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ABSTRACT

Two efficient implementations of 3D and 2.5D modeling and
inversion are presented to be applicable to large-scale transient
electromagnetic (TEM) method explorations. The key novel
features are (1) forward response and Jacobian calculations
are implemented using the octree-based finite-element method,
(2) a mirror approach is used to build a 2.5D inversion scheme
for further efficiency, and (3) a flexible link between the forward
mesh and inversion model is applied on 3D and 2.5D schemes
based on the voxel formulation. We compare the performance of
the new implementations with 3D modeling using tetrahedral
meshes, with respect to speed and memory requirements. The
3D octree algorithm requires less than 1/3 of the computational
time compared with a 3D tetrahedral scheme for equivalent ac-
curacy. The 2.5D octree algorithm further speeds up the process
by reducing the computational time by another factor of two.

The inversion uses the Levenberg-Marquart approach minimiz-
ing the least-squares criterion of the objective function. We
determine the utility of our inversion approach on a synthetic
example and a field example. In the synthetic example, the
3D octree inversion result finds superior resolution of a 3D
anomaly compared with a 1D result, whereas the 2.5D inversion
result is, expectedly, between the 1D and 3D results, but with
favorable computational expenses compared with the full 3D
solution. The field data set contains 200 soundings, and we per-
form a 3D inversion on the full survey. A 24-sounding section is
then selected for the 2.5D inversion. The 2.5D inversion result
finds resistivity features similar to the 3D inversion result at the
selected profile. Hence, we conclude that the presented imple-
mentations are capable of handling relatively large TEM surveys
on modern computational platforms. This could be smaller sub-
sets of production-size surveys where 2D and 3D effects are pro-
nounced.

INTRODUCTION

Over the past few decades, transient electromagnetic (TEM)
modeling and inversion have developed significantly (Auken et al.,
2017), supplemented by a continued improvement in instrumenta-
tion and a steady growth in computing capabilities. The common
industry routine for TEM inversion is to perform either uncon-
strained layered inversions (Brodie and Fisher, 2008) or constrained
1D inversions (Auken and Christiansen, 2004; Viezzoli et al., 2008;
Vignoli et al., 2015). In addition, various forms of rapid approxi-
mations (Fullagar et al., 2015; Christensen, 2016) or combinations
with accurate and approximate solutions (Christiansen et al., 2016)

often are used. The constrained solutions provide a spatially smooth
model, whereas the inherent limitations in the 1D assumption make
it challenging or impossible for them to accurately describe com-
plex 2D or 3D geologic structures. These heterogeneities increase
the complexity of eddy current patterns, which are commonly found
in natural circumstances making a 1D assumption nonapplicable in
cases such as mineral exploration (Yang and Oldenburg, 2012) and
even in complicated aquifer structures (Maurya et al., 2020). In the
last two decades, various numerical 3D TEM modeling algorithms
have been presented using the integral equation method (Zhdanov
et al., 2006), the finite-difference method (Commer et al., 2015), the
finite-volume (FV) method (Haber et al., 2002), and the finite-
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element (FE) method (Um et al., 2010). The 3D inversion of TEM
data is a massive computational challenge. First, the time-domain
data from one receiver contain tens of time gates spanning several
decades in time, and the forward problems need to be solved twice
for each iteration during the inversion, one time for the forward and
the other for the Jacobian. Second, hundreds of thousands of TEM
soundings are commonly collected in one survey. In recent years,
several strategies are reported in the literature to solve the 3D TEM
inversion problem more effectively. Cox et al. (2012) introduce the
“footprint” concept in the time-domain data, in which only elements
close to the system with significant data impact are considered for
sensitivity calculation; Oldenburg et al. (2013) demonstrate that the
performance of direct solvers outruns traditional iterative solvers;
and Yang et al. (2013) use local meshes to decompose the inversion
domain into small problems. Even so, it remains a computationally
expensive task to realize a large-scale multidimensional time-do-
main inversion for TEM surveys. Here, we present a 3D inversion
scheme and a 2.5D inversion scheme through octree FE modeling
and a multimesh approach, which decomposes the survey domain
using a local mesh at each sounding for forward calculation and a
full-survey model mesh for inversion. We will refer to this strategy
as the domain decomposition.
The computation of the TEM forward response and Jacobian cal-

