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Abstract. Borehole conductivity logs, besides being useful for identifying, interpreting and correlating geological
formations, also find widespread use as auxiliary information in the inversion of airborne electromagnetic (AEM) data.
One of the quality checks often applied to AEM inversion results is a comparison between the conductivity structures
revealed by borehole conductivity logs in the survey area and the AEM inversion model closest to the borehole, often called
an ‘FID point comparison’.

Another use of borehole conductivity logs is found in modern AEM inversion procedures, where the borehole
conductivity information is included as prior information in a laterally constrained inversion. In most former and present
practices, AEM layer conductivities are compared with the measured conductivity in the borehole. However, the borehole
conductivity is essentially an apparent conductivity – it is a measured data value – while the AEM layer conductivities
are model parameters resulting from inverting AEM data. To avoid comparing data and model parameters we suggest
a conceptually clear approach based on an inversion of the borehole conductivity data to obtain a borehole conductivity
model, which in turn can be compared with the AEM model. Furthermore, the AEM forward response of the borehole
model can, in a consistent way, be compared with the AEM data. In both approaches, we keep track of uncertainty and
define quantitative, uncertainty-normalised measures of the difference between borehole and AEM values, and we find
simple functional relationships between the two. The methodology is demonstrated on the AEM data and conductivity logs
of the Broken Hill Managed Aquifer Recharge (BHMAR) project.
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Introduction

Traditionally, the correspondence betweenborehole conductivity
logs and airborne electromagnetic (AEM) inversion models has
been expressed through the so-called ‘FID point comparison
(comparing borehole log results with the AEM model with the
FIDucial, i.e. the location, closest to the borehole)’. In this
approach, the borehole conductivity log is compared with the
model conductivities obtained from inversion of AEM data from
the location closest to the borehole (Lawrie et al., 2000, 2009,
2010, 2012a; Lane et al., 2001; Schamper et al., 2014). In this
paper, we consider AEM methods, but our methodology and
arguments are equally valid for comparisons between borehole
conductivity logs and any electrical or electromagnetic (EM)
method.

Increasingly, there is a demand from policy and other
stakeholders funding groundwater investigations for improved
parameterisation of numerical groundwater models as well as
more reliable quantitative assessments of the uncertainties and
confidence levels in model predictions. Recent advances in the
ability to map and characterise key elements of hydrogeological
systems using AEM methods and the integration of AEM data
with borehole geological and geophysical data to provide maps
of derived hydraulic parameters (Foged et al., 2014; Lawrie
et al., 2009, 2010, 2012a), has seen a more frequent use of
AEM data as key inputs into groundwater models (Munday

et al., 2003; Walker et al., 2004; KBR, 2010, 2011) and
groundwater management plans (Strategen, 2014).

With this increased up-take ofAEMdata has come heightened
scrutiny of AEM inversion models and requests from
stakeholders, including the multi-disciplinary groundwater
science community, for optimised inversion models that map
the subsurface conductivity with a high degree of confidence
(Lawrie et al., 2012a, 2015), while also providing transparency
in estimates of inversion model uncertainty (Lawrie et al.,
2012b). In Australia, the use of borehole conductivities in
constrained inversion approaches is recognised as ‘best practice’
in fitting the knowledge of the subsurface conductivity from
borehole logs withmore remoteAEMdata (Spies andWoodgate,
2005). The comparison of borehole conductivity data (not used
in the constrained inversions) with the AEM response is the
traditional way of assessing the agreement between the borehole
logs and the inversion models (Lawrie et al., 2000; Lane et al.,
2001).

There are several issues that need to be acknowledged
in connection with assessing possible inconsistencies between
borehole conductivity logs and the models resulting from AEM
inversion. The basic problem with the comparison is the huge
scale difference between the volume occupied by the sensitivity
function of the log tool and the corresponding volume for the
sensitivity function of an AEM measurement. Independent of
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depth and conductivity structure, the sensitivity of a log tool with
0.50m separation between the induction coils will lie within a
vertical distance of ~1m, centred on the midpoint between the
coils, with a radius of ~1m, a volume of the order of a few cubic
metres. The volume occupied by the AEM sensitivity function is
mainly controlledby the diffusion length,which is proportional toffiffiffiffiffiffiffi

t=s
p

, where t is the delay time and s is the average conductivity
of the ground. At early times, in a conductive earth, the depth
extent of the sensitivity function for most AEM systems would
be at least 5m and the radial extent at least 50m (Christensen,
2014), so the ratio between the log tool and AEM sensitivity
volumes is of the order of 1 : 104. For late times, the ratio can
easily be smaller than 1 : 107. Furthermore, while the vertical
resolution of the log tool is the same at all depths, the vertical
resolution capability of the AEM system decreases with depth.

The scale issue is a long and complicated discussionworthy of
its own research, andwehavenotgone intodetails here.However,
it must be kept inmind that in a comparison between conductivity
values coming from geophysical methods with such disparate
sensitivity distributions, there will potentially be many cases of
misleading and irrelevant results. In essence, almost any log result
can be achieved by anomalies around the borehole that are so
small relative to the sensitivity volume of the AEM system that
they have very little influence on the AEM measurements and
the resulting AEM inversion model. Such small anomalies can
be quite irrelevant for the (hydro)geological interpretation. This
situation means that both relevant and irrelevant matches/
mismatches can arise in the comparison, and there is no way
to discern whether the results of an individual comparison is
relevant or not.

Geologically, the scale issue is related to small-scale
variability in electrical conductivities driven by heterogeneities
in lithologies (texture,mineralogy and porosity) and groundwater
salinities (Lawrie et al., 2000, 2009, 2010, 2012b). Close-spaced
drilling in the Ord Valley (Lawrie et al., 2010) and the Broken
Hill Managed Aquifer Recharge (BHMAR) (Lawrie et al.,
2012a, 2012b) projects revealed significant lateral and vertical
heterogeneity in both siliciclastic and carbonate sedimentary
systems within the scale of the AEM footprint. These
variations can be considerable and can contribute to poorer
correlations between borehole and AEM conductivity data
(Lawrie et al., 2010, 2012a). Such local-scale heterogeneity
can be anticipated in some sedimentary systems (e.g. some
braided alluvial channels), while additional effects related to
overprinting weathering/diagenetic/structural effects on porosity
distribution, mineralogy, and consequently, electrical conductivity,
can also be significant at local scales (Lawrie et al., 2000, 2010,
2012a). Small-scale heterogeneity in electrical conductivity
driven by variability in pore-fluid salinities is also common in
some near-surface environments, notably in highly salinised
Australian landscapes (Lawrie et al., 2009, 2010, 2012a).

