike most likely
originate from a discharge in the near-field as it is only recorded by a
subset of the possible channels. From a signal processing viewpoint
this means that the transfer functions relating the observed signals
in the individual channels depend on the particular noise event. The
assumption that the transfer functions are identical for all noise
sources is therefore not true. When an adaptive filter is tracking
the transfer functions, large filtering errors will occur when differ-
ent types of noise events occur. Thus transfer function based noise
cancelling can only be performed with stationary or near-stationary
noise conditions.

The observation in Fig. 2 implies that spikes cannot always be
adaptively cancelled. For instance, if a spike is only found in a ref-
erence channel, the adaptive algorithm will remove a non-existent
spike and thereby actually induce a spike in the primary loop sig-
nal. Similarly the large filtering error will disturb the filter coef-
ficients and, depending on the convergence speed of the adaptive
algorithm, the disturbance and hence the error cancelling will be
diminished even after the spike has decayed. This is because of the
non-stationary behaviour of spike events. It should also be noted
that large spikes can even saturate the analogue-to-digital convert-
ers making adaptive noise cancellation useless. The conclusion of
these observations of spike behaviour is that whenever a spike is
found in any of the channels, adaptive noise cancelling is potentially
unreliable.

The different noise sources can also be interpreted in the fre-
quency domain. Figs 3(a) and (c) show an example of the time-series
and spectrum of a noise-only record, with a large spike present in
the time domain. In this particular case, the spike contains approxi-
mately 85 per cent of the energy of the signal. Because of the large
impulsive excitation of the bandpass filter, the spectrum is mainly

dominated by the frequency response of the filter. In contrast, Figs
3(b) and (d) give an example of a time-series and spectrum of a
spike-free noise-only section. In this case the spectrum is domi-
nated by the powerline harmonics at multiples of 50 Hz. The inset
shows the same spectrum on a logarithmic scale. Here, the band-
pass filtering of wideband noise is clearly visible as the broad feature
centred at 2150 Hz.

For adaptive noise cancelling to work efficiently, the primary
signal and the reference signal must be highly linearly correlated.
The linear correlation between two signals x and y is measured as a
function of frequency by the magnitude squared coherence function
defined as (Kuo & Morgan 1996):

∣∣γxy( f )
∣∣2 =

∣∣Pxy( f )
∣∣2

Pxx ( f )Pyy( f )
. (1)

In this equation, Pxy(f ) is the complex cross-power spectral den-
sity and Pxx(f ) and Pyy(f ) are the power spectral densities of the
individual signals. The magnitude squared coherence function re-
turns a value of 1 for perfectly linearly correlated signals and a value
of 0 for completely uncorrelated signals. A value between 0 and 1
indicates a partly linear correlation.

It can be shown that the maximum possible attenuation of an
adaptive noise canceller as a function of frequency is given by (Kuo
& Morgan 1996):

attenuation( f ) = −10 log10(1 − ∣∣γxy( f )
∣∣2

)[dB]. (2)

For example, an attenuation of 20 dB can only be obtained if
|γxy( f )|2 = 0.99 or larger.

A plot of the coherence between the primary channel and a ref-
erence channel for a noise-only signal without spikes is shown
in the upper part of Fig. 4. The lower part of the figure shows
the power spectral densities of the signal in the two channels.
The figure shows that the 50 Hz harmonics in the two chan-
nels are nearly perfectly linearly correlated as the coherence is
near unity. The resolution of our coherence measurements is lim-
ited by a number of factors; the maximum signal length which
is recorded by the NUMIS Poly instrument, frequency drifts and
jitter in the instrument and short time variations in the fundamen-
tal 50 Hz frequency of the powerline harmonics. Away from the
harmonics, the coherence basically vanishes. This implies that the
harmonic noise can be efficiently cancelled with adaptive noise
cancelling, whereas the broad-band noise is incoherent, that is ran-
dom and must be diminished by standard averaging of multiple
experiments.

An example of the coherence of a cut out section of a noise-only
signal record containing a single spike is shown in Fig. 5. In this
case the power spectra are dominated by the broad feature of the
bandpass filter. The value of the coherence function in the inter-
esting region around 2150 Hz is well below 1. This implies that
there is not a simple linear correlation between the primary channel
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Noise cancelling of MRS signals 3

Figure 2. The figure shows the simultaneously measured noise-only signal in the primary channel (top graph) and the three reference channels. All reference
channels were 10 × 10 m with 10 turns. The spike, B, at 115 ms is present in all four channels whereas the spike, A, at 20 ms is completely absent in one of
the reference channels.