culation accounts for the bulk of the computational cost in a 2D and
3D inversion scheme, and we, therefore, seek to achieve computa-
tional savings on this process through nonuniform meshing. Local
refinement only applied in the regions where fine resolution is needed
to represent complex geometry features and capture large field var-
iations, such as areas close to the transmitter and receiver or places
including a conductivity discontinuity, can effectively reduce the
number of unknowns in the linear system to be solved (Horesh
and Haber, 2011). Compared with unstructured grids adopted to
3D electromagnetic (EM) modeling programs using either the FE
method (Schwarzbach et al., 2011; Um, 2011; Ansari and Farquhar-
son, 2014) or the FV solution (Jahandari and Farquharson, 2014),
octree meshes are easier to construct, the resulting system often is
better conditioned, and the number of cells remains reasonable for
numerical computation (McMillan et al., 2018). The earliest applica-
tion in the EM field using octree meshes was done by Haber and
Heldmann (2007), who demonstrate the advantage of octree discre-
tization using the FV solution for Maxwell’s equations. Grayver and
Kolev (2015) also show that considerable computational savings can
be achieved on magnetotelluric inversion problems. Haber and
Schwarzbach (2014) use an FV solution for TEM on octree meshes,
but to our knowledge, there is no TEM inversion solution using oc-
tree meshes with the FE method. Furthermore, we have not, so far,
seen any direct performance comparison over different implementa-
tions using different nonuniform meshes. We, therefore, present two
octree-based solutions and a performance comparison with a tetrahe-
dral-based solution in this paper.
The 2.5D inversion was once a preferred solution when available

computational power was smaller than today (Allers et al., 1994;
Mitsuhata et al., 2002) and was challenging to complete a 3D in-
version for multiple soundings, especially for time-domain data
sets. Traditionally, the 2.5D algorithms were based on the 2.5D for-
mulations of Maxwell’s equations (Wilson et al., 2006; Abubakar
et al., 2008; Yu and Haber, 2012), which compute the response of a
3D source from a 2D geoelectric model using different numerical
methods. In this study, we followed a different approach, easily

generalized to any problem in which the 3D solution is available.
Specifically, we developed a 2.5D algorithm based on a 3D model-
ing mesh halved through the 2D xz-plane passing through the
receiver and transmitter (i.e., along the moving direction for towed
or airborne systems). Assumptions on the symmetry of the model-
ing, in terms of source and boundary conditions, allow us to almost
halve the degrees of freedom (DoF) in the linear system for forward
responses and Jacobian calculations, and thereby achieve a factor of
two speed-up in our 2.5D inversion compared with the complete 3D
solution.
Decoupling between the modeling mesh and inversion mesh

combined with the domain decomposition strategy offers flexibility
to design a local modeling mesh for each sounding and a regional
inversion mesh for the survey. Madsen et al. (2020) use two separate
meshes for forward modeling and inversion to solve the direct cur-
rent and induced polarization problem. Zhang et al. (2021) also ap-
ply this decoupling method and use two tetrahedral meshes with
different densities for forward modeling and Jacobian calculation
to accelerate a 3D TEM inversion. In this study, we apply the de-
coupling of the inversion mesh and the forward modeling mesh to
octree-based forward modeling. This enables the utilization of a
regular inversion model grid while maintaining the advantages of
the nonuniform nature of the octree mesh in the forward modeling.
The goal of this paper is to present two highly efficient TEM

inversion schemes that can be applied to any TEM system, airborne,
land-based, or on water. The inversion schemes are using the octree-
based FE method for forward modeling with the second-order back-
ward Euler method (Butcher and Goodwin, 2008): the multimesh
approach with the domain decomposition for inversion and a mirror
approach for the 2.5D inversion. In the next section, we describe the
FE discretization using octree meshes for the TEM forward and Ja-
cobian calculation, and include a brief description of our inversion
scheme. Then, we verify the effectiveness of the algorithm through
two numerical experiments using the towed transient electromagnetic
(tTEM) system (Auken et al., 2019). The first example presents 3D
and 2.5D forward responses of resistive and conductive half-space
models against 1D responses. Following this, we present a perfor-
mance analysis comparing against 3D tetrahedral results. The second
example shows the synthetic inversion results of a 3D valley model
from 1D, 2.5D, and 3D algorithms. Finally, we present inversions of
field data that demonstrate the advantages of our approaches.

METHODOLOGY

Forward modeling

Forward problem formulation

Assuming that the medium is linear, isotropic, and homogeneous
and that the electrical properties are independent of time, pressure,
and temperature, the time-domain forward problem follows the der-
ivation from quasi-static Maxwell’s equations and can be formu-
lated as a diffusion equation in terms of the electrical field as a
function of space r and time t, i.e., eðr; tÞ:

∇ × ∇ × eðr; tÞ þ μσðrÞ ∂eðr; tÞ
∂t

¼ −
∂jsðtÞ
∂t

; (1)

where rϵΩ, tϵð0; TÞ, js is the electric current density, σ is the electric
conductivity, and μ is the magnetic permeability. The initial condi-
tions are given as
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eðr; 0Þ ¼ e0ðrÞ: (2)

When the modeling domain is big enough and boundary effects
are negligible, we can apply the homogeneous Dirichlet boundary
condition:

eðrΩ; tÞ ¼ 0: (3)

The initial boundary value problem can be discretized in time
using the second-order backward Euler method (Butcher and Good-
win, 2008):

deðtÞ
dt

¼ 1

2Δt
½3eðtÞ − 4eðt − ΔtÞ þ eðt − 2ΔtÞ�; (4)

and spatially using the vector FE method (Jin, 2015) for field e at
any position:

e ¼
X12
i¼1

Niei; (5)

where ei denotes the tangential field along the ith edge and Ni is the
vector interpolation functions (i.e., shape functions) at the edges.
Combining the equations of all the elements at all time gates, a

linear sparse system of equations is therefore stated as

Keðr; tÞ ¼ b; (6)

where the right side b is a source term and K is the symmetric stiff-
ness matrix at the current time step. In addition, the symmetric stiff-
ness matrix of all time steps Kt is

Kt ¼

0
BBBBBBBB@

A1

B2 A2

C3 B3 A3

. .
. . .