In the light of the scale issue, it seems unfounded when the
comparison is expressed as one of ‘verifying the AEM results by
comparing with the (implied: true) borehole conductivity’ as has
been frequently done in the past. The methodology demonstrated
in this paper stresses that a ‘perfect’ correlation between borehole
and airborne conductivity measurements should not be
anticipated in most geological settings, due in large to the
local variability in lithologies and pore-fluid compositions, as
described above. Fortunately, there is an increasing awareness
of this, also expressed in recent publications (Ley-Cooper and
Davis, 2010). In this paper, we have deliberately avoided the
phrase ‘confirm’ in relation to FID point comparison methods.

Another issue that warrants some remarks is the fact that the
boreholes made after an AEM investigation are not randomly

distributed; their locations are heavily biased in areas that carry
the most potential (groundwater, mining opportunities, etc.) for
the project in question, judging from the AEM results. The
whole purpose of an AEM dataset is actually to provide the
basis for choosing borehole locations for further investigations
in an optimal fashion, i.e. so that the likelihood of hitting a target
is optimised within the financial limitations of the drilling
program. Borehole locations can be biased towards the more
homogeneous parts of a survey area or the more inhomogeneous
parts, and this of course gives bias to the interpretation of the
FID point comparison results as an indicator for the whole
survey area.

The scale problem and the biased location of the boreholes
are inherent to any comparison between borehole conductivity
logs and conductivity information from other sources, and
naturally, the novel FID point comparison methodologies
presented in this paper do not in any way (re)solve this issue.
The issue that we do try to solve with the methodology in this
paper is the fact that, in traditional FID point comparison, AEM
models are compared with (averages of) conductivity log data.
The AEM models are found through inversion, most often by
assuming a 1D conductivity distribution, while the conductivity
logs are data indicating an apparent conductivity. A conceptually
more clear approach to the comparison would be to avoid
comparing numbers from model space and data space, and
instead make a comparison in the model space for both
methods, referred to as the ModMod comparison, or in the
data space as the DatDat comparison.

The ModMod comparison can be achieved by inverting the
conductivity log data with the same multi-layer 1D model as
the one used in the AEM inversion and then performing the
comparison between model layer conductivities. The DatDat
comparison can be carried out by first inverting the
conductivity log data to obtain a 1D model and then forward
calculating the response of that model for the AEM system and
comparing it with the actually measured data at the FID point
position.

An important aspect of the DatDat comparison is that it does
not depend on the actual AEM inversion program used. There
are verymany different AEM inversion programs, but theDatDat
comparison is independent of the inversion program as long as
the program is capable of producing correct responses and
derivatives, i.e. to model the forward responses correctly,
taking the full system response of the AEM system into
account (Christiansen et al., 2011). The DatDat comparison
thus offers a unique opportunity of assessing the possible
inconsistency between borehole logs and the AEM data
independently of the differences in AEM inversion procedures.
In this respect, it resembles the methodology of the calibration
approach for EM systems in Foged et al. (2013) where
comparisons are done exclusively in the data domain based on
a generally accepted ’true’ model for the calibration site.

We develop the two self-consistent approaches of
comparison, the ModMod and DatDat comparisons, taking
uncertainty from both methods into account. First, we present
a short introduction to the inversion approach used in the AEM
and log inversions. We then present ModMod and DatDat
comparisons for the field example of the BHMAR project.

Theoretical framework

Inversion methodology

There are numerous approaches to the inversion of electrical and
EM data with a 1Dmodel consisting of horizontal, homogeneous
and isotropic layers. The model used in the inversions of this
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paper is a multi-layer model, sometimes called a smooth model,
where the subsurface is divided into a large number of layers.
In the iterative inversion, the layer boundaries are kept fixed
and only the log(conductivities) of the layers are changed in
the inversion. The inversion formulation used in this paper is
a well-established iterative constrained least-squares approach
(Menke, 1989). Formally, the model update at the n’th iteration
is given by:

mnþ1 ¼mnþ GT
nC

�1
obsGnþ 1

s2v
C�1

m

� ��1

�GT
nC

�1
obs dobs�g mnð Þð Þ

ð1Þ
where m is the model vector containing the log(conductivities),
G is the Jacobian matrix containing the derivatives of the data
with respect to the log(conductivities), T is the matrix transpose,
Cobs is the data error covariance matrix,Cm is a model covariance
matrix imposing a vertical smoothness constraint on the multi-
layermodel,dobs is thefield data vector andg(mn) is the non-linear
forward response vector of the n’th model. In this study, as is
most often the case, the data noise is assumed to be uncorrelated,
implying that Cobs is a diagonal matrix. sv is the standard
deviation of the covariance matrix controlling the strength of
the vertical constraints.

The model parameter uncertainty estimate relies on a linear
approximation to the posterior covariance matrix, Cest, given by:

Cest ¼ GTC�1
obsG þ 1

s2v
C�1

m

� ��1

ð2Þ

where G is based on the model achieved after the last iteration.
The analysis is expressed through the standard deviations of the
model parameters obtained as the square root of the diagonal
elements of Cest (e.g. Inman et al., 1973).

In this study, a 30-layer model is used where the depths to the
layer boundaries increase downwards as a hyperbolic sine of the
layer number. In this way, the depths to the layer boundaries
increase linearly for small depths so that the top layers are
approximately all of the same thickness, and the depths to the
layer boundaries increase exponentially at large depths so that
the thickness of a layer is a factor times the previous one. The
thickness of the top layer is 0.5m and the depth to the lowermost
layer boundary is 200m.

Methods of calculating the transient response from AEM
systems can be found in Ward and Hohmann (1987). The
inversion strategy used for the AEM data is described in
Christensen et al. (2009) and Christensen (2016a, 2016b), and
further details will not be provided here.

