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Amethod for estimating uncertainty in surface nuclearmagnetic resonance (NMR)water content and relaxation
times utilizing bootstrapping statistics is presented. Bootstrapping is particularly well suited for assigning uncer-
tainty to the surface NMR data set due to the primary factor that degrades surface NMR data quality: ambient
electromagnetic noise. We use synthetic forward modeled data with various noise levels applied (the “known
uncertainty”), and then demonstrate that a bootstrap resampling of the observed synthetic data can produce
an uncertainty estimate that closely represents the “known uncertainty”. Finally, we present two field data
sets collected under different magnitude ambient noise levels as examples illustrating the result of this approach
under realistic noise conditions. This approach for estimating uncertainty is computationally intensive, but
straightforward to implement and produces useful uncertainty estimates on both water content and relaxation
time results for smooth surface NMR sounding models.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Hydrogeophysicalmeasurements have emerged as valuable tools for
imaging the subsurface in hydrogeological investigations, estimating
hydrologic parameter values and observing hydrologic processes. Eval-
uation of uncertainty in hydrogeophysical results has been recognized
as important when producing data that may be used in a broader
hydrogeologic context (Ferré et al., 2009), particularly when these
data are used for parameterizing models, and when comparing the
hydrogeophysical data to direct “traditional” hydrogeologic measure-
ments. Surface nuclear magnetic resonance (NMR) is a valuable geo-
physical measurement due to the direct, unambiguous sensitivity to
subsurface water content. Recent studies have leveraged this technolo-
gy for a range of groundwater applications including, for example, aqui-
fer characterization (e.g. Davis et al., 2013), glacial hydrogeology
(Lehmann-Horn et al., 2011a), and parameterizing hydrological models
(Baroncini-Turricchia et al., 2014).

One of the most common limitations to surface NMR data acquisi-
tion is ambient electromagnetic noise that may make signal analysis
more challenging and contribute to inaccuracies (Trushkin et al.,
1994). Many common sources of ambient electromagnetic noise are re-
lated to anthropogenic infrastructure near a measurements site
including power lines, cars, trains or radio transmitters. Natural electro-
magnetic noise sources, such as lightning, are also frequently encoun-
tered. Although noise cancelation techniques involving reference loops
(i.e. loops deployed specifically for the purpose of monitoring ambient
electromagnetic noise for later digital subtraction) are often able to sig-
nificantly reduce noise levels in themeasured surfaceNMRdata (Walsh,
2008), low signal to noise ratios (SNR) remain a common challenge. The
uncertainty of a surface NMR measurement is dependent on the mea-
surement quality, i.e. the SNR (Müller-Petke et al., 2011) and the result
of low SNR is increased uncertainty in the estimated aquifer properties.
Other factors may contribute to uncertainty in surface NMR measure-
ments such as geometrically imperfect loop shapes that are modeled
using simple loop geometries (Lehmann-Horn et al., 2011b), poorly
known background magnetic field (B0) at a measurement site
(Walbrecker et al., 2011) or instrument bias, however here we focus
only on uncertainty attributed to signal quality (i.e. ambient electro-
magnetic noise) because we assume it is the most dominant and fre-
quently encountered factor. We aim to demonstrate an approach for
estimating uncertainty that addresses the question: Under a given
noise condition, how precisely can I estimate water content and relaxa-
tion time?

Currently, several common surface NMR inversion routines available
to the geophysics community are deterministic (Muller-Petke and
Yaramanci, 2010; Walsh, 2008; Behroozmand et al., 2012), meaning
that the same result will be obtained each time the computation is exe-
cuted. Often inversion routines that have a large, fixed number of layers,
referred to as smooth inversions, are preferred for determining water
content and T2* depth profiles because of the assumption that geologic
properties change gradually through space. Uncertainty in smooth in-
versions has been evaluated previously using statistical parameters of
the ensemble of stacked measurements and the diagonal elements of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2015.05.005&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2015.05.005
mailto:aparseki@uwyo.edu
http://dx.doi.org/10.1016/j.jappgeo.2015.05.005
http://www.sciencedirect.com/science/journal/09269851