. . .
.

Cnt−2 Bnt−2 Ant−2

Cnt−1 Bnt−1 Ant−1

Cnt Bnt Ant

1
CCCCCCCCA
;

(7)

where nt denotes the number of time steps and A, B, and C at the
kth element are

Ak ¼ 3Qk þ 2ΔtSk; (8)

Bk ¼ −4Qk; (9)

Ck ¼ Qk; (10)

Qk ¼
ZZZ

σkNk · NkdVk: (11)

in which the matrix of Qk and Sk have the following format

Sk ¼
ZZZ

1

μ
ð∇ × NkÞ · ð∇ × NkÞdVk: (12)

Because the problem is designed for local meshes (Yang et al.,
2013), the matrix associated with each time gate is quite small, and,
in this case, direct solvers are favorable as the matrix factorization
can be shared when the time steps are in the same length (Oldenburg
et al., 2013).
The time derivative of the vertical magnetic induction, i.e., the

simulated system response dsys, will be obtained from the electrical
field e through Faraday’s law, followed by multiplication of the in-
terpolation matrix L:

dsys ¼ Le ¼ LtLse; (13)

where Lt denotes the linear interpolation matrix in the time domain
according to the actual time gates and Ls represents the interpola-
tion matrix in the space domain at the location of receivers.

Hanging nodes

Octree mesh generation is a spatial partition topology, which re-
cursively subdivides a cell into eight blocks (see Figure 1) until a
stopping criterion is met (Frey and George, 2007); for example, in
our case, the criterion is the volume of the cell. First, we divide the
model uniformly in all directions, and we set the level of these an-
cestor cells as zero. Based on this basic skeleton, we set several
nested regions from the model margin to the center where the trans-
mitter is located. Elements in each region are refined to different
levels, with the refinement increasing from the outer regions to the
inner ones. The level, or several subdivisions, of each cell is stored
as a tree structure. The more refined, the higher level the cell will be.
One stand-out feature of mesh gradation management is that the
level difference between adjacent cells may not exceed one. More-
over, hanging nodes appear when two adjacent cells do not share the
same level (Legrain et al., 2011). Two types of hanging nodes can
be noted as shown in Figure 1: hanging nodes on the edges and

Figure 1. Octree mesh illustration, where the filled circles denote
hanging nodes on edges and the open circles denote hanging nodes
on faces.
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hanging nodes on the faces (Grayver, 2015), which require special
treatment when we compose the system matrix.
We need to handle the added parameters from the edges associ-

ated with hanging nodes, to ensure the compatibility of the FE
approximation and the continuity of the FE fields even on the inter-
face. Our solution is inspired by the work of Bielak et al. (2005),
who select the added parameters and treat them using a properly
weighted constraint during the stiffness matrix assembly process
in equation 7.
Based on the classic FE solution e as in equation 5, the field def-

inition in the octree-based FE is extended as

e ¼
X12−nh
i1¼1

Ni1ei1 þ
Xnh
i2¼1

Ni2

�Xned
j¼1

di2j · ϕi2
j

�
; (14)

where nh represents the number of edges with hanging nodes, di2j
are fields on the edges of lower-level master cells that are associated
with the added parameters, ϕi2

j denotes the enrichment function ap-
plied on the added parameters, and ned is the number of related
edges. Given that the property of the edge element and all of the
elements are regular, we define the enrichment function as

ϕi2
j ¼

�
1 on the edge; ned ¼ 1

ð1∕2; 1∕2Þ on the face; ned ¼ 2
: (15)

Note that, when the hanging node is on the face, two parallel
edges on the face share the contribution equally, as the field varies
linearly in the normal direction to the vector. In general, the main
idea of our approach is to redefine the shape function of edges at the
hanging nodes by linear combinations of the previous shape func-
tions, similarly to Grayver (2015).

Therefore, the fields at the edges associated with hanging nodes
can be expressed by the edges from master cells, and the dimension
size of the stiffness matrix is always smaller than the number of
physical edges.