The model covariance matrix

We shall adopt a model covariance matrix based on a von
Karman covariance function. The general expression for these
functions is:

Fn;LðzÞ ¼ s2
21�n

GðnÞ
� jzj

L

�n

Kn
jzj
L

� �
ð3Þ

where z is the depth, Kv is the modified Bessel function of the
second kind and order v, G is the gamma function, L is the
maximum correlation length accounted for and s controls
the amplitude. For n ! 0, the von Karman function effectively
contains all correlation lengths due to the logarithmic singularity
of K0. This broadband behaviour ensures superior robustness
in the inversion, i.e.model structure on all scaleswill be permitted
if required by the data, and it makes the regularisation imposed

by the model covariance matrix insensitive to the discretisation
(Serban and Jacobsen, 2001; Christensen et al., 2009).

A good approximation to the von Karman functions that
allows rapid calculation and analytical integration over model
elements can be achieved by stacking single-scale exponential
covariance functions with different correlation lengths (Serban
and Jacobsen, 2001):

Fn; LN � s2v
XN
n¼0

Cn�n exp � jzj
Cn LN � 0:65

� �
ð4Þ

where LN is the maximum correlation length represented,C is the
factor (C < 1) between the correlation lengths, N is the number of
stacked single-scale covariance functions and sv is the standard
deviation of the correlation. The factor 0.65 in the exponential
denominator is an empirical factor that ensures the fit to the von
Karman function. The resulting stacked covariance function is
essentially free of correlation scale. The lower and upper limits
of the correlation lengths are a mathematical convenience and
do not influence the correlation properties at the distance scales
typically studied.

In this study, the parameters v= 0.1, C= 0.1, LN= 10 000 km
and N= 9 have been used. This means that the covariance
function will contain correlation lengths between 6500 km and
6.5 cm, one per decade. This covers scales of geological
variability between the radius of the Earth and small stones,
clearly sufficient for the resolution capability of airborne
transient electromagnetic (TEM) data. Notice that the model
covariance matrix only depends on the geometry of the multi-
layer model, so it needs to be calculated and inverted only once.

Inversion of borehole conductivity log data

For the comparison between AEM and borehole information,
the borehole conductivity log data have been inverted with the
same multi-layer model as the AEM data. This has been done to
establish complete equivalence between the way the AEM data
and the borehole data contribute to the overall information about
the subsurface conductivity.

In the low-frequency approximation, the induction log
response and the apparent conductivity is a linear function of
the formation conductivities:

saðzÞ ¼
ð¥
0
Sðz� z0Þ sðz0Þ dz0 ð5Þ

where S(z) is the sensitivity function for the conductivity log
and s(z) is the conductivity as a function of depth.

In the low-frequency approximation, for a two-coil system
with a coil distance of L, S is model independent and is given
by:

SðzÞ ¼ 1=ð2LÞ for jzj � L

2
and L=ð8z2Þ for jzj> L

2
ð6Þ

where z= 0 defines the midpoint between the coils (Moran and
Kunz, 1962).

The sensitivity function for a two-coil system is plotted in
Figure 1.

For a layered model with constant conductivities within the
layers, the apparent conductivity response is given as:

saðzÞ ¼
XN
j¼1

sj �
ðzjþ1

zj

Sðz� z0Þ dz0 ð7Þ

where N is the number of layers and the derivatives used in the
Jacobian matrix are easily found as:
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qsaðzÞ
q log ðsjÞ ¼ sj �

ðzjþ1

zj

Sðz� z0Þ dz0: ð8Þ

With these formulas, the conductivity log inversion problem
is solved in exactly the same way as the AEM problem using
the inversion formulation of Equations 1 and 2, resulting in
conductivities for each of the model layers and estimates of
their uncertainty.

Comparisons in the model space

TheModMod comparison is performed by inverting the borehole
conductivity log data with the same multi-layer model used in
the AEM inversion.

Given the data, the estimates of the data noise and the strength
of the vertical regularisation, the layer conductivities are the
best estimates of the average conductivity in the depth interval
spanned by the layer. By using the same model for the AEM
inversion and the borehole inversion, we produce comparable
depth averages and can directly compare the values, layer by
layer.

We shall express themisfit through a normalised least-squares
residual defined as:

FModMod ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

saemj � slogj

� �2

var saemj

� �
þ var slogj

� �
vuuuut ð9Þ

whereN is thenumberof layers,si
log andsi

aemare the conductivity
of the i’th layer of the borehole and AEM models, respectively,
and var(si

log) and var(si
aem) are the corresponding variances

found as the diagonal elements of the posterior covariance
matrices of the inversions. The variance of the difference
(si

aem�si
log) is the sum of the variances of the two terms: var

(si
aem�si

log) = var(si
aem) + var(si

log) because si
aem and si

log are
uncorrelated.

We have included the variance of both the AEM conductivities
and the log conductivities in Equation 9. In the case where either
the logmodel or the AEMmodel is poorly determined, anymisfit
between the log and the AEM models must be regarded as
irrelevant: no real importance can be attributed to it. Including
both variances in the residual ensures that the mismatch flag will
not be raised in these situations, i.e. we will not erroneously
interpret the discrepancy as significant.

Comparisons in the data space

To be able to carry out a comparison in the data space, we need to
compute the forward response of a borehole model. First, the log

conductivity data are inverted to find a model, and to ensure that
all borehole conductivity variation is accounted for, a 101-layer
model is used with constant layer thickness of 1m. We then
compute the AEM forward response, i.e. the data that would be
measured by the AEM system if the subsurface had the
conductivity structure of the borehole model. In this forward
response calculation, we use the same transmitter height and
the same gate delay times as in the AEM data closest to the
borehole.

In the DatDat comparison, the misfit is expressed through
a normalised least-squares residual defined as:

FDatDat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

Vaem
i � V log

i

� �2

var Vaem
ið Þ þ var V log

i

� �
vuuuut ð10Þ

whereM is the number of AEM data, Vi
log and Vi

aem are the AEM
response of the borehole models and the measured AEM data,
respectively, and var(Vi

log) and var(Vi
aem) are the corresponding

variances. Again, the sum of the variances is the variance of the
difference (Vi

aem� Vi
log) because the two terms are uncorrelated.

The variance of the measured AEM data comes out of the data
processing and is used in the AEM inversion, but the variance
of the model response of the borehole model needs an
explanation.