62 A.D. Parsekian, D. Grombacher / Journal of Applied Geophysics 119 (2015) 61–70
the covariance matrix (e.g. Müller-Petke et al., 2011), or by testing how
parameters may be varied within the magnitude of the noise (Günther
andMüller-Petke, 2012), however these approaches are not exclusively
driven by the observed data. Alternatively, stochastic inversion schemes
may be used to assess uncertainty, however they require a priori infor-
mation about the subsurface (e.g. how many layers are present in the
subsurface) (Guillen and Legchenko, 2002; Mohnke and Yaramanci,
2002) and typically produce blocky models with few layers. Smooth in-
versions may be preferable in situations where a priori knowledge of
the number of layers in the subsurface is unavailable and alsomay result
in gradual transitions in water content that are consistent with concep-
tual expectations of hydrostratigraphy. As surface NMR results become
more readily utilized in the hydrogeology community there is a demand
for methods to seamlessly assign uncertainty to the resulting data sets.
Although existing approaches for assigning uncertainty are effective,
given the importance of this topic to the utility of surfaceNMRmeasure-
mentswe believe that there is value in a stochastic assessment of uncer-
tainty that results in statistical distributions of NMR parameters.
Furthermore, to our knowledge, the existing approaches for assigning
uncertainty have not been validated against synthetic data with noise
at a known amplitude.

For this study we test a non-parametric bootstrap resampling to as-
sess uncertainty in surface NMR parameters. This approach was chosen
due to the ease of adding the bootstrap algorithm to existing
open source inversion routines (i.e. MRSMatlab, Müller-Petke and
Yaramanci, 2010), because the resulting uncertainty is driven directly
by the data, and because no prior information is needed beyond the sig-
nal itself. The objective of this study is to demonstrate the effectiveness
of bootstrap resampling for surface NMR using comparisons between
synthetic data with known noise and synthetic data with bootstrap
analysis applied. We also aim to illustrate the result of bootstrap uncer-
tainty assignment on field data sets.

2. Background: surface NMR and bootstrapping

A comprehensive presentation of the underlying physics related to
surface NMR has been covered in several excellent reviews
(Weichman et al., 2000; Legchenko and Valla, 2002; Hertrich, 2008),
and therefore we briefly present only the most important points here.
In the presence of a background magnetic field (B0), the magnetic mo-
ments of hydrogen atoms in water molecules tend to preferentially
align along the direction of B0 (Earth's magnetic field is used for surface
NMR), resulting in the formation of a net magnetization. The surface
NMR experiment involves the perturbation and measurement of this
magnetization in order to gain insight into subsurface properties such
as water content, pore-sizes, and permeability. To perturb themagneti-
zation, an electromagnetic field is generated by pulsing an oscillatory
current in a wire loop at the Earth's surface. If the oscillation frequency
is selected to be equal to the Larmor frequencyω0 (|ω0| = |γB0|, where
γ is the gryomagnetic ratio of the hydrogen atom), themagnetization is
perturbed out of alignment with B0. After the excitation pulse is
switched off, the component of the magnetization transverse to B0 pre-
cesses at ω0, while the magnetization relaxes back to equilibrium,
resulting in a measureable NMR signal.

To investigate subsurface properties at different depths a parameter
called the pulsemoment, q, determined by the product of the amplitude
of the oscillatory current and the pulse duration, is varied; large q values
are used to probe the greatest depths while small q values are sensitive
to shallow depths. This allows surface NMR to produce depth profiles of
the volumetric water content (VWC) and T2* relaxation time, a param-
eter that controls the time-dependence of the signal and that may be
used in some situations to provide insight into pore-scale properties
(e.g. Grunewald and Knight, 2011). In this paperwe aim to quantify un-
certainty in the VWC and T2* profiles. To avoid confusion, throughout
the text we report all VWC values in terms of volumetric units
[m3 m−3] while uncertainty is uniformly presented as a percentage [%].
The general surface NMR forward model described by Weichman
et al. (2000):

V q; tð Þ ¼ −
Z

vol

ω0M0e2iξ r;ωð Þ sin γqB⊥
þ rð Þð ÞB⊥

− rð Þe−t=T2� rð Þw rð Þd3r ð1Þ

where V(q,t) is the measured voltage of the NMR signal in the surface
loop at a time t following a pulse moment q. The M0 term represents
the amplitude of the equilibrium magnetization. The exponential term
containing ξ describes the signal phase related to the subsurface con-
ductivity. The sine term describes the component of the magnetization
that has been rotated into a plane transverse to the B0 direction. The
B⊥
þ rð Þ and B⊥

