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Summary. The H-polarization induction problem is solved in terms of an
integral equation, which in the horizontal direction is transformed into the
wavenumber domain. By this transformation the usual complicated integral
expressions for the Green’s tensor elements are removed. By extracting
asymptotic features from the system of linear equations, we reduce the
number of equations considerably independent of whether the horizontal
variation in the conductivity is continuous or discontinuous. Likewise we
reformulate the problem so that arbitrary conductivity contrasts may be
studied. The method is finally tested by comparing with analytic solutions,
and good agreement is achieved. Furthermore the numerical results indicate
that a small amount of wavenumbers is required.

1 Introduction

It is well-known that the electromagnetic field equations in the magnetotelluric case separate
into H- and E-polarization, if the structure is two-dimensional (Porstendorfer 1975; Hobbs
1975).

Many attempts have been made to solve the equations connected to these two polariza-
tions. One way is to focus on the differential equation and solve it by means of a finite
element or finite difference technique (Jones & Pascoe 1071; Coggon 1971; Reddy &
Rankin 1973); another is to transform the differential equation into an integral equation
using a Green’s function formalism (Hohmann 1971; Raiche 1974; Weidelt 1975a). The
advantage of the last method is that the area in which the equation has to be solved is
reduced to the anomalous area. But the disadvantage is that it tums out to be very time
consuming to compute the Fourier integral expressing the Green’s function.

Therefore, an attempt has been made to solve the equations in the Fourier space, because
such a transformation removes the Fourier integral connected to the Green’s function.
Another advantage of the present method is that it becomes quite easy to treat continuous
conductivity changes, which are difficult to handle by the above mentioned methods.
SI-units are used.
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2 Derivation of the integral equation

If the source field is a plane wave and the structure is two-dimensional (the x-direction being
the independent direction), then the field equations separate into two independent systems.
We shall assume that the frequencies used are below that level where displacement currents
have to be taken into account. The time dependence is described by exp (iwt). Under the
assumptions mentioned above Maxwell’s equations become

cutl H(r) = o (r) E(r) +je (1)

curl E(r) = —iwpu, H(r)

or combined

curl? E(r) + k2 (r) E(r) = —iwppje (r)
where in the case of H-polarization
H=(H,,0,0)

E=(0,E,,E;)

k* (r) = iwpo o (r)

o(r) is the conductivity, which is assumed to be zero in the air halfspace and non-zero in the
earth halfspace. j, = X,,jo8(z +4) due to a uniform current sheet at height z = —h(h > 0).
This assumption, however, is immaterial for the following.

Referring to Weidelt (1975a) we obtain

E, (o) = |k3() G(rolr) E(r) d4 (D

curl’E, (r) + k5 (¥) Eq (1) = —iwioje (¥);
G(rolr) = Xy Gy(ro |1) + X, G, (ro|1)

=Xy X, Gy + X, X6y, + X, %, G,y + X, %, G55 using dyadic notation
curl? Gy(ro| 1) + A3 (1) Gy(ro 1) =%, 8 (r —1);  i=y,z )

with
KA () =k3(0) + k3 (1)

k% (r) refers to the normal part of the model, consisting of a set of horizontal uniform layers
and k3 (r) refers to the anomalous part.

The tensor element Gyj(ro|r) has a simple physical interpretation: Gyi(rofr) is the jth
electric field component at r of an infinite row in the x-direction of oscillating electric
dipoles of unit moment in the %; direction at r,.

>

3 Computation of the Green’s tensor

We now consider a normal conductivity structure consisting of a non-conducting air half-
space (index 0) and M uniform conducting layers with conductivities o,,, m=1,2,...,M.
In order to calculate the Green’s tensor, two infinite rows in the x-direction of oscillating
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Figure 1. The general two-dimensional model.

electric dipoles pointing in the y-direction and z-direction, respectively, are placed at roand
the resulting field from each row is calculated at r.

Let the dipole row with moments in the X; direction be placed in the uth layer at ro. Then
G/(xy]r) is the resulting field in the mth layer at r. The continuity of the tangential com-
ponents of the electrical and magnetic fields at interfaces leads to the conditions

2x G' 1 -G =0;
zx cull (GI' 7' = G =0; 3
z=hy,m=1,..., M.