2.5D solution: The mirror approach

During a TEM survey, it is common that the transmitter, either in
offset configuration or in a central loop configuration, is geomet-
rically symmetric. Here, we take the tTEM system (Auken et al.,
2019) as an example to illustrate the principle of the mirror ap-
proach, which is the base of our 2.5D implementation. We assume
that the resistivity model has variations in the x- and z-directions and
is symmetric in the y-direction. The x-direction is defined by a line
passing through the center of the transmitter and the receiver. In this
condition, the magnetic fields on the xy-plane are symmetric, with
values mirrored from the left side to the right side of the xz-plane,
and they have no y component along the xz-plane, because of the
system and 2D model symmetry. No y component of the magnetic
field in the xz-plane means that the electric field has zero x and z
components on the plane, because of Faraday’s law. These are ex-
actly the Dirichlet boundary condition that we set in the 3D mod-
eling on the outer faces of the forward mesh.
Consequently, if we remove a flank of the original 3D model ac-

cording to the bisector of the system (see Figure 2) as well as the
transmitter, and we apply the Dirichlet boundary condition on all
mesh outer faces including the mirroring xz-plane, we will obtain
a forward modeling equivalent to the full problem in which the re-
sistivity is defined in the entire mesh, left and right of the xz-plane
mirroring plane. By defining the model in the half mesh and using a
resistivity model in the half mesh that does not change along the y-
direction, we obtain a pseudo-2.5D solution to the problem, using a
3D implementation with proper source definition and boundary
conditions.
An analogous point of view is the one that looks at the stiffness

matrix of the problem. If we take equation 6 with a size of 4 × 4
matrix (four unknowns) as an example, the original 3D system ma-
trix would be

K11e1 þ K12e2 þ K13e3 þ K14e4 ¼ b1;

K21e1 þ K22e2 þ K23e3 þ K24e4 ¼ b2;

K31e1 þ K32e2 þ K33e3 þ K34e4 ¼ b3;

K41e1 þ K42e2 þ K43e3 þ K44e4 ¼ b4: (16)

With the symmetric conditions of the fields and the information
of cells from the mirror approach, namely,

e1 ¼ e2;

e3 ¼ e4;

Ki1 ¼ Ki2; ði ∈ 1; 4Þ;
Ki3 ¼ Ki4; ði ∈ 1; 4Þ; (17)

then equation 16 in the half mesh will be

K11e1 þ K13e3 ¼ b1∕2;

K21e1 þ K23e3 ¼ b2∕2: (18)

Figure 2. Mirror approach illustration, where the red rectangle
symbolizes the transmitter of the tTEM system (the size of the trans-
mitter is 4 m × 2 m) and the red dot symbolizes a dipole receiver.
(a) The magnetic field on the bisector plane and (b) octree forward
mesh in the 2.5D inversion.
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In this manner, half of the cells can be saved from computation
without the accuracy being affected. To achieve this, we need to use
only half of the transmitter as the source input because the entire
system still follows the same physical law on half of the 3D forward
mesh. Consequently, this is de facto mathematical optimization,
where the 2.5D problem is characterized as a 3D source on a mir-
rored model using a 3D octree mesh.

Jacobian calculation

The Jacobian is the matrix of sensitivities with size Nd (the num-
ber of data) byNe (the number of elements), and each element in the
matrix reflects the contribution to the response of conductivity at
this point (Christensen, 2014). We calculate the Jacobian in an
explicit backward stepping scheme (Börner, 2010) through adjoint
forward modeling. This methodology is applied to the 3D and 2.5D
inversion because we calculate the Jacobian in the octree mesh first
and then interpolate to the inversion model mesh, as illustrated in
Figure 3.
Let us define the Jacobian matrix for each step n as

Jn ¼ ∂dnsys
∂m

: (19)

The derivative of equation 6 with respect to model parameters m
will be

∂e
∂m

¼ K−1G; (20)

where

G ¼ −
∂K
∂m

e: (21)

Combing the interpolation matrix L in equation 13, the Jacobian
matrix is derived as

JT ¼ GTK−TLT: (22)

If we define a vector V ¼ K−TLT, then we have the adjoint mod-
eling equation:

KTV ¼ LT: (23)

Solving equation 23 through the backward
propagation from the last time step, we have
the temporary vector V. We thus obtain the Jaco-
bian through the relation

JT ¼ GTV: (24)

Multimesh approach

The definition of model parameters and for-
ward meshes is obtained by adapting the approach
of Christensen et al. (2017) and Madsen et al.
(2020) with domain decomposition. Domain de-
composition breaks the full-survey forward prob-

lem into small tasks at the soundings, minimizing the computing
expenses without sacrificing modeling accuracy. Specifically, we
used two sets of separate octree meshes for forward modeling and
Jacobian calculation at each transmitter, in which we compute the
forward response from equation 6 and the Jacobian from equation 24
using the adjoint modeling method.
We designed one voxel mesh for the full-scale model update in

the inversion, in which the model parameters are defined in two
different ways for 3D and 2.5D inversions (see Figure 3). In three
dimensions, the parameters are determined on the nodes of a
3D regular structured mesh, with uniform node spacing in the
x- and y-directions and log-increasing node spacing in the z-direc-
tion. In 2.5D inversions, the parameters are specified on the nodes
of 2D sections, which follow the acquisition lines, with uniform
node spacing along lines and log-increasing vertical spacing.
The inversion model parameters are linked to the center of the for-
ward mesh elements through interpolation with an inverse distance
function:

m ¼ fðMÞ ¼ F · M; (25)

where the vectorm represents the values of model parameters in the
forward mesh elements and M holds the resistivity values at the
voxel nodes in the inversion mesh. Here, F is an interpolation matrix
with weights, which merely relies on the relative distances between
the forward mesh elements with the model nodes used for interpo-
lation.
Because the interpolation function is a linear operation, and ap-

plying the chain rule for derivatives, so that

∂d
∂Mi

¼
X
j

∂d
∂mj

∂mj

∂Mi
¼

X
j

∂d
∂mj

Fj;i; (26)

we, therefore, write the Jacobian on the model mesh mapping from
Jacobian mesh as