− rð Þ represent the co- and counter-rotating components of
the applied magnetic field, and contribute to the perturbation of the
magnetization and determine the receive sensitivity, respectively. The
exponential containing T2* describes the decaying envelope of the
NMR signal, while w(r) represents the spatial distribution of the water
content in the subsurface. In practice, a simplified version of Eq. (1) is
most commonly used where the forward model is reduced from 3D to
1D by laterally integrating Eq. (1). The only spatial variable remaining
in the forwardmodel is the depth, z. This simplification contains the im-
plicit assumption that the subsurface is laterally homogeneous (referred
to as a layercake Earth). In this case, the forwardmodel takes the formof
M\char252ller-Petke and Yaramanci (2010)

V q; tð Þ ¼
Z

depth

K q; zð Þw zð Þe−t=T2� zð Þdz ð2Þ

where the K(q,z) term is the kernel function that describes all the terms
in Eq. (1) except the exponential containing T2* andw(z). Eq. (2) repre-
sents the forward model used in this study. The pulse moments, which
are generally set by the hardware to logarithmically span from a low
pulse moment (~0.1 A s) to the highest pulse moment (~10 A s) to
allow an efficient time-saving use of the finite bus voltage, control
each measurement spatial sampling of the subsurface. As such, the
pulse moments used in a study influence the ability to resolve the
w(z), and T2*(z) profiles. The subsurface model is described as a series
of depth layers, initially thin layers close to the surface and thicker
layers at greater depths where the surface NMR measurement is less
sensitive. In each depth layer, a single water content and a single T2*
value is present. This simplification describes a mono-exponential
decay within a single depth layer. However, multi-exponential signals
are still well-described by this model given that multiple depth layers,
and thus multiple independent T2* values contribute to the total signal.
The goal of the standard surface NMR experiment is to estimate w(z)
and T2*(z). To estimate the depth profiles in this paper we utilize the
QT inversion described by M\char252ller-Petke and Yaramanci (2010)
that optimizes for both the water content and T2* profiles at once. The
inversion involves iterating the w(z) and T2*(z) profiles until the data
misfit is below the predetermined threshold (typically until χ2 ≈ 1).
This is an deterministic process resulting in a best-fitting pair of
w(z) and T2*(z) profiles that describe the data. This inversion scheme
improves the stability of the inversion and resolution of the result by ac-
counting for the information shared between neighboring points in the
data space. The challenge that we aim to address is to characterize the
uncertainty in the estimated water content and relaxation time depth
profiles.

Bootstrapping has been used for uncertainty assessment of geophys-
ical measurements such as seismic (e.g. Sacchi, 1998), magnetics
(Constable and Tauxe, 1990) and logging NMR (Parsekian et al., 2015).
Our non-parametric bootstrap (e.g. Efron, 1979) strategy randomly
resamples the entire surface NMR data set at a predetermined fraction
of the original data and inverts this subsample. This statistical approach
is well understood to be effective at estimating parameter variance
when the distribution of the statistic of interest is unknown (e.g.
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Efron, 1987; Bickel and Freeman, 1981). The VWCand T2* depth profiles
produced using that particular subset of the data are stored and the re-
sampling/inversion process is repeated many times to characterize the
distribution of the estimated VWC and T2* profiles. We use a bootstrap
without replacement approach that draws a number of samples from
the original data but will not draw the same sample twice in each co-
hort. For example in the series of integers from 1 to 10, it would be pos-
sible to draw 3, 5 and 9 but it would not be allowed to draw 3, 3 and 3.
The full surface NMR data set where V represents voltage observed in
the receiving loop,V(q,t), is described by two parameters: the pulsemo-
ment q and time t. The pulse moment q controls the spatial sampling of
the measurement, thus contributing to the uncertainty in the
inversion's ability to determine the spatial origin of themeasured signal
(i.e. forming the depth profiles). The variable t controls the temporal
sampling of the signal, which is noisy, and influences our ability to re-
solve the relaxation times. Therefore, the uncertainty in the predicted
water content and relaxation time profiles depends on both parameters.
The QT inversion scheme performs the optimization by fitting a model
(described by w(z) and T2*(z)) to a 2D data space (described by q and
t). We chose to resample both the q and t dimensions. Furthermore, re-
sampling in both q and tdimensions allows for a greater range ofmodels
and thus amore conservative uncertainty estimate. The resampled sub-
set of the original data used in each inversion consists of 90% of the time
samples for 50% of the pulsemoments.We chose these resampling rates
based on an empirical comparison of the ability of several resampling
rates to best capture the level of uncertainty. This was evaluated by test-
ing permutations of the resampling rates [50% 70%90%] for the time and
pulse moment were tested; it was found that 90% and 50% sampling
rates for time and pulse moments, respectively, balanced the represen-
tation of water content uncertainty and relaxation time uncertainty. In
the following we aim to test the hypothesis that a bootstrapping ap-
proach may be used to characterize the uncertainty in surface NMR
water content and T2* depth profiles through the comparison of boot-
strap predicted uncertainties against known uncertainties. In each of
the following cases, we illustrate the results for 1000 resamplings, a
quantity thatwas observed to adequately capture the shape of the prob-
ability distribution. We note that in the context of this experiment, we
present one set of resampling rates that represents our data well; it
would be possible for future implementations of this method to incor-
porate an optimization to fully explore the effect of resampling in the
time and pulse moment domains.