Figure 3. Examples of noise-only recordings and their corresponding spectra. Panel (a) time-series with a single spike. Panel (b) time-series without spike,
note the different amplitude scales of panels (a) and (b). Panels (c) and (d) power spectra of panels (a) and (b). The inset in panel (d) shows the same spectrum
on a logarithmic scale.

and the reference channel throughout the signal record and it is not
feasible to use adaptive noise cancelling to remove the spike. If the
spike is removed from the time-series, the coherence plot of the
remaining data completely resembles Fig. 4. Similarly, if the coher-
ence of a short section containing only the spike is measured, a high
coherence above 0.9 is found in a broad region of several 100 Hz
across the centre of the bandpass filter. However, the transfer func-

tion relating the spike in the two channels is different from the
transfer function relating the powerline harmonics and this causes
the coherence of the entire time-series to fall well below 1 in the
region around 2150 Hz.

Based on the above observations we can conclude that efficient
removal of powerline harmonics is possible through adaptive noise
cancelling. However, the spikes in the MRS recordings cannot be

C© 2012 The Authors, GJI
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Figure 4. Top graph: Magnitude square coherence function between the primary channel and a reference channel for a noise-only, spike free signal. Lower
graph: the corresponding power spectra normalized to the same peak value.

Figure 5. Top graph: Magnitude square coherence function between the primary channel and a reference channel for a noise-only signal containing a single
spike. Lower graph: the corresponding power spectra normalized to the same peak value.

expected to be cancelled with the same transfer functions but must
be treated differently. Normally, MRS recordings contain only a
limited number of spikes therefore a simple and efficient solution
of the problem is to discard the sections of the data containing
spikes.

On top of the harmonic noise and the spikes we also observe
a smaller random noise component, originating in wideband noise
and receiver electronics noise. This random component can be sup-
pressed by standard signal averaging.

In the above sections the emphasis has been on the correlation
between the primary channel and one of the reference channels. We
have also analysed the correlation in between the reference chan-
nels and the results are identical: (1) the powerline harmonics are
highly correlated between the reference channels. (2) Spikes are also
correlated but through different transfer function. (3) The random
noise is not highly correlated between the reference channels.

The figures and conclusions are taken from a random site.
They are, however, representative for all the different sites where

C© 2012 The Authors, GJI
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Noise cancelling of MRS signals 5

measurements have been performed. The noise characteristics, that
is the ratio between power in the different harmonics or the power
in the random noise components obviously differs from site to site
but the conclusions remains valid for all sites.

The analysis shows that it is normally necessary to remove spikes
before using adaptive noise cancelling. After despiking and noise
cancelling the MRS signal is still corrupted by random noise. The
random noise can be suppressed by standard averaging of multi-
ple recordings. Finally, the parameters of the MRS signal can be
extracted by envelope detection. The entire signal processing work-
flow for a MRS recording before inversion is then:

(1) Despiking
(2) Noise cancelling
(3) Stacking
(4) Envelope detection

S E M I - AU T O M AT I C D E T E C T I O N
O F S P I K E S

The presence of spikes of different origins in MRS signal records
will distort noise cancelling of the powerline harmonics as con-
cluded in the previous paragraph. The spikes in the signals from
both the primary and reference receivers must therefore be removed
before further noise cancelling. The spikes will contaminate only
a part of the signal section, leaving a major part of the section
uncontaminated, thus deleting entire sections is not necessary. In-
stead a local detection and removal of spikes is more appropriate.
Because of the huge data amount, a spike detection performed by
hand is very time consuming and automatic spike detection would
be preferable.

A number of different spike detection algorithms have been pro-
posed by different authors, often lending inspiration from the closely
related problem of finding peaks in a signal. The basic principle of

spike detection algorithms is a comparison of some feature of a sig-
nal with a predefined or statistically defined threshold. For instance
Jiang et al. (2011) suggest the Romanovsky criteria for detection
of spikes containing only a few samples of high amplitude. Their
algorithm is applied in the stacking process after noise cancelling.
This method is therefore not applicable in our case where we aim to
perform the noise cancelling on despiked data. Strehl (2006) sug-
gested the use of wavelets for identifying spikes, but further work
is needed in this direction before a robust method can be devised.
We have developed an efficient and simple procedure for automatic
spike detection.