JM ¼ Jm · FT; (27)

where JM is the Jacobian of the inversion model space, the voxel
mesh, and Jm is the Jacobian computed in the forward mesh through
equation 24.
This multimesh approach, with model parameters defined on the

regular meshes and forward/Jacobian computations carried out on

Figure 3. Relation between forward/Jacobian mesh (green) and inversion model mesh
(orange). (a) The 2.5D inversion: 3D octree mesh and 2D inversion section. (b) The 3D
inversion: 3D octree mesh and 3D inversion mesh.
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octree meshes, one for each transmitter, allows for minimizing com-
putation time and resource requirements while maintaining an in-
version model space well suited for inversion. In this fashion,
enforcing vertical and horizontal constraints for the inversion be-
comes easily applicable, as well as incorporating other prior knowl-
edge, when present.

Inversion

For inversion, we adopted the framework from AarhusInv
(Auken et al., 2015), which provides means for minimizing a gen-
eral multicomponent objective function:

QðmÞ ¼ QobsðmÞ þQpriorðmÞ þQregðmÞ
Nobs þ Nprior þ Nreg

; (28)

where each component of the objective function describes the norm
misfit of the solution with respect to the observed data, prior infor-
mation, and regularizing constraints, respectively (Nobs, Nprior, and
Nreg being the number of data, the number of prior constraints, and
the number of roughness constraints).
In our algorithm, the objective function is minimized iteratively

following the rules of the Levenberg-Marquardt adaptive minimi-
zation scheme (Hanke, 1997; Menke, 2018), which combines the
gradient descent method with the Gauss-Newton (GN) method,
to obtain the optimal convergence rate. Hence, the nþ 1th iterative
model update vector m becomes

mnþ1 ¼ mn þ ½J 0T
ðnÞC

0−1
ðnÞ J

0
ðnÞ þ λðnÞI�−1 · ½J 0T

ðnÞC
0−1
ðnÞ δd

0
ðnÞ�:
(29)

Here, the damping parameter λðnÞ is regenerated at each step,
which determines the contribution amount of the gradient descent
and the GN method on the current iteration by scaling the identity
matrix I; J 0

ðnÞ denotes the Jacobian matrix of partial derivatives;
δd 0

ðnÞ is the data vector update; and C 0
ðnÞ is a covariance matrix:

J 0
ðnÞ ¼

2
4 JðnÞ

P
R

3
5; (30)

δd 0
ðnÞ ¼

2
4 δdðnÞ
δmðnÞ
δrðnÞ

3
5 ¼

2
4 dðnÞ − dobs
mðnÞ −mprior

−RmðnÞ

3
5; (31)

C 0
ðnÞ ¼

2
4Cobs 0 0

0 Cprior 0

0 0 CR

3
5: (32)

In the first equation of the Jacobian matrix (equation 30), JðnÞ
thus represents the Jacobian of the forward mapping, P is the con-
straint matrix on the a priori information, and R is the roughness
matrix. In equation 31, the data vector update δd 0

ðnÞ includes the

distance δdðnÞ between the nth forward response dðnÞ and the ob-
served data dobs, the distance δmðnÞ between the nth model update
mðnÞ and a priori model vector mprior, and roughness of the nth
model vector δrðnÞ ¼ −RmðnÞ. The three blocks of the covariance
matrix C 0 contain the covariance on the observed data Cobs, the
covariance on the a priori information Cprior, and the covariance
on the roughness constraints CR. One can find more detailed matrix
format and derivations in Auken and Christiansen (2004). No prior
information was incorporated in the examples of this paper. How-
ever, two types of constraints, horizontal and vertical, are enforced,
and the roughness matrix R, the roughness of the nth model vector
δrðnÞ, and the covariance on the roughness constraints CR can there-
fore be further subdivided into two terms, respectively:

R ¼
�
Rh

Rv

�
; (33)

δðnÞ ¼
�
−RhmðnÞ
−RvmðnÞ

�
; (34)

CR ¼
�
CRh

0

0 CRv

�
: (35)

VERIFICATION

The presented algorithms have been implemented using the pro-
gramming language Fortran 2003. The mesh generation, forward
modeling, and Jacobian calculation are all devised from scratch,
which are built into an existing GN inversion scheme (Auken et al.,
2015). For solving the system equation 6, we used the solver Par-
diso (Schenk and Gärtner, 2004) directly from the Intel Math Kernel
Library. To better harness the modern computing architectures and
accelerate the process, Open Multi-Processing (OpenMP) was used
to perform parallelization over sounding domains. All of the follow-
ing numerical experiments were run on 2.60 GHz Xeon Gold 6132
central processing unit (CPUs).