3. Methods

Our approach to validating the bootstrap method for approximating
uncertainty is to demonstrate that the bootstrap uncertainty reflects the
uncertainty related to a data set with “known” (simulated) noise as in-
dicated in the flow chart shown as Fig. 1 and schematically in Fig. 2.
Following this procedure, the first step is to conduct a synthetic exper-
iment where surface NMR data is simulated. Using a simple subsurface
structure consisting of three layers of contrasting water content and T2*
and a survey employing a 25 m diameter loop and sixteen q's logarith-
mically sampled on the interval [0.28 13.56] [A s], we generate a single
synthetic surface NMR data set using the forward modeling framework
within the open source surface NMR processing software MRSMatlab
Fig. 1. Flowchart showing th
(Müller-Petke and Yaramanci, 2010). Briefly, this process involves
using a known set ofw(z) and T2*(z) in combinationwith the set of sur-
vey parameters (loop size, list of pulse moments) to simulate a data set
V(q,t) using Eq. (2). This single data set is illustrated in Fig. 2a; the x- and
y-axes indicate the pulse moment and time axes, respectively. The z-
axis indicates the corresponding signal amplitude V(q,t). For synthetic
data, we represent the subsurface as a 1D layercake, that only varies
as a function of depth where one WC and one T2* are assigned to each
depth layer. Properties were selected to provide contrast between
layers. Specific details of the forward model and inversion can be
found in Müller-Petke and Yaramanci (2010).

To create the synthetic data to be used to characterize the actual un-
certainty we produce noise only data sets (no NMR signal) for four dif-
ferent root mean square noise levels: 1 nV, 10 nV, 20 nV, and 40 nV
(corresponding to SNR of ~80, ~8, ~4, and ~2, respectively, estimated
as the ratio of the signal's mean initial amplitude across all q's to the
noise level at late times). An example of a noise only dataset for a
10 nV noise level is illustrated in Fig. 2b. Gaussian white noise values
were drawn from a normal distribution assumed to be consistent with
ambient noise. Not included in this type of noise are narrow band har-
monics or spikey noise that would also be expected in experimental
field data. To form a noisy synthetic data set for a given noise level,
the noise free dataset in Fig. 2a is added to a noise only dataset
(Fig. 2b) of the corresponding noise level. To illustrate the signal quality
for each noise level consider Fig. 3; the left column illustrates the time
domain signal and the right column illustrates the signal's spectrum;
the effect of increased noise is clearly seen as random deviations from
the simple exponential decay curve. To characterize the uncertainty in
the predicted VWC and T2* depth profiles for each noise level we first
generate 1000 independent noise only data sets (i.e. make 1000 inde-
pendent versions of Fig. 2b) of the appropriate amplitude. Each of
these independent noise only data sets are added to the simulated
noise free data set (Fig. 2a). This results in 1000 noisy data sets, where
the only variation between them is due to random noise fluctuations.
This is done for each noise level. Note that only a single noise-free
data set is used in this process. As such, any variation between noisy
data sets is entirely due to the noise. Each resulting noisy data set is in-
dividually inverted to produce a single pair of VWC and T2* depth pro-
files. The cohort of all 1000 results for each noise level are combined
to produce a probability distribution for the VWC and T2* profiles. We
refer to these results as the “random noise” results. This serves as a syn-
thetic analogue to the case where identical field experiments are per-
formed 1000 times sequentially at the same site with unchanging
ambient noise conditions. We treat this as representative of the
“known” uncertainty in the estimated VWC and T2* depth profiles intro-
duced during the inversion due to the noise level.

The next step is to characterize the uncertainty using a
bootstrapping approach. We start by selecting a single noisy data set
(e.g. Fig. 2c is equal to Fig. 2a plus Fig. 2b) from the cohort of 1000
noisy data sets produced to characterize the known uncertainties. A
bootstrap without replacement inversion algorithm as detailed above
is run on this single noisy data set to produce a single bootstrapped
data set. This bootstrap without replacement procedure is performed
1000 times to produce a suite of 1000 bootstrapped data sets. Each
bootstrapped data set represents a subset of the single noisy data set
e experimental method.