Inspired by the work of Mukhopadhyay & Ray (1998) we have
implemented a spike detection algorithm based on the non-linear
energy operator (NEO). For a discrete time signal, x(k), the NEO is
defined as:

ϕ[x(k)] = x2(k) − x(k − 1)x(k + 1). (3)

The purpose of the NEO is to pre-emphasize spikes before a
threshold criterion is applied. Two examples of this are shown in
Fig. 6. The left part of the figure shows an example from Risby, a
noisy site more or less surrounded by electrical fences and in close
proximity to powerline installations. The top graph shows a section
of the signal containing one large spike and two smaller spikes,
marked by the spike detection algorithm. On the lower graph the
corresponding NEO signal is shown. The most interesting feature
of the graph is the smallest spike at ∼100 ms. The ratio between
the amplitude of the spike and the amplitude of the base signal is
increased from ∼4 to ∼8 by the NEO making the spike much more
visible in the NEO plot.

The right part of Fig. 6 shows results recorded in Skive, a site
almost completely devoid of powerline interference and spikes. The
MRS signal is clearly visible in both the time-series and the NEO
signal. Again, the application of the NEO results in a significant
emphasize of the spikes.

Figure 6. Examples of semi-automatic spike detection. Top graphs: MRS recordings from Risby and Skive. Detected spikes are marked. Note the very different
amplitude scales. Lower graphs: corresponding plots of the NEO. The upper threshold for Risby is defined as the median +10 MAD and as the median +20
MAD in the Skive case.

C© 2012 The Authors, GJI
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6 E. Dalgaard, E. Auken and J. J. Larsen

Once the spikes are emphasized by the NEO, an appropriate
threshold criteria must be defined. From the right part of Fig. 6 it is
clear that a simple threshold criteria is insufficient as it will either
mark the signal in the beginning as spike or fail to recognize the
small spikes. A criterion based on the variance of the time-series
or NEO signal is also sensitive to the presence of MRS signal.
Moreover, the variance depends on the number and amplitude of
spikes and hence detection of small spikes will be problematic when
large spikes are present. To overcome these problems an ensemble-
based threshold is used with the threshold determined by the median
absolute deviation (MAD). For a set of measurements x1, · · · , xn

the MAD is defined by (Hoaglin et al. 2000):

MAD = mediani

{∣∣xi − median j

{
x j

}∣∣} . (4)

j indicating the ensemble of data at a given point, and the median
related to i is taken from the just modified ensemble. The main
benefit of the MAD is that it is much less sensitive to outliers
than the variance and hence provides a very robust measure of the
variability of the signal without the influence of spikes.

The workflow of the proposed spike detection algorithm contains
three steps and is a follows: (1) For a given moment of the MRS
recording, the NEO of all stacks and coils are calculated and appro-
priately low-pass filtered. For each sample in each coil the MAD
is calculated across the ensemble of all stacks. (2) Based on the
MAD an upper threshold and a lower threshold is defined for each
sample. The thresholds are shown as two black curves on the lower
graphs in Fig. 6. (3) Subsequently, the individual time-series from
each coil are analysed. When the MAD crosses the upper threshold
from below it defines the beginning of a spike. The end of the spike
is defined as the instance the MAD crosses the lower threshold from
above. The optimum choice of the thresholds depends on the noise
characteristics of the specific site and is adjusted accordingly. As
an example the upper threshold is defined as the median+10 MAD
in the upper part of Fig. 6 and as the median+20 MAD in the
lower part of Fig. 6. The bottom right graph show how the MAD
defined threshold automatically adjusts to the presence of the MRS
signal. When the samples containing spikes are identified, these are
ignored during the estimation of the transfer function and they are
not applied in the stacking procedure.

The proposed algorithm has been found to be stable and efficient
for all sites measured when used with appropriately user-selected
thresholds. The thresholds are adjusted by inspection of the results
from a few stacks. The algorithm has been tested on a number of
synthetic signals containing either no spikes, a very large number
of spikes or saturated spikes and was found to work efficiently in
all tested scenarios.

A DA P T I V E N O I S E C A N C E L L I N G

For optimum performance of an adaptive noise cancelling system
it is important to choose a well-suited algorithm and operate it ef-
ficiently. The processing of MRS signals is normally carried out
offline, therefore, the constraints imposed on a real-time adaptive
noise canceller in terms of memory and power consumption, causal-
ity and required speed of processing does not apply in this case. The
algorithm can be chosen solely based on noise cancelling perfor-
mance.