Themeasured log conductivity data comeswith anuncertainty
estimate, and when inverting the borehole data with a 1D model,
this uncertainty propagates to the model so that the layer
conductivities are associated with an uncertainty. An estimate
of this uncertainty comes out of the inversion through the
posterior covariance matrix, Cest (see Equation 2). When using
this model to calculate the AEM forward response, the
uncertainty of the layer conductivities propagate to the calculated
response. The covariance matrix of the uncertainty of the
forward response can be estimated by the following expression:

Cpred ¼ J � Cest � JT ð11Þ
where J is the Jacobian matrix containing the AEM derivatives
of the datawith respect to the layer conductivities for the borehole
model, JT is the transpose of J andCest is the posterior covariance
matrix of the inversion of the borehole data (Taboga, 2012). The
resultingmatrix,Cpred, is the covariancematrix of the uncertainty
of the forward response containing the terms var(Vi

log) in the
diagonal.

Relation to traditional practices

In the traditional approach to FID point comparison, the
conductivities of the AEM inversion models are most often
compared with averages over depth intervals of the measured
apparent conductivity of induction logs.

Although this practice seems to be, and has been called, a
comparison between (averages of) data and model parameters,
conceptually this is a misunderstanding; data and model
parameters simply cannot be compared. A conceptually clear
formulation is to say that it is an implicit comparison between
models. By averaging the log apparent conductivity over depth
intervals, essentially a model is constructed based on the implicit
assumption that, in a continuous formulation, the sensitivity
function of the induction log tool is a Dirac delta function, or
in a discrete formulation, that the sensitivity function is a box-car
functionwith unit area, centred on the data point andwith a width
equal to the sampling density in depth. We say implicit because
we are not aware of any publication with an explicit formulation
that the traditional approach is in essence a model construction.
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Fig. 1. The vertical sensitivity function for a two-coil induction logging tool
with a coil separation of 0.50m.
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The model thus constructed is a fair approximation to the model
that can be obtained by formal inversion due to the fact that the
actual sensitivity function of a two-coil induction log tool (see
Figure 1) is non-negative, symmetric and with most of its weight
at the centre.

So what is actually achieved by subjecting the induction log
apparent conductivity data to a formal inversion? In our opinion,
three things: (1) the procedure produces the best model from the
log data in awell defined inversion sense (although, asmentioned
above, traditional practices will produce a fair approximation);
(2) our methodology is conceptually clear; and (3) through
a formal inversion formulation, it is possible to keep track of
the propagation of uncertainty through all of the FID point
comparison procedures. Of these three points we regard the
third to be of major importance.

A field example: the BHMAR project

The project

As an example of the application of the ModMod and DatDat
comparisons, we shall use data and inversion models of the
helicopter-borne transient survey from the BHMAR project.
Data were acquired in 2008 with the SkyTEM system
(Sørensen and Auken, 2004).

In the southern half of Australia, recent droughts and
predictions of a drier future under several climate change
scenarios have led to the search for innovative strategies to
identify more secure water supplies for regional communities
and industries, while also delivering environmental benefits to
threatened river systems. It has long been recognised that one
of the areas with the greatest potential to contribute water
savings in Australia’s Murray–Darling Basin is the Menindee
Lakes Storages (MLS), located on the lower section of the
Darling River in far western New South Wales. The MLS
play a significant role in meeting South Australia’s water
requirements, while also providing the principal water supply
storage for the city of Broken Hill. The shallow nature of the
Menindee Lakes, which are located in a hot, windy, semi-arid
environment, results in the evaporation of up to 700 GL of water
per annum (p.a.), with an average loss across the MLS of
420 GL p.a. The opportunity cost of this water evaporating
each year (~A$420m p.a.), is realised by downstream irrigators,
communities and ecosystems. Changing the management of the
MLS to provide enhanced water security for Broken Hill, while
also reducing the evaporative losses, requires Broken Hill to
become less reliant on the MLS.

To address these issues, the BHMAR project was tasked with
identifying and assessing managed aquifer recharge (MAR) and/
or groundwater extraction options to secure Broken Hill’s water
supply, protect the local environment and heritage and return
up to 200 GL to theMurray–Darling Basin via the Darling River.
To meet the challenge of rapid identification and assessment of
potential MAR targets and groundwater resources over a large
area (7541.5 km2)within relatively short timeframes (18months),
it was concluded that the only cost-effective method with the
ability to resolve key features of the hydrogeological system in
the 0–150m depth range was AEM. In the BHMAR project, the
helicopter-borne SkyTEM transient EM system (Sørensen
and Auken, 2004) was selected after a rigorous technology
assessment exercise (Lawrie et al., 2012a; Christensen and
Lawrie, 2012; Smiarowski and Mulè, 2014; Christensen and
Lawrie, 2014).

Data acquisition in the BHMAR project involved a phased
approach, with investigations initially at a regional scale and
subsequent investigations at more local scales as potential

groundwater resource and MAR targets were identified and
assessed (Lawrie et al., 2012a). Investigations involved an
integrated, multi-scale hydrogeophysical, hydrogeochemical
and hydrogeological systems approach to map and assess near-
surface (<100m) aquifers and aquitards in unconsolidated
alluvial sediments beneath the Darling River floodplain. The
study integrated data from the AEM survey with lithological,
pore fluid and geophysical data (induction, gamma,and nuclear
magnetic resonance) obtained from a 100 borehole drilling
program with a total drilling length of 7.5 km.

The AEM survey was instrumental in delineating the
key functional elements of the Darling River floodplain
hydrogeological system, revealing significant heterogeneity in
the subsurface electrical conductivity structure, reflecting a
complex geology and variations in groundwater salinity.
Significant faulting, warping and tilting are observed to disrupt
hydrostratigraphic units (Lawrie et al., 2012b). The study
identified several potential MAR and groundwater resource
targets (Lawrie et al., 2012b).

The SkyTEM survey

The SkyTEM data were acquired in a standard dual-moment
mode with gate centre times for the low moment between 16 and
895ms and for the highmoment between 85ms and 8.84ms.With
a few exceptions, a flight line spacing of 200m was used in the
entire survey area of ~7500 km2, giving a total of ~32 000 line km
of data. The SkyTEM system is a dual-moment, calibrated
system developed for hydrogeophysical investigations. In the
BHMAR survey, the high-moment mode had a peak moment of
125 600Am2. Ramp time was 45ms and the base frequency was
25Hz with a 50% duty cycle. The low-moment mode uses a
single transmitter loop turn and a peak current of 40 A. Base
frequency in this mode is 222.2Hz with an on-time of 1ms and
an off-time of 1.25ms. Ramp time is typically 8ms. For a more
in-depth description of the SkyTEM system, see Sørensen and
Auken (2004) and Auken et al. (2009). The SkyTEM data
were inverted with a laterally correlated inversion approach
(Christensen et al., 2009; Christensen, 2016b) using the
Lateral Parameter Correlation methodology (Christensen and
Tølbøll, 2009; Christensen, 2016a), including borehole
conductivity information from 92 boreholes in the form of log
models found from inverting the log data.