Fig. 2. Graphic representation of the QT data space and the steps taken to form the data sets used to characterize the uncertainty for the known uncertainty case (top row) and the boot-
strap determined uncertainty (bottom row). In each subplot the x- and y-axes represent the pulse moment and time, respectively. Together these parameters span the data space. The z-
axis describes the signal amplitude. To forma randomnoise data set (c), a data set consisting of only noise (b) is added to a noise free surfaceNMRdata set (a). To forma bootstrapped data
set (red dots in (d)),we randomly select 50% of the pulsemoments, and 90% of the time samples for those pulsemoments. These points form the bootstrapped data set. Note that to form a
bootstrapped data set no new forward modeling is necessary; it is simply a subset of a full noisy data set.
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formed by randomly sampling along the q and t axes. No new forward
modeling occurs in this procedure, the single noisy data set is simply
resampled in a random manner 1000 times (i.e. 1000 versions of
Fig. 2d are produced from the single data set in Fig. 2c). This procedure
involves selecting 50% of the pulse moments, and then selected 90% of
the time samples in each of those pulse moments. To visualize this pro-
cess consider Fig. 2d, where the remaining points indicate a
bootstrapped data set formed by sampling the larger full data set.
Each of the bootstrapped data sets is individually inverted to produce
a single estimate of thewater content and T2* depth profiles. The results
of each of the 1000 bootstrap inversions are combined to produce a
probability distribution of the water content and T2* depth profiles.
We refer to these results as the bootstrap results. Since our objective
is only to capture information about uncertainty, once we have a distri-
bution of the VWC and T2* profiles for each depth layer described by the
cohort of the 1000 bootstrapped VWC and T2* profiles, we take this dis-
tribution and shift it so that the median is placed at the VWC and T2*
values determined by a normal deterministic smooth inversion of the
full data set. This allows us to use the entire data set to represent the
best-fit VWC and T2* information while using the bootstrap analysis
only to assign uncertainty. The shift of the distribution is not a mathe-
maticalmanipulation; rather it is simply away to achieve the advantage
of using the entire data set for the deterministic inversion while easily
displaying the uncertainty results. We assume that the deterministic
model using all of the data (rather than the mean of the bootstrap
models) is most representative of the subsurface because this model is
informed by the largest number of available data points. Finally, to
test our hypothesis whether bootstrappingmay be used to characterize
the uncertainty of surface NMR, the random noise results are compared
to the bootstrapping results under the assumption that if the bootstrap
and random noise results have a similar character than the
bootstrapping approach is an effectivemeans for evaluating uncertainty
for surface NMR parameters due to the influence of the noise level dur-
ing the inversion.

We have also included a demonstration of the bootstrapping uncer-
tainty evaluation using field data sets collected with different back-
ground noise levels to illustrate how this approach for estimating
uncertainty works under true environmental noise conditions. For



Fig. 3. In the left column, simulated NMR relaxation time series are shown at 1 nV, 10 nV, 20 nV and 40 nV noise levels (from top to bottom). The spectra for each time series are shown in
the right column. The time series shown are taken from data sets used in the suite of 1000 random realizations following the pulse moment of 2.87 A s.
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these data sets, we chose a site with low noise (~10 nV noise floor after
digital noise cancelation and filtering, SNR ~ 40) and a site with moder-
ate noise (~20 nV noise floor after noise cancelation and filtering,
SNR ~ 14). Both data sets were acquired using a Vista Clara GMR surface
NMR instrument with multichannel digital noise cancelation function-
ality based on a coincident transmitting/receiving loop and separate
dedicated noise reference loop. The low noise data set “Firehouse” was
measured in northwest Wyoming, near the town of Dubois away from
Fig. 4. Noise simulations. The top row shows true water content profiles (blue) and inverted w
various noise levels. The bottom row shows true T2* profiles (blue) and inverted T2* frequency
regions where many realizations produce similar results, dark gray indicates regions of many
to the VWC and T2* profiles for the data sets that were selected to be bootstrapped to produc
1 nV to 40 nV.
anthropogenic development that is typically associated with noise
with the exception of a single power line about 500 m from the mea-
surement location. A 30 m circle figure-8 loop was used, eight stacks
were collected and digital noise compensation was utilized on one
noise reference loop. The moderate noise data set “Red Buttes” was ac-
quired in southeastern Wyoming, near the town of Laramie where the
site has power lines on two sides at ~250 m, and a road, train tracks
and buildings are nearby within 1 km. A 35 m circle figure-8 loop was
ater content frequency distributions from 1000 data sets with simulated random noise at
distributions from 1000 data sets with simulated random noise. The gray scale indicates
occurrences while white indicates regions of few occurrences. The red line corresponds
e the results shown in Fig. 5. Each column corresponds to the indicated noise level from
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deployed, eight stacks where collected and digital noise compensation
was utilized on onenoise reference loop. The same bootstrappingmeth-
od described for the synthetic data was applied to the field data.