A schematic overview of the adaptive MRS multichannel noise
cancelling system is shown in Fig. 7. The signals from the three
reference coils are sent through three adaptive filters and their com-
bined output is used for noise cancelling.

Choice of adaptive algorithm and convergence properties

Since the invention of adaptive signal processing a large number of
different algorithms have been proposed, evaluated and optimized
for a number of scenarios. In this work we concentrate on two
different type of adaptive algorithms; the normalized least mean
square (NLMS) and the recursive least-square (RLS) algorithm,
see for example Farhang-Boroujeny (1998) and appendix A. The
major benefit of the least mean square type algorithms are their
low computational cost and ease of implementation. However, if
the input signal to be filtered, that is the MRS reference channel
signal, has a very uneven distribution of power across its frequency
spectrum the convergence properties of these algorithms can be
quite poor. The RLS algorithm is computationally more expensive,
but converge much faster independent of the frequency distribution
of power. The distribution of power in the spectrum is quantified by
the eigenvalue spread, that is, the ratio of the largest and smallest
eigenvalue, of the autocorrelation matrix of the signal to be filtered.
For MRS signals the typical input spectrum looks like the examples
in Figs 3 and 4. The high power of the narrow harmonic signals as
compared to the broad feature results in a large eigenvalue spread
that often exceeds 104.

To identify the best algorithm and its limitations a number of sim-
ulations have been carried out using both real MRS noise recordings
and model noise. Three important results have emerged from these
simulations. First of all, the adaptation of the filters should prefer-
ably not be done during sections including MRS signal. When the
adaptive filter seeks to minimize the error signal, e(k) in Fig. 1,
the non-linear action of the adaptive filter can create a sharp peak
in the filter output exactly at the frequency of the MRS signal. A
simulation of this phenomenon is shown in Fig. 8 where the pa-
rameters of the simulation were adjusted to enhance the visibility

Figure 7. Schematic overview of multichannel adaptive noise cancelling.

C© 2012 The Authors, GJI
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Noise cancelling of MRS signals 7

Figure 8. Simulation of noise cancelling with adaptation of filters during the presence of MRS signal. The Larmor frequency, f L, is marked with a grey line.
(a) Spectrum of the signal in the primary channel. (b) Averaged spectrum of the three reference channels. (c) Spectrum of the predicted noise at the primary
loop. Note the new artificial spectral feature in the filtered signal at f L. (d) Spectrum of noise cancelled MRS signal, black and the unfiltered signal, grey.

of the effect. The interpretation of the new peak is that the adaptive
filter seeks to cancel both noise and MRS signal. This leads to a
reduction of the MRS signal amplitude and a distortion in MRS
signal shape. Simulations have shown that the effect can be mini-
mized by adapting the filter very slowly. The only means of com-
pletely avoiding this problem is to adapt the filters on noise-only
sections of the data and lock the filter coefficients during MRS signal
recording.

The second important result is that the convergence of the adap-
tive filter must be performed very slowly. If the filter is allowed to
converge quickly, it can cancel noise very efficiently through fast
and continuous adjustments of the filter coefficients. However, if
the filter coefficient values are suddenly fixed, as necessary during
recordings with MRS signal, the efficiency of the noise cancella-
tion is greatly diminished, as the coefficients are not adjusted for
optimum average noise cancelling.

Fig. 9 shows simulations based on noise-only recordings from
two different sites. A synthetic MRS signal was added to every
other noise-only stack. The adaptive filters was trained on the stacks
without synthetic signal and locked during the stacks with synthetic
signal. The signal-to-noise ratio after noise cancellation was calcu-

lated as

S

N
=

∑
syn(t)2

∑
(y(t) − syn(t))2

, (5)

where syn(t) is the synthetic signal and y(t) is the filtered signal.
The simulation was repeated for different step sizes of the NLMS
algorithm. For each site the signal-to-noise measurements have been
normalized to the maximum value. The figure shows that for both
sites the signal-to-noise ratio peaks for a step-size parameter, β,
of approximately 5 × 10−4 to 10−3. If larger values of β is used,
the signal-to-noise ratio quickly diminishes, whereas only a slight
decrease is found for smaller values of β. The conclusion is that the
step-size parameter should be in the range from 5 × 10−4 to 10−3

and importantly, the optimum value is only slightly dependent on
the specific site.