Now define
curl G (rp 1) = 87" (xo{1) = (S/% (ro 1), 0, 0) 4)
curl 8" (ro| 1) = — k7, G (1o | 1) — %;6 (r —xo) (5)

where i=y, z, k%, =iwlo0y,.
Combining equations (4) and (5) and using div S]" (re|r) = 0

a
AS;'}c(rolr)—kfnS;';"x(rolf)=—6(y—yo)gz*5(Z—Zo) ©
m 2 m = a

ASzx(rolr)_kmSzx(rolr)_a(z’20)5;60}_3’0)' (7)
The equations of continuity of S} are obtained from (3), (4), and (5)

8% (rolr) =S¥ " (ol 1) ' ®

1 0 m 0 m+1

— — 8% (rlr) = — 8% (1olr) ®)
O 0z Om+1 0Z

wherer= (¥, hy4)andi=y, z.
In order to solve (6) and (7) we consider the following equation

Agl™(tolr) — k2 g™ (to| 1) = —8(r — 1p) (10)
with

0
S;’;c(roll'):a_z_gf(‘fo“) (an
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0
Szmx(l'olf)=_5}gzm(ro|f)- (12)

Finally, using (4), (5), and (12) the succeeding expressions are achieved for the Green’s
tensor

2

1 )
ny(rolr)——— [F —k2] g5 (Xl 1)

G}',"z(rolr) gy(ol r)

k2 oy 0z
m 1r19 2 m
Gzz(rolr)"_[a_z_k 8z (roll')

2

Gz";,(rolr) == g7 (to|1).

k2, 3y oz

Equation (10) is solved by using the procedure introduced by Weidelt (1975b) with the
following continuity conditions as implied by (8) and (9)

2 m _ a +1 13
55 (rolr)—a—z & " (tolr) (13)
1 62 2 m+1

o 322 & D g B a9
g7 (ol D) =g kol r) (15)
1

— —g’"(rolr)- g’”“(r 1) (16)
Om O Om+1 02

r=(y,hm+1).

The functions g}’ (ro|r) and g7* (ro| 1) are expressed by a Fourier integral along the y-direc-
tion. By assuming that 6(r —rp) =0 in the air halfspace, i.e. the anomalous domain is
conﬁned to lie within the Earth, it is immediately obtained from (5) that S9,(ro|r) and

82, (xolr) are constants for z < 0. The constants are equal to zero due to (4), because G
vanishes at z = — oo

Syox (l'o I r) =0
z < 0 (air halfspace) a7
ng (roln) =0

gy (rolr) is considered first

& (rol 1) = f " (Rl + Ry, cos [2mA(y — ol A
0o
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where
Kom
tyo— Jm Zp>2
Oy
RE =
L3,
i’yL e f;fl zZ > Zo
G

n = XP [2m(z — )]
oy, = [K2, + (2022
From (11) and (17) it is obtained that K+ K =0, and the solution Ki=1 and K;=—1 is

used. In order to get finite solutions at z = oo, it is required that L%, =0, and we choose
Ly = 1. The continuity conditions equations (13) and (14) imply the recursion formulae

0y 10 U 10,
Kfn=%[K+m_1g}'n_1 (1252 i (1=, s ms2
\

%nOm—1 % Om—1
- [+ 0, « (¢
+ m+1Ym - — “m+1Ym
Lm—%g;[tnﬂ (li—)+Lm+1 (l+ )] M-1>m>u
Qm Om+1 Om Om +1

with g5, = exp [t (B 1~ him)] -

The constants 7y, and 7y, are determined from adjustment of upgoing and downgoing
waves at z = zy which is assumed to be in the uth layer

| _Kifi-Kif
L LiKi-LuK;
_Lifi-Lif;

s fyi= (f;',zi)z=zo

* LK. - LiK;

&7 (to| 1) is treated in a similar manner
& @0l0 = 105 + 0] cos2m o — ) )
0

I5oCrtn I 20> 2
m = i+ o,k
l‘SL Dy fon z > Zg.

Again we choose

G'=1, GG=—1, Dj;=1, D}y =0.