4. Results and interpretation

4.1. Random noise uncertainty

First we consider the result for 1000 independent simulated data
sets each with random noise applied during the simulation to form
the random noise results: this is our “known” noise case. Fig. 4 illus-
trates the distribution of the estimated VWC and T2* profiles for each
noise level, shown in gray scale. The true subsurface properties are illus-
trated by the blue line, while the uncertainty is illustrated in gray-scale.
Darker and lighter shades indicate regionswith a high and low frequen-
cy of occurrence, respectively. Low uncertainty is described by regions
with a narrow dark cloud (left column of Fig. 4), while high uncertainty
is described by broad regions of light gray (right column of Fig. 4). For
the lowest noise level, we see that the smooth inversion results replicate
the structure of the true model (blue lines) with low uncertainty, dem-
onstrated by the narrow black uncertainty cloud at all depths in the
VWC and T2* profile. At higher noise levels (10, 20 nV and 40 nV) the
profiles become lighter gray and broader at all depths indicating in-
creased uncertainty. As the noise level increases the VWC profile con-
tinues to be represented well, while the T2* profile begins to deviate
from the true model, particularly at shallow depths. The first and third
rows of Table 1 list the mean VWC and T2* standard deviations, respec-
tively, for the each noise level averagedover all depths. The standardde-
viation is observed to grow with the noise level, as expected.

4.2. Bootstrap uncertainty

Next we consider the bootstrapping results for a single data set
taken from the cohort of 1000 random noise data sets for each noise
level. The VWC and T2* profiles corresponding to the single random
noise data set selected to be bootstrapped are shown as the red lines
in Fig. 4. Fig. 5 illustrates the uncertainty determined by bootstrapping
the single data set 1000 times. This process of selecting a single data
set and then bootstrapping is performed for each noise level. We ob-
served a similar uncertainty trends to that shown in Fig. 4; the low
noise situation shows a narrow dark gray profile representing low un-
certainty, while the profiles become lighter gray and fuzzier as the
noise level increases. The rate of increasing uncertainty with increasing
noise level appears qualitatively to be quite similar to that observed in
Fig. 4. Here we see that bootstrapping at the lowest noise level (Fig. 5,
left panels) results in a distribution of models that closely follow the
known VWC and T2* profiles with low uncertainty, characterized by
the narrow black cloud. Similar to the random noise results the uncer-
tainty clouds are observed to become lighter gray and broader with in-
creasing noise levels. Qualitatively we see that even under increased
noise, the VWC curve generally replicates the subsurface structure,
while in comparison, the distribution of T2* becomes increasingly less
representative of the true model. This is attributed to the generally
Table 1
The depth averaged STD of the estimated VWC and T2* profiles. The bootstrapped results
are formed by bootstrapping the first 100 noise realizations (from the suite of 1000 ran-
dom realizations) 1000 times each.

1 nV 10 nV 20 nV 40 nV

1000 random realizations of VWC STD 0.012 0.024 0.031 0.040
Bootstrapped VWC STD 0.020 0.023 0.031 0.032
1000 random realizations of T2* STD 40 ms 56 ms 64 ms 88 ms
Bootstrapped T2* STD 43 ms 57 ms 110 ms 101 ms
short relaxation times assigned to the subsurface in this examplemean-
ing fewer points in the time dimension are available to fit the relaxation
time in comparison with longer T2* values (given a constant sampling
rate of the relaxation signal, a short relaxation time will naturally have
fewer points to fit than a long relaxation before the signal is below the
noise floor).