A noise model for the conductivity logs

The logging tool used for the induction logswas a two-coil system
with a coil distance of 0.50m. The tool was calibrated using
the standard calibration disk, plus a few extra factory calibration
disks, to make it possible to construct a calibration curve with
several points so that the nonlinear behaviour of the tool in the
high-conductivity range could be properly modelled.

To invert the borehole apparent conductivity data of the
BHMAR survey area, the noise level of the logs must be
estimated. In Ley-Cooper and Davis (2010), the log samples
were assigned a basic absolute noise level of 10mS/m and a
relative noise level of 5%, meaning that the variance of the
apparent conductivity is:

var sloga;i

� �
¼ 10mS=mð Þ2þ 0:05 � sloga;i

� �2
� �

: ð12Þ

The conductivity logs were sampled for every 0.025m, which
is very dense compared with the vertical extent of the sensitivity
function of ~1m, meaning that data errors are correlated. To
compensate for the fact that our inversion program can handle
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only uncorrelated noise, the noise level must be increased, and
we estimated the equivalent uncorrelated noise to be:

var sloga;i

� �
¼ 40mS=mð Þ2þ 0:10 � sloga;i

� �2
� �2

: ð13Þ

ModMod and DatDat comparisons in the BHMAR
survey area

For the FID point analyses, a total of 103 borehole logs were
available. Of these, 92 were included in the laterally correlated
inversion, while 11 were set aside to perform an independent
check of the correspondence between borehole logs and AEM
models. First, we present the results of the FID point comparison

for the 92 logs used in the inversion. We then perform the same
analyses on the remaining 11 logs.

To demonstrate the ModMod and DatDat comparisons,
plots were made for all 92 boreholes of the BHMAR survey
area, illustrating the two comparisons defined above. Only a few
examples will be shown here.

Figure 2 shows plots of the ModMod and the DatDat
comparisons for borehole BHMAR33–7. An explanation of
the plot is given in the figure caption. For BHMAR33–7,
the AEM and borehole models match very well with a residual
of 1.2.

In Figure 3, plots of theModMod andDatDat comparisons for
borehole BHMAR21–3 are shown; in this case, there is more
inconsistency in the FID point comparison, reflected in the
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BHMAR33−7  − Residual DatDat/AEM: 7.9 / 4.5

Fig. 2. ModMod and DatDat comparison plots for the BHMAR33–7 borehole. (a) Borehole conductivity plotted in dull red with vertical line
segments indicating the uncertainty. The 30-layer AEM model closest to the borehole is plotted in black with layer conductivity uncertainties
indicated by the grey bars. The 30-layer borehole inversion model is plotted in bright red with layer conductivity uncertainties indicated by the red
error bars. The distance between borehole and AEM model is given in the plot title together with the ModMod residual. (b) The corresponding plot
for the DatDat comparison. AEM data are plotted with black (low moment) and blue (high moment), while borehole response is plotted with red
(low moment) and green (high moment). Error bars indicate the uncertainty of the data and response. The DatDat residual is given in the title together
with the data residual of the AEM inversion for comparison.
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Fig. 3. The figure caption for this figure is identical to the one for Figure 2, except that this figure concerns the BHMAR21–3 borehole.
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residual now being 3.8. The top conductive layer is placed at
the same depth of ~5m in both models, but the conductivity of
the layer is four times higher in the log model than in the AEM
model. The second conductive layer is placed at a depth of ~17m
in the log model, while the AEM model has the conductive
layer at ~33m, again with a lower conductivity than the log
model. Notice also that the uncertainty of the borehole model
conductivities is very high at the surface. This is caused by the
fact that there are no conductivity log samples above ~2.5m
depth. Data in the depth interval 0–2m were culled for most of
the logs to avoid influence from near-surface borehole fittings.

To investigate whether there is a correlation between the
residuals of the ModMod comparisons and the distance
between the borehole and the AEM model – a larger distance
might be connected with a larger misfit – the residuals have
been plotted as a function of the distance between the borehole
and the closest AEMmodel (Figure 4). An immediate inspection
shows that the correlation is very weak. Likewise, to see if the
ModMod residuals are correlated with the data residuals of
the AEM inversion – a large degree of discrepancy might be
caused by a poorly fitting inversion model – Figure 4 also
shows the residuals as a function of the AEM residuals. Again,
the correlation appears very weak. A similar investigation to
see if the DatDat residuals were correlated with the data residuals

of the AEM inversion gave a similar result (plot not shown).
Finally, to investigate whether there is a correlation between the
residuals of theModMod comparisons and depth – a larger depth
might be connected with a larger misfit due to the decreasing
resolution power of the AEM data – the residuals have been
plotted as a function of depth to the layer midpoints when the
relative uncertainty of the log model conductivity is lower than
0.2. This condition ensures that only those depth intervals
where there are borehole data are used. Once more, the plots
show that there is a very weak correlation, if any. A tentative
conclusion from these three analyses could be that the misfits
between log models and AEM models do not seem to depend
on borehole–AEM distance (as long as they are fairly close
together), AEM data inconsistency, or depth.

The distributions of the variance-normalised ModMod and
DatDat residuals for all boreholes are illustrated in the histograms
of Figure 5. The mean of the ModMod residuals is 1.8 with a
standard deviation of 0.7 and amaximumvalue of 5. Themean of
the DatDat residuals is 6.3 with a standard deviation of 4.7. The
fact that the ModMod residuals are of the order of 1 shows that,
overall, there is good consistency between the borehole models
and the AEM models, given the uncertainty of the AEM
inversion. The DatDat residuals are somewhat higher, but the
mean value of 6.3 must be compared with the mean value of the
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Fig. 4. (a)ModMod residuals as a function of the distance between the borehole and the closest AEM sounding. (b)ModMod residuals as a function of the data
residual of the AEM inversion for the AEM sounding closest to the borehole. (c) ModMod residuals as a function of depth to the layer midpoint. (d) Uncertainty-
normalised relative ModMod residuals as a function of depth to the layer midpoint. In all plots, there is no correlation between the plotted parameters.
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data residual in the AEM inversion, which is 2.9, meaning that
they are of the same order of magnitude, so overall there is a good
consistency between the measured data and the predicted data
from the borehole models. It is worth noting that using the AEM
30-layer model, instead of the 101-layer model, to calculate
the AEM forward response in the DatDat comparison gave
practically identical results (comparison not shown here).