+

The continuity conditions equations (15) and (16) imply the recursion formulae

Op_10, Q10
Con =% [Cr:z-—lg:n—l (11' s m)*'C;z—lg;n—l (1¢—m—l—m)],l-i>m>2
CmOm—1 U Om—1

®y O 41 U Om+1

_ « g, 47 g
D,i=%g:n[tn+l (1i e "’)+ ;.,H(HL“")], M-1>m>p.
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The constants 8, and §; are again determined from adjustment of upgoing and downgoing
waves at z = zq (uth layer)

_ 1 GR+G S
L e, DCL-DLC
1 DufutDulfu

o DGy — DGy

0=

f;_; = (f,:_rt)z=zo~

The reason for the difference in the definitions of RS, and Qj, is that the same recursion
formulae are achieved. This is, of course, a computational advantage.
Defining

1
F)‘:';O\,Zo, Z) =- 2—k2— afn [R:n + R;n]
m

1
F_):rzl@,zo;z) == ﬂ{amzﬂ)\[Rtn —R;n]
m
m 1 2 i+ -
FZZO\’ Zo5 Z) hbery (27T>\) [Qm + Qm]
22,

1
FL N\ 20,2) =— Ty 27\ [ — O -

m

The following expressions for the Green’s tensor are achieved (dropping indices m)

G(rolr) =JW FQ\, zo, 2) exp [i27\(y — y¢)} dX

F=3%,%,Fyy + R, % Fyy + R, % Fyy + Ry % Fyp. (18)
The reciprocity relationship between source and receiver

Gij(rol 1) = Gy (r [ xo)

(Weidelt 1975a) implies that

Fyy N\, 20,2) = Fy (N, 2, 20)

Fy: (N 20,2) = — F,y (N, 2, 2)

Frz (N, 20,2) = Fp2 (A, 2, 29).

4 Fourier transformation of the integral equation

The integral equation (1) has to be solved numerically, because an analytical solution has not
been found as yet! This implies an approximation of the E-field. The most simple way to do
this is to divide the anomalous domain into a grid and assume the E-field to be constant
within each cell (Hohmann 1971; Weidelt 1975a). This may, of course, be a very coarse
approximation and a better solution can be obtained by using the method of moments
introduced by Harrington (1968) and applied by La Joie (1973).

The above mentioned methods for solving the integral equation all involve lengthy
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numerical computations of Green’s tensors, even if the filter method introduded by Ghosh
(1971) is used.

In the present method a Fourier transformation of the integral equation (1) is made in
order to avoid the integral expression (18). Introduce (18) in (1)

E, (V0. 20) = {K3(7,2) |FQ\, 20, 2) exp[i2nA(y — yo)ldNE(y, z)dy dz (19)
Now define

E,(y,2) =fw EQ\, z) exp(—i2mAy)d\

E,(2)= j B E,(2) 6 ) exp(—i2nhy)d\

5\ =f B exp(i2nh\y)dy.

Using these definitions in (19) we get after some evaluations

E,(\20) = |F(\, 2, 2) Eq (2) k2(y, 2) exp (i2m\y)dy dz

+ me F(X, 2o, 2) B4 (5, 2) K2 (v, 2) exp (i2n(\ — 8) y)dsdy dz. (20)

In order to discretize the integration over s we first use the well-known interpolation
theorem (Bracewell 1965, p. 189~197)

E.0.2)=3 B (" ) inc2 (7\ ")
,Z) = —, z) sinc —
a L Fa 2, Vs 2

. sin 7s
sincs = ——.
s

This interpolation is valid provided the spectrum of E, (A, z¢) is bandlimited. The spectrum
of E;(\, zo) is, of course, equal to E, (o, Zp) and in some distance y, we may assume

E,(0,2)=0 (v 1> s
ka(r,2)=0 1> ys.
When the interpolation is introduced in (20) and X = m/2y; we get

Ey@m>20) = |F@m, 20,2) Ea(2) K3 (7, 2) exp(i2mv,n y) dy dz

[ Bem2) 5 Ban. 2 sineuts -

x k2(v,z) exp 210y, — 5) ) dsdydz; (21)
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Define

2 @m,2) = f K, 2) exp (2 y) dy.

From (21) and (22) we derive

Ea(Vm,Zo)= F(Vm>ZO:Z) En(Z)]Eg(Vm,Z)dZ

1 R R
+ fF(vm,zo, 2) — 3 By ns 2) K20 — v 2) dz.
2 n

Finally, the anomalous field is computed

E,(v,2) = fl::a()\,z) exp (—i2mAy) dX

1 .
=0 (l)— Y Ey(Un, 2) exp(=i2mv,y)
2Ys/ 25 'n
with
(y) [1, byl <y
nl=1\=
2! o, 1yi> .