Similar experiments with the RLS algorithm shows that the expo-
nential forgetting factor λ must be very close to 1 for good signal-to-
noise performance. The implication of the large λ value is that the
potentially fast convergence of the RLS algorithm is detrimental to
the average noise cancelling performance. Our result shows that we
get similar noise cancelling performance with the two algorithms.

C© 2012 The Authors, GJI
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8 E. Dalgaard, E. Auken and J. J. Larsen

Figure 9. Determination of optimum step size with synthetic signals added to noise-only recordings from Risby, (grey) and Odder (black). The graphs show
the normalized signal-to-noise ratio as a function of the step-size parameter for the NLMS algorithm.

The computational overhead of the RLS algorithm is therefore not
justified and the NLMS is a well-suited algorithm for noise can-
celling.

The final result is that the adaptation of the filters must be turned
off during spikes. This problem was stressed above where it was
shown that different types of spikes could occur. For different
sources of powerline harmonics and spikes, the transfer functions
between the reference channels and the primary channel are dif-
ferent. If the filter is allowed to adapt on both types of noise the
result will be a distortion of the optimum harmonic noise cancelling
whenever a spike occurs.

Choice of filter length and non-causal filtering

The coherence analysis of the different noise sources showed that the
adaptive filter will primarily cancel the 50 Hz harmonics in the MRS
signal and the adaptive filter must therefore be designed with this
knowledge in mind. In a worst-case scenario, the relative amplitudes
and phase of each harmonic in the primary and reference channels
are completely arbitrary. The transfer function of the adaptive filter
must therefore have a frequency resolution, Fres, of 50 Hz or better
so that the amplitude and phase of each harmonic can be individually
controlled. The minimum filter length, number of taps, ntaps, in a
finite impulse response filter for this resolution can be calculated as

ntaps = Fs

Fres
, (6)

where Fs denotes the sampling frequency. For the NUMIS Poly sys-
tem with a sampling frequency of 19 200 Hz, at least 384 taps are
needed to achieve the desired 50 Hz frequency resolution. However,
the worst-case scenario of an arbitrary relationship between ampli-
tude and phase of harmonics in the primary and reference channels
is not observed in practice.

Measurements have shown that between the n’th and n + 1’th
harmonic, the phase of the transfer function normally changes less

than ±0.2 rad. Likewise, the magnitude of the transfer function
measured at the n’th and n + 1‘th harmonic seldom varies by more
than a factor of 2. These observations relax the constraints on the
adaptive filter and it is therefore possible to significantly reduce
the necessary number of taps in the adaptive filters. However, this
conclusion might be different in other sites, for example in a num-
ber of Western Europe countries the powerline frequency is 50 Hz
but the power for electrical trains has a fundamental frequency of
162/3 Hz.

From a theoretical viewpoint it is also desired to minimize the
length of the filters as the excess mean squared error for an adaptive
filter is proportional to the length of the filter (Kuo & Morgan 1996).
The optimum length of the adaptive filters can be found through
simulations with synthetic signals added to noise-only recordings.
Fig. 10 shows results of such simulations from two different sites,
Risby and Odder. The simulations are carried out analogous to the
simulations with variable step size except that the step size is fixed
at β = 10−3 and the filter length is adjusted.

For both sites a peak in the signal-to-noise ratio is found. The
exact position and width of the peaks are different for the sites.
For Risby, the optimum filter length is close to 20 taps whereas for
Odder filter lengths in the 10–20 tap range gives almost identical
results. For filter lengths longer than the optimum the signal-to-noise
ratio decreased as expected. The oscillations found in the graphs
are attributed to the high correlation of the input signals because of
their large harmonic content.

For other sites investigated but not shown in the figure, similar
results are achieved. The optimum filter length changes slightly
between sites but remains in the 10–20 tap range. In conclusion,
the filters should be long enough to give the necessary frequency
resolution but for filter lengths increased beyond the optimum the
noise cancelling properties decreases slowly. For a specific site the
recovery of a synthetic signal added to noise-only recordings can
be used to adjust both step size and filter length for optimum noise
cancelling performance.

C© 2012 The Authors, GJI
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Noise cancelling of MRS signals 9

Figure 10. Determination of optimum filter length with synthetic signals added to noise-only recordings from Risby (grey) and Odder (black). The graph
shows the normalized signal-to-noise ratio as a function of the filter length for the NLMS algorithm.