To quantitatively contrast the ability of the bootstrapping analysis to
capture the uncertainty introduced by the noise level, we illustrate the
results for a bootstrap analysis performed on the first 100 data sets
within the cohort of 1000 random noise data sets used to produce
Fig. 4. For each of the 100 data sets, we generate 1000 bootstrapped
data sets and invert each to produce a distribution of VWC and T2* as
a function of depth. This is done for each noise level. From theuncertain-
ty produced using each single data set, we calculate the standard devia-
tion of the VWC and T2* distributions within each depth layer to
produce a VWC standard deviation and T2* standard deviation depth
profile. We repeat this process for all of the 100 selected random noise
data sets. This results in a set of 100 predictions of theVWC and T2* stan-
dard deviation depth profiles, illustrated in Fig. 6. The results are shown
in gray scale similar to Figs. 3 and 4. The top and bottom rows of the fig-
ure show the VWC standard deviation and T2* standard deviation depth
profiles, respectively. The red lines indicate the standard deviation asso-
ciatedwith the known uncertainty results (the randomnoise results) il-
lustrated in Fig. 4, and the metric against which we will compare the
bootstrap results. When viewing Fig. 6, we consider the red lines
based on the noise simulations to represent “true uncertainty” in the
simulated data sets while the gray distributions represent the range
of uncertainty predicted by bootstrapping. A perfect result of
bootstrapping exactly replicating “true uncertainty” would be the red
lines exactly in the middle of the gray distributions. Table 1 compares
the depth averaged VWC standard deviation and T2* standard deviation
for the 1000 random noise cases with the 100 bootstrapped cases for all
noise levels. Contrasting the bootstrap results (gray scale) against the
standard deviation resulting from the 1000 independent random
noise data sets (red line) illustrates that bootstrapping uncertainty are
similar, and increase as a function of noise level. Specifically, at low
noise, bootstrapping slightly overestimates the uncertainty in water
content and at higher noise (10 nV, 20 nV and 40 nV) the bootstrapping
estimate falls approximately equally around the known uncertainty. For
T2* relaxation times, bootstrapping slightly overestimates uncertainty at
each noise level.

4.3. Results and interpretation of field data

The stacked NMR relaxation time series at Firehouse (Fig. 7a) shows
the clear exponential decay until about 0.15 s at which point the noise is
consistent and low for the duration of the recording. The water content
inversion result for this site shows variable uncertainty throughout the
profile (Fig. 7b). The high water content layer between 4 m–5 m shows
slightly higher uncertainty, this is likely because it is a thin layer ap-
proaching the resolution limit in surface NMR. There is a lowwater con-
tent layer between 5 m–8 m. In this layer, we expect uncertainty to be
higher because lowwater content results in a smaller signal, and there-
fore a locally lower SNR, thus the bootstrap finds a wider range of pos-
sible water content results. Below 12 m, the uncertainty for this zone
of lowwater content is low, with the bootstrapping analysis consistent-
ly estimating the same VWC. In the T2* profile for this sounding (Fig. 7c)
we see variable uncertainty with depth. The regions of greatest uncer-
tainty appear to be collocatedwith regions of transition in the VWCpro-
file. Below 12m the bootstrap results consistently reproduce similar T2*
estimates.

The stacked NMR decay for Red Buttes (Fig. 7d) shows an NMR re-
laxation curve to about 0.3 s afterwhich point the noise is consistent, al-
though distinctly higher amplitude than at Firehouse. The VWC curve
(Fig. 7e) shows low water content until 14 m where there is a single
high water content layer followed by the deepest layer with



Fig. 5. Bootstrapping results. The top row shows truewater content profiles (blue) and invertedwater content frequency distributions from 1000 bootstrap simulations (resampling rates
of 0.9 and 0.5were used for time and pulsemoment, respectively) at various noise levels. The bottom row shows true T2* profiles (blue) and inverted T2* frequency distributions from1000
bootstrap simulations at various noise levels. The gray scale indicates regionswheremany realizations produce similar results, dark gray indicates regions ofmany occurrenceswhilewhite
indicates regions of fewoccurrences. Each column corresponds to a different noise level. The same gray scale is used in Fig. 4. The red line indicates theVWCand T2* profiles produced using
the full data set, and the location where the median of the bootstrapped probability distributions are centered.
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intermediate water content. As would be expected since this site has
higher noise, the estimated uncertainty is consistently larger (i.e.
broader distribution) than at Firehouse (Fig. 7b). The T2* curve for Red
Fig. 6. The top and bottom panels show standard deviation depth profiles for the VWC and T2
realizations (i.e. based on Fig. 4) and is the metric against which we compare the bootstrapp
based on Fig. 5) were each bootstrapped 1000 times to produce VWC and T2* profiles that are
Buttes (Fig. 7f) has more structure than the VWC profile, with the T2*
profile again showing the greatest uncertainty at regions of transition
in the VWC profile.
* estimates respectively. The red line indicates the STD for the case of 1000 random noise
ed results. The first 100 data sets from the cohort of 1000 random noise realizations (i.e.
shown together in gray scale.