5 Numerical solution of the Fourier equation

(22)

(23)

(24

Equation (23) requires an integration in the z-direction which can be performed analytically
under the assumption that E,(v,,,z), X2(;,2) and E,(z) are constant in each interval
2; —dz[2: z; +dz[2. This approximation can, of course, be improved by using the method
of moments (Harrington 1968), but as we are interested primarily in the lateral variation
of the field we shall not in the present context be further concerned about this aspect. With

the above assumption we finally get from (23)

Ea(Vm, Z/‘) = Z @(Vm:zj, 7)) Eq(2) k%(”m, z;)
1
1 W 7.2
+ L O0m, 2, 21) — L Ba(n, 2) K20 — v, 22)
i 2}{; n

where

zp+dz[2
OWm, 2, 2;) = F(m, 2z, 2) dz.
v z;—dz/2

(25)
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O (¥m, 2j, ;) is easily obtained from analytical integration of F (v,,,, zj, z). From the expres-
sions for © (v, z;, z;) we obtain when |m | > o

®yz(Vm > Zjs z) = ®zy(Vm > Zf, z;)=0

1
O, Wm,21,2))=— —— & (26)
yy( m> 4j t) kf, (Zj) ji
O, Wi, 2, 2) = —— 6.
zz( ms ¢j 1) k?,(Zj) ji
An approximate solution to (25) can be achieved from the following equation
Ea @m Zj) = Z Oy, Zj, 2;)) Eq(z3) icg(vm ) Z7)
12
1 Ne | s
tLOmz2) = Y Ba@n2) K Gm — v, 20) 27)
i 2y ZW,

N, being a cutoff frequency.

6 Reformulation of the Fourier equation in order to get a better numerical scheme

As mentioned before, equation (23) must be solved numerically. This involves the choice of
a cutoff frequency N,. If k2(y, z) is a rapidly varying function of y, k2(v,, — v,,,2;) decays
slowly as a function of »,, —v,,, and hence the approximation to the infinite summation in
(23), i.e. the finite summation in (27) may be rather poor. In order to avoid this disadvant-
age we have developed a new equation for the numerical solution. From (19) we derive

Ea()’o, ZO) = kg())’ Z) F(>\: Zp, Z) eXp (i277)\01 - yo)) di En (Z) dydz

+ fk:(y,z) ﬁFa,zO,z)~®A(zo,z)J exp [27\(y ~ yo)] d\

x Ea(v, 2) dy dz + k3 (o, 20) ©* (20, 20) E5 (Vo, 20). (28)

The elements of ©® are the asymptotic values in (26). The reason for this manipulation 1s
that the kernel F(A,zo,z) in the integral involving E,(y,2) is replaced by a kernel
FQ, 2o, 2) — 8% (2, z) which decays to zero when |\ | - . Equation (28) implies that

k: 0o, 20) E. (00, 29) = k§ (Vo 20) [1 - ki o, 20) e (2o, 2'0)].1

X ffF (A, 2o, 2) exp [227N(Y — yo)] AN K2(y, 2) E, (2)dy dz

+ f [FQ\, 20, 2) — 0% (20, 2)] exp 270 (v — yo)] AN 2 (3, 2)

X Eq(y,2)dydz.
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The corresponding equation in the frequency domain is obtained by a Fourier transforma-
tion. Assuming the same approximations as for obtaining (25) we derive

L@m,2) =2 X BUm —Vn.2) O@n, 2, 2) Ea (2))

+ 2 Y B0m — Vn» 7)) [O@n, 2, 2) — 0 (2, 2)] T(n, 2)) (29)
where

1 Vs
B(vm —vn, Zj) = 2—y— kg(y: Zj) - kg(y, Zi) GA(Z]', Zi)]_lx expi2n (v, —vn)yldy
s — yg
1 . -y m
P@n,z) = 2_ Z E,(Vm, zi) Ka(Wn —Vm>2i); Vm =

Vs m 2ys

Equation (29) is far more powerful when solving numerically because (v,,, ,2;) — et (zz:)
decays rapidly to zero when |n|— o. Hence only a few terms in the summation involving
I'(v,, z;) are necessary to get a good approximation for the sum. This implies that the linear
system to solve for I'(v,,, z;) is small.