The adaptive noise cancelling of MRS signals is done offline.
This implies that it is possible to use future values of the reference
channel signals for noise cancelling. The analysis of the coherence
properties showed that the only noise source that can be efficiently
removed with adaptive noise cancelling is the powerline harmonics.
Inherently, a harmonic signal is predictable and therefore non-causal
filtering cannot improve the noise cancelling. Simulations on noise-
only recordings have confirmed this result.

S TA C K I N G

After removal of spikes and coherent noise from the MRS record-
ings a random noise component still remains. The random noise
can be suppressed by appropriate stacking of multiple recordings.
Stacking can be done by a number of methods, the most simple
being averaging to find the mean value. The stacking result can be
greatly affected by outliers in the data and it can often be improved
by using a method that is insensitive to outliers, for example by
using the median as the average, using weighted median methods
or using a Romanovsky criterion for discarding outliers (Jiang et al.
2011). The quality of the stacked result is quantified by the variance,
which should be as small as possible.

A handle on the appropriate stacking method can be found by
investigating the probability density function of the MRS recordings
after despiking and filtering. Measurements on noise-only data show
that the probability density function is nearly Gaussian. Yin et al.
(1996) showed that for Gaussian distributed white noise the variance
of the estimate of the mean value is a factor of π/.2 better with
averaging than using the median value.

In Table 1 a comparison of the variance of five different stacking
methods employed on noise-only data from two different sites are
shown. The five methods are mean value, median value, the mean of
the middle 80 and 90 per cent of the data and the mean of the sam-
ple with outliers removed by the Romanovsky method. Stationary
noise-only recordings were employed so that the ensemble averag-

Table 1. Comparison of the variance of different stacking meth-
ods used on data from two different sites, Risby and Odder. The
variance is normalized to the mean.

Risby Odder

Mean 1 1
Median 1.15 1.15
Median: 80 per cent 0.99 0.99
Median: 90 per cent 0.99 0.98
Romanovsky 0.99 0.99

ing could be extended to neighbouring samples. This avoids the
conclusions being limited by the typically small number (30–70) of
stacks available for averaging. The data is normalized to stacking
based on the mean value. The table shows that stacking based on
the median value have the poorest performance as expected. The
difference between averaging and median value is not as large as the
theoretical prediction because of the only nearly Gaussian distribu-
tion of the data. The three stacking methods that are insensitive to
outliers are slightly better than simple averaging. They have almost
identical performance with small variations between different sites.
It can thus be concluded that an outlier insensitive method provides
the best stacking result but the result is not sensitive to the exact
implementation.

C O M PA R I S O N O F A DA P T I V E A N D
W I E N E R F I LT E R I N G M E T H O D S

In the above paragraphs the optimum parameters for an adaptive
noise cancelling algorithm was identified. In this paragraph, this
method will be compared with multichannel time-domain Wiener
filtering as used by for example Neyer (2010). A full account of the
method is given by Treitel (1970) and described in appendix B.

In time-domain Wiener filtering, see Fig. 11 for a schematic
overview of the method, the noise-only sections of the data are used
to estimate the optimum transfer functions between the reference
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Figure 11. Schematic overview of multichannel Wiener filtering.

channels and the primary channel. The transfer functions are sub-
sequently used to filter the noise recorded in the reference channels
during MRS signal recording and subtracted from the primary chan-
nel signal. The estimate of the transfer functions is influenced by
noise in the measurements and is thus only optimum in the average
sense. One of the benefits of the adaptive method is the continuous
update of the transfer functions hereby effectively averaging over
extended periods of time thus minimizing the influence of noise in
the estimate of the transfer functions. It should be noted that under
stationary conditions, the adaptive filter will converge to the Wiener
filter. The main difference between the two methods in this context
is therefore their ability to handle the noise in an environment that
is only approximately stationary.

To compare the methods, simulations have been performed where
a single exponential MRS signal s(t) = S0 cos(2π f0t + ϕ)e−t

/
T ∗

2 is
added to noise-only recordings. The noise records are only approx-
imately stationary, for example the power of a particular harmonic
can vary by more than a factor of two within minutes. The syn-
thetic MRS signal is then recovered by first despiking the records.
Subsequently, harmonic noise is removed with either Wiener or
adaptive filtering. Finally, the data are stacked and the MRS sig-
nal are retrieved by envelope detection, described in appendix C
and standard peak finding and fitting methods using the procedure
of Neyer (2010), also described by Mueller-Petke et al. (2011).
The ability of the different methods to retrieve the MRS signal pa-
rameters can then be compared. Representative results from two
different sites, Risby and Odder, are shown in Table 2. For com-
parison the MRS signal has also been retrieved in the case where
no filtering has been done. For both filtering methods filter lengths
of 20 taps was used. A step size β = 10−3 was used in the NLMS
algorithm.