Forward modeling

To demonstrate the effectiveness of our implementations, we
conducted a numerical test on a half-space problem, comparing
the responses with 1D computations (Auken et al., 2015). The
homogeneous half-space model is calculated for resistivities of
10 and 400 Ωm, and the air resistivity is defined as 106 Ωm. The
tTEM system, which consists of a 4 m× 2m transmitter and a receiver
located 9.44 m away from the transmitter loop center, is simulated as
shown in Figure 4. We designed the octree mesh to meet a target of
3% accuracy at the receiver position, resulting in a 3D forward mesh
with 17,100 DoF and a 2.5D forward mesh with 12,200 DoF. The
smallest cell at the receiver is 0.5 m × 0.5 m × 0.5 m, whereas
the sizeof the largest cell at the boundary is 1024m×1024m×1024m.
The source waveform was simulated by a linear turn-off of the current
from 1 to 5 ns. The responses were compared with the impulse re-
sponse in the time range from 1 to 10 ms.
Figure 5a illustrates the homogeneous half-space responses with

a late time sloping rate of −5/2 for all of the models; Figure 5b
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provides a relative error comparison between the octree-based
solutions and the 1D solution. The overall relative error is under
3% for all cases, except the early responses of 10 Ωm half-space
as the solid blue and solid red lines shown, which was caused
by the sign change in the early time of the conductive surface. It
is possible to achieve an even smaller error margin (less than
1%) as long as the meshing is dense enough to represent tiny field
variabilities. However, we deem 3% sufficient when considering the
noise level in the production EM data.

Performance comparison with the tetrahedral
implementation

Table 1 presents a comparison, in terms of the running time and
memory usage, of the octree 3D and 2.5D implementations and the
3D tetrahedral implementation presented in Zhang et al. (2021). For
one local mesh, of which the discretization attains an accuracy of 3%
compared with a 1D response, the tetrahedral method requires 40,000
edges, whereas the octree 3D mesh has approximately 17,200 DoF
with 27,500 physical edges. The 2.5D mesh yields 12,100 edges,
which accounts for 2/3 of the 3D octree mesh. The immediate con-
sequence of the DoF is the computing expense. The 3D octree algo-
rithm requires 20 s for the forward response, which is less than 1/3 of
the running time on a 3D tetrahedral scheme. The 2.5D octree algo-
rithm further speeds up the process by reducing the running time by
another factor of two. As for memory usage, the 3D octree modeling
and Jacobian calculation need 1/3 of the tetrahedral, and 2.5D octree
further reduces it to nearly a half of the 3D octree one.

Synthetic inversions

For synthetic inversions, we designed an idealized 3D model, con-
sisting of a 10 Ωm buried valley structure embedded in a 200 Ωm
homogeneous background. The valley model stretches from 15 to
40 m vertically, with one branch uplifting. It is 130 m wide in the
y-direction, and it extends infinitely in the x-direction (see Figure 6a).
The model was designed such that the valley structure varies hori-
zontally and vertically. In this example, as shown in Figure 6b,
we modeled 204 soundings over a 200 m × 160 m area to cover the
valley. The soundings have the interval distance of 20 m in the x-di-
rection and 10 m in the y-direction, roughly resembling a typical field
data collection.
Each local mesh of 3D or 2.5D inversions had the same size/dis-

cretization used in the modeling accuracy example, but contrary to
the accuracy example, the tTEM current waveform and system re-
sponse (Auken et al., 2019) were fully modeled, convolving the im-
pulse response with the waveform and the system filters. This was
done for the two system moments, with low-mo-
ment times from 4.14 × 10−6 to 11.6 × 10−5 s

and high-moment times from 1.14 × 10−5 to
9.01 × 10−4 s, where all timing is referenced
against the beginning of the turn-off.
The stopping criterion for all of the inversions

is based on the total misfit: the inversion stops
when the change in the total misfit of the inver-
sion (equation 28) is smaller than 1%. The same
starting model was used as well for all inversions,
in this case a homogeneous 100 Ωm half-space.
For the 3D modeling and inversion, the line

directions of the tTEM systems are all x-wise,

Figure 4. The tTEM system configuration scheme, where the size
of the transmitter is 4 m × 2 m and the dipole receiver locates 9.44 m
from the transmitter loop center.

Figure 5. The 2.5D and 3D octree-based hexahedral forward mod-
eling accuracy for a 10/400 Ωm half-space model using the tTEM
system. (a) Forward responses. (b) The relative difference compared
with the corresponding 1D response. Positive and negative re-
sponses for the 10 Ωm case are shown with different colors, indi-
cated with the signs (+) and (−) in the legend.

Table 1. Performance and computing costs of forward (Fwd) response and the
first iteration (first) for one local mesh.