Estimating a functional relationship in the ModMod
comparison

Figure 6 shows a cross-plot of the values of the layer
conductivities of the 92 borehole models used in the inversion
and the AEM models in a log-log plot with pertinent error bars.
The plotted values lie close to the straight line, indicating an
identity mapping, as should be expected from the fact that the
values of the average residuals are all small numbers.

To avoid coupling between the conductivity log
measurements and the top fittings of the borehole, log values
for the top ~2m were discarded for all logs. Furthermore, the
maximum depth for the most of the boreholes was less than the
200m spanned by the 30-layer model. As a consequence of this,
and the fact that the sensitivity function of the log tool has a
vertical extent of only ~1m, the model conductivities of the
layers without any log data are determined solely by the prior
model of the inversion, and their uncertainty will be very high.
These layers were excluded in the cross-plot in Figure 6 because
the uncertainty of the layer log(conductivity) was larger than 0.2.

In many of the logs, there is no data coverage in the top few
metres, and consequently, through the regularisation, the
conductivities of the near-surface layers of the borehole model
are determined primarily by the background model. This is the
cause of the difference seen for early gates in the DatDat
comparison.

A linear regression in log space was performed to find a
functional relationship between the two sets of conductivities.
In the regression analysis, the uncertainties on both borehole
layer conductivities and AEM layer conductivities have been
taken into account, i.e. we have found the parameters a and b
that minimise the residual:

FModMod
err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

log slogi � a � log saemi þ bð Þ
h i2
var log slogi

� �
þ a2 � var log saemið Þ

vuuuut

ð14Þ

where N is the total number of layers over all models fulfilling
the selection criterion. The regression has been carried out using
the MATLAB script: York_fit.m (� Travis Wiens, 2010, travis.
mlfx@nutaksas.com) that is freely available on the MathWorks
website (York et al., 2004). The plots are seen in Figure 7, and the
regression parameters are:

log slog ¼ a � logsaem þ b ¼ 1:0245 � saem � 0:0412 )
slog ¼ eb � saemð Þa¼ 0:9596 � saemð Þ1:0245 ð15Þ

with a residual of Ferr
ModMod = 1.6783.

In Figure 6, a thin cyan line indicates the identity line between
saem and slog, while the regression line, taking the uncertainties
into account, is indicated by a thicker red line. It is seen that the
residual is of the order of unity, indicating that the fit is good and
the functional relationship is close to the identity mapping.

In traditional FID point comparison, the variances of saem and
slog are not taken into account, and the regression becomes a
simple unweighted linear regression. To compare this practice
with the one we suggest in this paper, we also carried out the
unweighted regression, which gave the result: slog= 1.5682 �
(saem)

0.9591 and a residual of Funweighted
ModMod = 0.5348. This

regression line is also plotted in Figure 6. In this case, the
difference between the two approaches is small.

In the case where uncertainty is neglected, the correlation
coefficient, R2, traditionally used in linear regressions, is given
by:

R2 ¼ 1� SSerr
SStot

¼ 1�
P ½yi � ðaxi þ bÞ�2P ðyi � �yÞ2 ð16Þ

where SSerr is the unnormalised residual defined above, SStot is
the total variability of the data and �y is the mean value of y.
Equation 16 is the expression relevant for the unweighted
regression, and we achieved a value of R2

unnorm = 0.5971.
In the case where uncertainty on both x and y is taken into

account, we must derive a generalisation of the above formula.
The generalised residual term is already defined in Equation 9
so, in the same way, we need to normalise the expression for
the total variability with its variance. It is easy to prove that the
covariance between yi and �y is zero, so the variance of the
difference is the sum of the variances:

var yi � �yð Þ ¼ var yi þ var �y ¼ var yi þ 1

	XN
i¼1

1

var yi
: ð17Þ
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The variance-normalised correlation coefficient will therefore
be given by:

R2
norm ¼ 1�

P
yi � axi þ bð Þ½ �2 = var yi þ a2 � var xi½ �

n o
P

yi � �yð Þ2 = var yi þ 1
.P

1=var yið Þ
h in o :

ð18Þ

Using this formula we find for the ModMod comparison
R2
norm = 0.9915, a value much higher than the one obtained in

the case of unweighted regression.

Estimating a functional relationship in the DatDat
comparison

Figure 7 shows a cross-plot of the values of the measured AEM
data and the data predicted from the borehole models of the
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Fig. 6. Cross-plots on a logarithmic scale of the AEM model conductivity as a function of the borehole model conductivity. Only the borehole model
layers for which the relative uncertainty of the conductivity is less than 0.2 are included. (a) In the log-log plot, the uncertainties of both parameters
are indicated by error bars. (b) The identity mapping is shown with a thin cyan line, while the least-squares linear fit, taking uncertainties on both
parameters into account, is indicated with a thicker red line. The line obtained in an unweighted regression is shown in green. The error bars have been
omitted for clarity.
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Fig. 7. Cross-plots on a logarithmic scale of the AEM forward model response of the borehole model as a function of the AEM data. (a) In the log-log plot, the
uncertainties of both parameters are indicated by error bars. (b) The identity mapping is shown with a thin cyan line, while the least-squares linear fit, taking
uncertainties on both parameters into account, is indicated with a thicker red line. The error bars have been omitted for clarity.
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92 borehole models used in the inversion in a log-log plot with
the pertinent error bars. It is clear that the plotted values lie close
to the straight line, indicating identity between them, as should
be expected from the fact that the values of the average residuals
are all small numbers.