As expected the results show that the MRS signal is generally
better retrieved by using either Wiener filtering or adaptive filtering
than no filtering. Within the experimental uncertainty we find that
Wiener and adaptive filtering gives equal overall performance with

small and random variations depending on the specific site and noise
record used.

In Fig. 12 the spectrum of a single, unprocessed noise-only mea-
surement with synthetic signal added and the corresponding spec-
trum of the de-spiked, filtered and stacked signal are shown. The
figure shows that a noise reduction of approximately 20 dB are
obtained across the interesting part of the spectrum and that up to
35 dB of the most intense powerline harmonics are removed by the
noise cancelling algorithm. The peak at the Larmor frequency is left
undisturbed. A realization of Fig. 12 in the time domain is shown
in Fig. 13, in this figure it is possible to observe the characteristics
of a MRS signal.

The ability of both Wiener filtering and adaptive filtering is cur-
rently limited by the instrument employed: The four analogue-to-
digital converters used in the primary loop and the three reference
loops are controlled by four independently generated clock signals.
This implies that the four channels are not sampled at the exact
same frequency and that the timing of the signal acquisition is af-
fected by jitter. The jitter is tantamount to a random delay in the
timing between channels and corresponds to a random phase shift of
the transfer function. Neither Wiener filtering nor adaptive filtering
can react to the random phase shift or the difference in sampling
frequencies and the effect is a reduction in the noise cancelling
efficiency of both methods. An example of this is seen in Fig. 12
where a number of the powerline harmonics are not as efficiently
cancelled as potentially possible.

C O N C LU S I O N

In this paper, we have investigated the applicability of adaptive noise
cancelling of multichannel MRS signals. One of the most important
results is that an analysis of the noise recorded with the multichan-
nel MRS instrument showed that the relationship between noise,
that is spikes, recorded in the primary channel and in the reference

Table 2. Comparison of retrieval of synthetic signal parameters using different methods. Data from two sites, Risby (top) and
Odder (bottom) are used.

Model Despiking stacking Stacking Despiking Wiener stacking Despiking adaptive stacking

S0 (nV) 200 192.7 ± 2.2 190.3 ± 2.3 202.4 ± 1.0 203.1 ± 0.8
f 0 (Hz) 2137 2136.91 ± 0.08 2137.07 ± 0.08 2136.99 ± 0.08 2136.91 ± 0.08
ϕ (rad) 2 2.05 1.96 2.03 1.92
T2

∗ (ms) 200 189.9 ± 4.3 201.2 ± 4.7 187.9 ± 1.8 186.3 ± 1.5

S0 (nV) 200 197.3 ± 1.6 237.0 ± 4.5 198.9 ± 0.5 199.0 ± 0.6
f 0 (Hz) 2137 2137.02 ± 0.08 2137.26 ± 0.08 2137.04 ± 0.08 2137.04 ± 0.08
ϕ (rad) 2 2.00 1.92 1.99 1.99
T2

∗ (ms) 200 205.8 ± 2.3 196.1 ± 5.2 200.9 ± 0.8 200.3 ± 0.8
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Figure 12. Spectrum of a single unprocessed measurement with synthetic signal added (grey) and the spectrum of the processed signal (black). The Larmor
frequency, f L, is marked with a grey line.

Figure 13. Time-series plot of Fig. 12. The single unprocessed measurement with synthetic signal added is grey and the processed signal is black.

channels typically depends on the particular noise event. This im-
plies that different filters must be used for efficient noise cancella-
tion of different noise events or sections of data containing spikes
should be discarded. An efficient algorithm for semi-automatic
spike detection was presented.

We have investigated the optimum choices of adaptive filter-
ing algorithm, step size and filter length and devised rules of
thumb for practical implementation. We found that adaptation of
the filter coefficients should be avoided on time-series including

signal, when this can end up in cancellation of the signal. Adap-
tation of the filter coefficients should only be done on noise-only
sections.