7 A displacement technique for obtaining the numerical solution

Numerical experiments have shown that the convergence of the iteration process, based on
equation (29), is strongly dependent on the ratio max[|o,(y, 2)|]/0,(2). Only when this
ratio is less than 1, the iteration converges for the tested examples. This means that models
with a good conductor embedded in a bad conductor are difficult to treat. The problem can
in most cases be solved using a spectrum displacement technique. We have developed a dif-
ferent method which seems to have a stronger effect because it reduces the norms of the
eigenvalues of the coefficient matrix and makes it more diagonally dominant.
Consider the equation to be solved by the Green’s tensor formalism (Weidelt 1975a)

curl2E, (r) + k2 E, (r) = — k2 [E, (r) + E, (1)] (30)

k2 is related to the layered structure and k2 to the deviation from that part.
Now consider the following equation derived from (30)

curl? E,(r) + (kfx + kgn) E,(r)=— ké E,(@)— (k: - kin) E,(r) (€29

where k2, = iwko0an (2), 0an(2) is y-independent, but otherwise arbitrary.

By means of the same techniques and approximations for obtaining (29) a similar
equation can be found. But the convergence of the iteration process, based upon this
equation, is strongly dependent on the ratio max [|6,(¥, 2) — 04 (2)11/[0n(2) + 04n (2)].
With a proper choice of 0y, (z) this ratio can be made less than 1. Furthermore the replace-
ment of k2 by (k2 +k2,) makes the coefficient matrix more diagonally dominant because
the width of the corresponding Green’s functions become smaller.

This displacement technique has been tested on models where good conductors are
embedded in bad conductors and convergence of the iteration process was achieved even
when large contrasts were considered [1:(100—1000)].
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8 Results

A FORTRAN program has been made and implemented on a CDC 6400 computer.
Responses from different models are computed, and many of these models correspond to
the one shown in Fig. 2. This model has the advantage that the H-polarization response can
be evatuated analytically (Rankin 1962).

X

og ne v y

) o %

h r“ -

4

Figure 2. The model to which an analytical solution exists.

Let us consider Fig. 3, where the p,-curve from the model in Fig. 2 is plotted for differ-
ent yg-values. y; is the distance from the centre of the anomaly, where the anomalous field
E, is assumed to be zero. The shorter this distance becomes, the more pronounced the
aliasing effect in the wavenumber domain will be. From Fig. 3 it is seen that saturation
occurs at a distance of 1.5—2.0 km from the centre of the anomalous area. The reason why
this saturation curve does not coincide with the analytical solution is that E, is assumed to
be constant in each slab of thickness 0.2 km. The penetration depth is 0.5 km so therefore
this assumption is rather poor. In Fig. 4 y; is equal to 1.5 km. In order to demonstrate the
dependence of the cutoff frequency, curves with different numbers of coefficients are
shown. The model is still the one shown in Fig. 2. Again a saturation occurs as the number
of coefficients increases, and the asymptotic curve is reached around 10 coefficients, but a
fairly good result is obtained with a smaller number, e.g. 6. In order to indicate the number
of coefficients necessary to describe the response from a buried structure (Fig. 5), we refer
to Fig. 6. Notice that the logarithmic scale is different from the scales used in Figs 3 and 4.
Fig. 6 demonstrates that, in cases where a response from a buried structure is to be obtained,
only a few coefficients are needed to reach a good agreement with the saturation curve. Of
course, this was an expected result, because the response from a buried structure does not
change abruptly and therefore needs a smaller number of coefficients to be described.

Figs 7 and 8 indicate that the responses from good conducting areas and bad conducting
areas in the H-polarization case are of the same power. The model of these responses is given
in Fig. 5.

Not much work has been carried out in connection with the investigation of the effect of
continuous conductivity changes even if it is an important problem in relation to construct-
ing realistic models for the interpretation of data. Therefore Fig. 9 shows the responses for
different continuous conductivity changes. The model is the one described in Fig. 2, but the
lateral anomalous conductivity change o, = 5/(1 +(/0.5)??) is given by a continuous func-
tion. The function is chosen rather arbitrarily, but the responses show some interesting
features. Even when p =24, corresponding to nearly an abrupt change in o, at y =0.5km
but the response does not coincide with the response from the model with the discontinu-
ous change in conductivity.