In the same way as for the ModMod comparison, a linear
regression in log scale has been performed to find a functional
relationship between the AEM data and the forward response of
the borehole models. In the regression analysis, the uncertainties
on both parameters have been taken into account, i.e. we have
found the parameters a and b that minimise the residual:

FDatDat
err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

log V log
i � a � Vaem

i þ bð Þ
h i2

var log V log
i

� �
þ a2 � var log Vaem

ið Þ

vuuuut

ð19Þ
where M is the total number of data over all models. The
optimum parameters of the functional relationship and their
uncertainties were found to be: a= 0.966� 0.00071 and
b =�0.471� 0.0151, so that:

logVlog ¼ a � logVaem þ b ¼ 0:966 � Vaem � 0:471 )
Vlog ¼ eb � Vaemð Þa¼ 0:6243 � Vaemð Þ0:966 ð20Þ

with a residual of Ferr
DatDat = 3.1.

In Figure 7, a thin cyan line indicates the identity line between
Vaem and Vlog, while the regression line, taking the uncertainties
into account, is indicated by a thicker red line. The residual of
3.1 is of the order of unity, indicating that the fit is good and the
functional relationship is close to the identity mapping. Using
Equation 18,wefind for theDatDat comparisonR2

norm= 0.99064.

Results of the ModMod and the DatDat comparisons
for the independent boreholes

In modern inversion practices, the information from the borehole
conductivity logs is included as constraints in the inversion of the
AEMdata. The borehole logs represent valuable information that
should naturally be included in the inversion to obtain the best
possible models. The borehole log information will spread to the
adjacent models through the lateral correlation of the inversion,
and experience from this project shows that, with the lateral
correlation strengths used in the final inversion, the borehole
information affects the inversion models within a radius of
50–300m from the borehole. It follows that the misfit between
the borehole log and the closest AEM inversion model will
become smaller when borehole information is used in the
inversion than when it is not.

In the comparisons of the previous section, the AEM models
were calculated using such a correlated inversion, taking the
borehole information into account, and the results showing little
inconsistency between theAEMmodels and the boreholemodels
should be seen in that perspective: the borehole models and the
AEM models are not independent. However, in the BHMAR
survey area, 11 boreholes were drilled and logged before the
BHMAR survey and not included in the AEM inversion, and we
can therefore establish a truly independent comparison between
the AEM inversion results and the 11 borehole conductivity
logs. All analysis procedures are the same as the ones used in
the previous sections for the BHMAR boreholes, so only a
summary of the results is included here.

Figure 8 shows plots of the ModMod and the DatDat
comparisons for borehole GW36812. An explanation of the
plot is given in the caption of Figure 2. For the GW36812

there is a very high degree of consistency in the FID point
comparison.

In Figure 9, plots of theModMod and theDatDat comparisons
for borehole GW36891 show there is more inconsistency in the
FID point comparison. The AEM model does register the high
conductivity layer seen in the log at ~10m, although it is
placed somewhat deeper, but the AEM model indicates higher
conductivity below a depth of 100m.

Similar to the boreholes included in the BHMAR inversion,
the ModMod residuals are uncorrelated with the distance
between the borehole and the AEM sounding and with the
AEM inversion residual (plots not shown).

The fact that the ModMod residuals are of the order of unity
shows that, overall, there is good consistency between the
borehole models and the AEM models. The DatDat residuals
are somewhat higher, but themean value of 4.5must be compared
with the mean value of the data residual of the AEM inversion,
which is 2.1, meaning that they are of the same order of
magnitude, so overall there is a good consistency between the
measured data and the predicted data from the borehole models.

All residuals and their mean, standard deviation and median
values are listed in Table 1.

Estimating a functional relationship in the ModMod
comparison for the independent boreholes

Figure 10 shows a cross-plot of the values of the layer
conductivities of the 11 borehole models not used in the
inversion and the AEM models in a log-log plot with the
pertinent error bars. Most of the plotted values lie close to
the straight line, indicating identity between them, as should
be expected from the fact that the values of the average residuals
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Fig. 8. The figure caption for this figure is identical to the one for Figure 2,
except that this figure concerns the GW36812 borehole.
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are all small numbers. Closer inspection reveals that when
layer conductivities are in the middle range of 40–400mS/m,
there is a tendency forslog to be higher thansaem. This could be an

expression of the fact that in the depth range where conductivity
log data are present, the depth resolution of AEM data is poorer
than the depth resolution of the conductivity log data, and in the
regularised inversion with vertical smoothness constraints, the
AEMmodels will therefore be smoother. It can also be seen that
for layer conductivities above 1000mS/m, saem is clearly higher
than slog. At the moment, we do not have a good explanation for
this behaviour, but naturally it affects the functional relationship
derived below shifting the regression line downwards. For the
same reason as before, layers where the uncertainty of the layer
log(conductivity) of the borehole model were larger than 0.2
have been omitted.

The parameters minimising the residual in Equation 14 and
their uncertainties were found to be: a = 1.1418� 0.0461 and
b=�1.1728� 0.2797, so that:
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Fig. 9. The figure caption for this figure is identical to the one for Figure 2,
except that this figure concerns the GW36891 borehole.
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Fig. 10. The figure caption for this figure is identical to the one for Figure 6, except that this figure concerns the 11 boreholes not used in the inversion.

Table 1. ModMod and the DatDat residuals for all 11 boreholes not
included in the inversion, together with the data residual of the AEM

inversion.
‘Dist’ is the distance between the borehole and the nearest AEM location.

‘StdDev’ is the standard deviation.

Label Dist ModMod DatDat AEM_ResDat

GW36807 73 0.9 2.6 1.3
GW36812 30 1.6 2.3 2.7
GW36815 82 1.2 1.3 1.7
GW36836 49 1.7 1.9 2.4
GW36837 63 1.6 3.5 3.0
GW36838 146 1.7 7.9 2.0
GW36891 28 2.0 4.8 3.0
GW87790 60 0.6 2.2 1.4
GW878001 58 1.0 4.5 1.7
GW87801 38 1.2 5.3 1.6
EX1 100 2.1 13.1 2.8
Statistical parameters
Mean 1.4 4.5 2.1
StdDev 0.5 3.3 0.6
Median 1.6 3.5 2.1
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log slog ¼ a � log saem þ b ¼ 1:1418 � saem � 1:1728 )
slog ¼ eb � saemð Þa¼ 0:3095 � saemð Þ1:1418 ð21Þ

with a residual of Ferr
ModMod = 1.8038.