The paper contained a comparison of the noise cancelling prop-
erties of Wiener filtering and adaptive noise cancellation. It was
found that the two methods provided identical noise cancelling per-
formance within the experimental uncertainty. Our results are cur-
rently limited by differences in the sampling frequency of the four
channels and jitter in the MRS instrument. These problems affect

C© 2012 The Authors, GJI
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both Wiener filtering and adaptive noise cancelling. We anticipate
that better noise cancelling results than the ones presented here can
be obtained with future generations of the instrument and that a
more thorough comparison of the different methods can be made at
that stage.

It should be stressed that more elaborate methods are needed to
appropriately deal with noise originating from different sources. In
particular, it is undesirable to discard noisy sections of the data. This
prevents the application of MRS in very noisy areas where entire
series of measurements would be discarded.
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A P P E N D I X A : T H E N L M S A L G O R I T H M

The filter updating equations for the multichannel NLMS algorithm
are given by:

wi (k + 1) = wi (k) + β

ε + xT
i (k)xi (k)

e(k)x(k), (A1)

where i = {1, 2, 3} represents the three reference coils. β is the
step-size parameter (0< β < 2) and xi (k) the signal vector from the
specified reference channel. ε is a small number. The output from
each filter is given by (Treitel 1970):

yi = wT
i (k)xi (k). (A2)

The output from the multichannel adaptive filter is given by:

e(k) = p(k) − y1(k) − y2(k) − y3(k), (A3)

where p(k) denotes the signal in the primary channel. The output
is both the noise cancelled MRS signal and the error signal used in
the update of the filters.

A P P E N D I X B : M U LT I C H A N N E L
W I E N E R F I LT E R I N G

Multichannel Wiener filtering of a four-channel system consisting of
one primary receiver and three reference receivers are almost similar
to adaptive filtering, eqs (A2) and (A3). The N filter coefficients
for each filter are estimated from a complete noise-only section
of data before being used for noise cancelling of the immediately
following signal plus noise section. The multichannel Wiener–Hopf
equation is :

w = ACM−1CCM. (B1)

ACM is the reference autocorrelation matrix, which is a 3N ×
3N Toeplitz block matrix. Each 3 × 3 block consists of auto- and
crosscorrelations of the reference signals. The block corresponding
to the kth lag is given by:

ACM(k) =

⎡
⎢⎢⎢⎣

Cr1,r1(k) Cr1,r2(k) Cr1,r3(k)

Cr2,r1(k) Cr2,r2(k) Cr2,r3(k)

Cr3,r1(k) Cr3,r2(k) Cr3,r3(k)

⎤
⎥⎥⎥⎦ . (B2)

The crosscorrelation matrix CCM is a 3N × 1 block vector. Each
3 × 1 block consists of the crosscorrelation between the primary
signal and the three reference signals. The block corresponding to
the kth lag is given by:

CCM(k) =

⎡
⎢⎢⎢⎣

Cr1,p(k)

Cr2,p(k)

Cr3,p(k)

⎤
⎥⎥⎥⎦ . (B3)

The filter coefficients on the left-hand side of eq. (B1) are then
given by:

w = [w1(1)w2(1)w3(1)w1(2) . . . w3(N )]T . (B4)
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A P P E N D I X C : E N V E L O P E D E T E C T I O N

The desired MRS signal, that is the envelope of the free induction
decay is extracted from the noise cancelled and averaged signal with
the following four steps.

(1) Determination of the true Larmor frequency, f L

(2) Down-conversion to baseband using f L

(3) Determination and correction of the phase offset in the base-
band signal

(4) Lowpass filtering of the phase corrected baseband signal

Step 1 is performed by searching the frequency domain of the sig-
nal around the transmitter-generated frequency, f T, used for MRS
excitation. The frequency of the highest amplitude found within a
few Hertz from f T is taken as f L. The frequency offset is defined as:

� f = | fT − fL| . (C1)

The down-conversion in step 2 is done by:

scdc(t) = s(t)e−i2π fLt . (C2)

Where s is the original signal and scdc is the down converted signal,
which is now complex.

The phase offset of the signal is found as:

ϕ = tan−1
[∑tend

t=0
imag (scdc(t)),

∑tend

t=0
real (scdc(t))

]
(C3)

Upon determination of ϕ the offset correction is done by:

scdc,corr(t) = scdc(t)e
−iϕ (C4)

Finally, a lowpass filter is applied for further noise reduction.
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