Octree 3D Tetrahedra 3D Octree 2.5D

DoF/edge number 17,200/27,500 40,000/40,000 12,100/18,400

Fwd/time (s) 20 72 8

Inv (first)/time (s) 90 374 29

Fwd/memory (MB) 244 678 138

Inv (first)/memory (MB) 615 1300 362

3D TEM inversion using octree meshes E273
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as indicated by A in Figure 6c. It took 13 iterations and 14.8 h on 10
CPUs to complete the 3D inversion, with a final total misfit of 0.60.
The peak memory usage for this inversion was 44 GB. A 1D voxel
inversion, which used the same model space but 1D forward and
Jacobian computations (Christensen et al., 2017), was carried out
on the same data for comparison: it took eight iterations and
137 s to end up with a total misfit of 1.06.
Figure 6d and 6e shows an xy slice at 25 m depth of the 3D and

1D inversion models, respectively. The 1D inversion does not re-
cover the upper branch of the model, but the 3D inversion is able
to image both the valley branches, although with poor resolution on
the lower branch.
To compare with 2.5D inversion results, we made two profiles,

which are illustrated in Figure 6b, where profile A consists of 12
soundings along the x-direction (at y = 130 m) and profile B consists
of 17 soundings along the y-direction (at x = 60 m). For the 2.5D
inversion, it is required that the inversion plane is aligned with the
driving direction. Consequently, when generating the data and in-
verted profile A, the system was assumed driving in the x-direction,
while driving in the y-direction for profile B, as described in Fig-
ure 6c. The sounding layout is the same regardless of the driving
direction.
We carried out the 2.5D inversions of profiles A and B and the

key inversion numbers are listed in Table 2. The data misfit is cal-
culated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QobsðmÞ∕Nobs

p
. From the table, we can see that the

memory usage increases linearly with the number of soundings.
With perfect scaling of the OpenMP parallelization, the running
times for one iteration in Table 2 should be identical for profiles

A and B because we used one thread for each sounding. A subop-
timal scaling was obtained, with a 20% increase in running time per
sounding with 17 threads instead of 12.
Figure 7 presents the synthetic models and 1D, 2.5D, and 3D

inversion results along profiles A (left column) and B (right col-
umn). Figure 7a shows the model along profile A, with the uplifting
branch of the valley that expands 120 m horizontally and from 10 to
35 m in depth. Figure 7b presents an xz slice of the 3D inversion
model of Figure 6, which clearly delineates the shape of the branch,
but with an underestimation of resistivity at the bottom of the
anomaly. Figure 7c and 7d shows the 2.5D and 1D inversions, re-
spectively. Both inversions have a worse recovery of the anomaly,
compared with the 3D inversion. This also is expected for the 2.5D
inversion because the anomaly is elongated along the profile direc-

Figure 6. The 3D octree inversion for a valley model using the tTEM system. (a) A 3D view of the conductive valley, with a section plane at the
depth of 25 m. (b) Soundings’ layout above the valley, with 20 m distance in the x-direction and 10 m distance in the y-direction. Lines A and B
are the profiles inverted in 2.5D and shown in Figure 7. (c) Two used driving directions of the tTEM system. (d) The 1D inversion result of the
resistivity model section. (e) The 3D inversion result of the resistivity model section. (f) Colorbar of sections (d and e). The dotted white lines in
sections (d and e) represent the extension of the valley.

Table 2. Resources and performance comparisons for 2.5D
inversion on profiles A and B.

Profile A
(12 threads)

Profile B
(17 threads)

Peak memory (MB) 4200 6000

Running time, total (s) 871 1342

Iterations 10 13

Data misfit 0.66 0.69
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tion, with strong model variations along the y-direction perpendicular
to the profile, which is a violation of the 2D assumption.
In the right panels of Figure 7, profile B shows two conductive

blocks (Figure 7e), i.e., the cross sections of the valley branches.
Figure 7f presents a yz slice of the 3D inversion model of Figure 6
along profile B, whereas Figure 7g and 7h shows the 2.5D and 1D
inversions, respectively. The 3D inversion in Figure 7f is able to
image both of the branches, with better resolu-
tion on the shallower bigger branch (similarly,
the deeper branch also is imaged poorer in Fig-
ure 6e). In this case, the 2.5D inversion gives
good results, with good imaging of both valley
branches, whereas the 1D inversion is not able
to distinguish the branches, resulting in a single
merged anomaly with an incorrect shape. The
superior performance, in terms of model recov-
ery, of the 2.5D inversion along profile B com-
pared with profile A, is a direct consequence of
the fact that the model is almost 2D along profile
B, but highly 3D along profile A.