InFigure 10, a thin cyan line indicates the identity line between
saem and slog, while the regression line, taking the uncertainties
into account, is indicated by a thicker red line. It is seen that the
residual is of the order of unity, and while the power of the
functional relationship is close to unity, the factor is smaller than
unity due to the skewed distribution of the higher conductivities
mentioned above. The correlation coefficient for the ModMod
comparison was found to be R2

norm = 0.9832.

Estimating a functional relationship in the DatDat
comparison for the independent boreholes

The DatDat comparison for the 11 independent borehole logs
was carried out in exactly the same way as the one for the
92 borehole logs included in the inversion and the behaviour
is very similar. As such, we only show the results here and you
must refer to the previous section for more details.

Figure 11 shows a cross-plot of the values of the measured
AEM data and the data predicted from the borehole models
in a log-log plot with the pertinent error bars. The optimum
parameters of the functional relationship and their uncertainties
were found to be: a = 1.0344� 0.0015 and b = 0.8322� 0.0331,
so that:

log Vlog ¼ a � log Vaem þ b ¼ 1:0344 � Vaem þ 0:8322 )
Vlog ¼ eb � Vaemð Þa¼ 2:2984 � Vaemð Þ1:0344 ð22Þ

with a residual of Ferr
DatDat =2.85.

InFigure 11, a thin cyan line indicates the identity line between
Vaem and Vlog, while the regression line, taking the uncertainties
into account, is indicated by a thicker red line. It is seen that the
residual is of the order of unity, indicating that the fit is good and
the functional relationship is close to the identity mapping.

The correlation coefficient for the ModMod comparison
R2
norm = 0.9984. If we use the formula with the unweighted

sums, we find R2 = 0.9999.

Discussion and conclusion

We have presented two novel and self-consistent ways of
performing a comparison between AEM inversion results and
borehole conductivity logs: comparison in themodel space and in
the data space. We find these comparisons to be a significant
improvement over the traditional FID point comparison where
AEM model conductivities are compared with averages of
apparent conductivity data from a borehole conductivity log.
Although the two parameters both have the dimension of [S/m],
they belong to different conceptual classes:model parameters and
data.

The ModMod and DatDat comparisons require the inversion
of the induction log apparent conductivity data, including an
estimate of the posterior covariance matrix. However, in the low-
frequency approximation valid for the majority of conductivity
log data, the inversion presents no difficulties at all.

The two self-consistent comparisons, the ModMod and
DatDat comparisons, are easy to implement, and the MATLAB
linear regression script that incorporates uncertainty on both
variables is freely available. The two methods require an AEM
inversion code capable of forward modelling and inversion that
will also produce an estimate of the posterior covariance matrix,
but most modern inversion codes fulfil this criterion. If a laterally
correlated inversion is performed, constraints are implemented
between AEM models and it would be straightforward and
internally consistent to include the models derived from
inverting the borehole logs.

The DatDat comparison requires the simple inversion of
the conductivity log data plus the calculation of the AEM
sensitivities; it does not refer to any of the intricacies of AEM
inversion, like convergence control and vertical and horizontal
constraints, which is typically where inversion codes differ.
DatDat analyses are therefore directly comparable across
inversion platforms and programs.

10
−14

10
−12

10
−10

10
−8

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

AEM data value (V/Am4)

B
or

eh
ol

e 
m

od
el

 r
es

po
ns

e 
(V

/A
m

4 )

Borehole model response versus AEM data

10
−14

10
−12

10
−10

10
−8

AEM data value (V/Am4)

B
or

eh
ol

e 
m

od
el

 r
es

po
ns

e 
(V

/A
m

4 )

Borehole model response versus AEM data

(a) (b)

Fig. 11. The figure caption for this figure is identical to the one for Figure 7, except that this figure concerns the 11 boreholes not used in the inversion.

320 Exploration Geophysics N. B. Christensen and K. C. Lawrie



The ModMod and DatDat analyses were applied to the
92 boreholes of the BHMAR project involving the AEM
inversion models obtained through vertically and laterally
correlated inversion, including the 92 boreholes modelled. The
comparisons showed a high degree of consistency between the
AEM models and the borehole models, but since the borehole
models were involved as constraints in the inversion, the high
degree of consistency mostly shows that the inversion approach
was sound. However, the fact that the residuals of the AEM
models closest to the boreholes were of the order of unity also
shows that large discrepancies between AEM and borehole
models were absent.

An independent analysis was carried out involving 11
borehole conductivity logs that were not included as constraints
in the overall AEM inversion. The comparisons showed a high
degree of consistency, which further strengthens the conclusions
that: (1) theBHMAR inversionwas sound, (2) that it was justified
to include the borehole conductivity logs as constraints in the
inversion, and (3) that large discrepancies between AEM and
borehole models were absent. A value of 0.94 was obtained
for the variance-normalised general R2 measure for the bores
distributed throughout the project area that were not used as
inversion constraints (Lawrie et al., 2012a, 2015).

As mentioned in the Introduction, there are twomain issues to
be considered when assessing possible inconsistencies between
borehole conductivity logs and the models resulting from AEM
inversion. First, the huge scale difference between the sensitivity
volumes of the induction tool and an AEM system suggests a
situation where many irrelevant matches/mismatches must be
expected in a log-AEM comparison and there is no way to
discern whether the results of an individual comparison are
relevant or not. Second, there is a bias in the placement of the
borehole locations towards locations that carry themost potential
for the subject of the investigation, e.g. the groundwater potential.
However, the scale issue is a long and complicated discussion
worthy of its own research effort and beyond the scope of this
paper.

It is worth noting that even though the residuals in the DatDat
comparisons over the 92 boreholes included in the inversion and
the 11 boreholes used in the independent test were acceptably
small, the factors of the functional relationships in Equations 20
and 22 are not close to unity: the values are 0.62 and 2.30,
respectively. This shows the importance of including the
uncertainty of all parameters in the comparison. It also indicates
that a practice of comparing AEM data and forward response of
the borehole models with the purpose of calibrating the AEM
data should be approached with great care. We are certain that
the SkyTEM data are not wrong with a factor of 0.62 or 2.30. In
our opinion, the cause of the fairly high factors is rooted in the
scale issue. However, the forward modelling exercise can be
trusted to disclose whether the overall structure of the data are
the same.

Our analyses have been centred around comparing borehole
information with AEM surveys, but the methodology offers
itself equally well to both AEM and ground EM geophysical
methods. We consider the ModMod and the DatDat comparison
to be a better practice than the traditional FID point comparison.
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