9 Discussion and conclusions
The numerical results presented show both some of the advantages of the method and also
they indicate some of the improvements that can be done.
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py [ohmm]
301
o
15
20
«a.c
10 4§
1.0
P
T-a.c
1 2.0
0.15 A L . . dy [km]
0 0.2 04 0.6 0.8 1.0

Figure 3. py-curves from the model Fig. 2. yg=1.0, 1.5, 2.0km, w =27, p, = 10 ohmm, p, =1 ochmm,
L =0.5km, 2 = 1.0 km. The number of coefficients is 20; a.c. is the analytical solution.

It is interesting to note that good numerical results can be achieved by incorporating a
few Fourier coefficients. Especially in relation to buried structures, this is pronounced. The
result can be explained as a result of the exponential decay in the layered overburden of the
high-frequency components of the anomalous field E,. Hence in such cases the system of
linear equations to be solved will be small, which will cause the iteration process to converge
rapidly. The accuracy of the method was studied by a comparison with analytical solutions,
and good agreement was obtained, especially when remembering that the resolution in the
z-direction was rather coarse. At this point it is worthwhile to point out that our zero order
approximation, with E, constant in each slab could be improved using, for example, a linear
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Pa [ohmm]
307
4
s
o)
—8
20
10+
20
2
] e
0.2 i L . . | y[km]
0 0.2 0.4 0.6 0.8 1.0

Figure 4. py-curves from the model Fig. 2. The number of coefficients is 4, 6, 8, 20. w = 2, p =10
ohmm, p, =1 ohmm, L = 0.5 km, 2 = 1.0 km, Ys=1.5 km.

y= Y=L
0 ' . y
1 ]
' 1
a4 - - oo - _ ;
% 9 %
htez” L e
T=wm
z
Figure 5. The buried model.

17
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P, [ohmm]
3.0

204

1 i H 1 |
1. y [km
OO 0.2 0.4 0.6 0.8 1.0 )

Figure 6. p,-curves from the model Fig. 5. The number of coefficients is 4, 6, 20. w = 27, p, = 10 ohmm,
p,=1ohmm,L =0.5km,2=1.0km,y;=15km,d=0.2km.

Py [ohmml]
3.0¢

1.0 ! ) I I ]

y [km}
0 0.2 0.4 0.6 0.8 1.0

Figure 7. p,-curves from the model Fig. 5. d =0.2, 0.3, 0.4 km. w =27, p, = 10 ohmm, p,=1 ohmm,
L=0.5km, 2 =1.0km, yg=1.5 km. The number of coefficients is 10.
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P [ohmm]

0.3 L I L 1 4 vy [kml
0 0.2 0.4 0.6 0.8 1.0

Figure 8. p,-curves from the model Fig. 5. d = 0.2, 0.3, 0.4 km, w = 0.2x, p, = 0.1 chmm, p, = 1 ohmm,
L =0.5km, h=1.0km, yg=1.5 km. The number of coefficients is 10.

p, [ohmm]
1071

0‘35 L 1 [l 1 )
0 0.2 0.4 0.6 0.8 70 ¥ Lkml

Figure 9. p,-curves from the model Fig. 2 for different conductivity changes described by p = 6, 12, 18,
24. a.c. is the analytical solution to the discontinuous case. w = 2, p, =5 ohmm, p, =1 ohmm, L = 0.5
km, yg = 1.5 km, and the number of coefficients is 20.
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interpolation, in which case the involved integrals in the z-direction can be evaluated analyti-
cally, thus requiring no surplus numerical work.

We would finally like to comment on the similarity in strength of the anomalies across
good and bad conductors as shown in our examples. In the case of E-polarization there is no
such similarity with the chosen examples: bad conductors will give very weak responses,
whereas good conductors will give large responses.

In conclusion we may state that the present method of solving the H-polarization Integral
Equation in the wavenumber domain leads to small linear systems to be solved numericaily.
The complicated Fourier integrals connected with the Green’s tensor elements, which have
to be evaluated when solving the integral equation in the space domain, are completely
removed. The extension of the method to treat the E-polarization case can easily be per-
formed, in which case only one component of the electric field is required. The method
enables us to study the effect of continuous conductivity changes, in fact, formally, there
is no distinction in the method between continuous and discontinuous cases.
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