FIELD EXAMPLE

Javngyde is a headwater catchment located in
Jutland, Denmark, where the landscape was
mainly formed during the Weichselian glaciation
(Houmark-Nielsen, 2004). The general surface
soil of the catchment is low-medium resistive
clay-till, whereas some areas are dominated by
freshwater and meltwater sandy deposits (Jakob-
sen et al., 2011). Some clayey glaciotectonic
thrust structures are present in the area (Kim
et al., 2019), and the high heterogeneity makes
the site a good example to validate our 3D and
2.5D inversion algorithms. In 2017, 61% of the
catchment area was surveyed with tTEM. This
specific data set (see Figure 8) is a small subset of the entire data
set, and it consists of 200 soundings, distributed more than nine
lines oriented in a northwest–southeast direction with approxi-
mately 10 m sounding spacing along the lines and 25 m line spac-
ing. The tTEM data were processed following the procedures
described in Auken et al. (2019).
First, we performed a 3D inversion of the entire subset, and then

profile L was selected for 2.5D inversion based on the 3D inverted
model. Profile L holds 24 soundings. The 3D inversion of the full
survey runs in 12.5 h on 10 CPUs, and the peak memory usage was
42 GB. The 2.5D inversion of profile L took 24 min and 6 GB on 12
CPUs. We also performed a 1D voxel inversion of this profile as a
reference.
All of the inversions were given a homogeneous starting model

of 100 Ωm. The total data misfits of the 3D full survey, the 2.5D
profile, and the 1D profile are 1.2, 0.9, and 0.8, respectively.
Figure 9 presents a section of the 3D inversion model along pro-

file L, together with the 2.5D and the 1D inversions. The depth of
investigation (DOI) also is displayed in the section following
(Christiansen and Auken, 2012). The misfits of the soundings along
the profile are shown in Figure 9d. Overall, all of the misfits are
under two, with higher misfit for the 3D inversion, which however
is a part of the full survey inversion.

As shown in Figure 9, all of the inversion results have a 10 m
thick medium-high resistive surface layer. According to the geology
background, we interpret it as sand and gravel glacial deposits. Be-
low 10 m, clayey glaciotectonic thrust structures are evident, but
significant differences are present in the imaging of the conductive
anomalies between the 1D inversion and 2.5D/3D inversions. In the
northwest (left) part of the profile, the 1D inversion shows an almost

Figure 7. Model and inversion result at two profiles of the valley model. (a) True model
of profile A, (b) 3D inversion result of profile A, (c) 2.5D inversion result of profile A,
(d) 1D inversion result of profile A, (e) true model of profile B, (f) 3D inversion result of
profile B, (g) 2.5D inversion result of profile B, and (h) 1D inversion result of profile B.

Figure 8. Map of the survey and measurement locations.
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continuous conductive anomaly at 20 m depth, contrary to the 2.5D
and 3D inversions, which image two clearly distinct anomalies. Fur-
thermore, the 1D inversion finds a deep conductive anomaly at 60 m
depth, not present in the other inversions. These differences are
rather similar to the ones found in the analysis of the inversions
of the synthetic model of profile B in Figure 7, where the 1D in-
version has a difficult time imaging the two valley branches sepa-
rately. We, therefore, follow the multidimensional inversion results
and interpret the southeast conductive area as a clayey thrust struc-
ture. Although the computing complexity of the 2.5D inversion is
notably smaller, the inversion result is quite similar to the 3D in-
version section, making it a valuable tool for inverting TEM data
in complex geology, especially where the main structure directions
are perpendicular to the data collection direction.

CONCLUSION

We have presented two implementations of modeling and inver-
sion using an octree-based FE method in 3D and 2.5D of TEM data.
The octree technique offers an elegant manner to locally refine the
mesh to represent geologic features and capture field variations,
which reduces the degree of freedom efficiently resulting in a lower
computational cost for forward modeling and Jacobian calculation.
With a mirror approach, we built a 2.5D algorithm using an octree
mesh, which additionally improves the efficiency of the inversion

scheme. Specifically, the 3D FE modeling using octree meshes is
approximately three times faster than the tetrahedral implementa-
tions and uses only one-third of the memory. The 2.5D implemen-
tation reduces the computing time and memory use by another
factor of two.
Another highlight of our implementations is the flexible link be-

tween the forward mesh and inversion model space. In particular,
the 3D and 2.5D inversion models are defined in structured meshes,
linked through an interpolation to the forward meshes in a domain
decomposition strategy, successfully avoiding fine inversion mesh
refinements without sacrificing forward accuracy.
The applicability of the proposed algorithms was demonstrated

through a synthetic example with a 3D valley structure and a field
example. The synthetic experiment illustrated that 3D inversion can
validly recover the anomaly with the proper size and conductivity.
The 2.5D inversion result approached the true model with faster
speed and smaller computing expenses, as long as no strong varia-
tions in resistivity were present perpendicularly to the profile. On
the contrary, the 1D inversion could not delineate the correct shape
of the 3D anomaly. The field example showed good agreement be-
tween the 3D and 2.5D inversion, but with a substantial difference
from a 1D inversion result. Hence, we conclude that the 3D and
2.5D octree-based inversion schemes for TEM data can resolve
complicated subsurface structures. The choice between a 3D and
2.5D inversion will depend on the geologic environment and the
data collection layout, but also should consider the trade-off be-
tween model resolution and computational cost.
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