Fig. 7. Field data. a) Time series of stacked data for Firehouse site (52 pulse moments, 4
stacks). b) and c) show the uncertainty cloud for VWC and T2* profiles for Firehouse site,
respectively. d) Time series of stacked data for Red Buttes (36 pulse moments, 8 stacks).
e) and f) show the uncertainty cloud for VWC and T2* profiles for Red Buttes site, respec-
tively. In each case the uncertainty clouds are composed of the results for 1000
bootstrapped VWC and T2* profiles where the median of the probability distributions is
centered along the VWC and T2* profiles produced using the full data set (red lines). In
each case, resampling rates of 0.9 and 0.5 were used for time and pulse moments,
respectively.
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5. Discussion

5.1. Bootstrapping estimate of uncertainty

As expected, increasing noise results in increased uncertainty for all
cases. Table 1 illustrates the comparison of the depth averaged standard
deviations at varying noise levels for the VWC and T2* profiles, indicat-
ing the trend that the T2* bootstrap uncertainty is slightly overestimated
at higher noise levels, while the water content uncertainty is slightly
underestimated at the highest noise and overestimated at the lowest
noise. Overestimated uncertainty is preferable to underestimated
given that it is likely better to err on the conservative side. However,
the bootstrap results appear to capture the trends in uncertainty well
and provide acceptable estimates of the uncertainty introduced into
the VWC and T2* profiles by the noise level.

The primary objective of this study was to demonstrate that
bootstrapping could reproduce surface NMR uncertainty similar to
known simulated data under known randomnoise conditions. Compar-
ing the results of the multiple noise simulations with the bootstrap re-
sampling, the uncertainty estimate in VWC and relaxation time from
bootstrapping appears visually similar to themultiple noise realizations.
To be statistically complete, we use an F-Test — a common analysis de-
signed for comparing standard deviations of two populations. With an
α = 0.05 (95% confidence interval), we find that the uncertainty
calculated by bootstrapping for VWC at 10 nV and 20 nV is not signifi-
cantly different from the known uncertainty. Using the same test, we
found that the uncertainty calculated by bootstrapping for T2* at 1 nV
and 10 nV is not significantly different from the known uncertainty.
This indicates that the bootstrapping was not able to match the
known uncertainty at the 95% confidence level for all cases.We attempt
to explain the discrepancy as follows: the 1 nV noise case is not realistic
under even the most ideal field conditions and the uncertainty is small,
so a perfect match in this case is of little consequence. For all of the T2*
results (although they are not statistically equivalent) at least in all
cases the bootstrapping is overestimating the uncertainty and, as was
said before, a slight overestimate of uncertainty is acceptable. The only
confounding result was the VWC uncertainty estimated for a noise
level of 40 nV by bootstrapping predicted smaller uncertainty than the
known value, although we note in this case that the data quality (see
the bottom row of Fig. 3) is degraded considerably by the noise.

As noted by Muller-Petke and Yarmanci (2010), adjacent data in
both the t and q directions have shared information because of how
the kernel function integrates in space. Since information spans both
the t and q space, it is justified to do the bootstrap resampling in both di-
mensions. This approach results in conservative estimate of uncertainty
in the T2* profiles. We judge a slight overestimate of uncertainty to be
satisfactory because being conservative in the confidence we have in
our data is certainly preferred in comparison with overconfidence. We
recognize that in certain circumstances, resampling in only the t dimen-
sion may be possible (similar to Monte Carlo analysis by Weichman
et al., 2002), however given that information is shared in t and q dimen-
sions, we argue that in absence of outside knowledge and as evidenced
by our statistical comparisons, resampling in both of these dimensions
is appropriate. The spatial sampling of the subsurface is determined by
q, which is tied to the estimated depth profiles. We therefore conclude
that the t and q resampling bootstrapmethod effectively assigns uncer-
tainty in moderate noise levels to be expected at most field sites while
giving a slightly optimistic uncertainty in very noisy sites.

It is possible to find examples (although quite different from a sur-
face NMR data set) in the literature when multi-parameter data sets
are bootstrapped and the uncertainty for one of the parameters is not
well resolved (Efron and Tibshirani, 1986). We cannot entirely rule
out that this is the case in our data, and perhaps this would partially ex-
plain why bootstrapping slightly overestimates uncertainty T2* relaxa-
tion times at each noise level. Nonetheless, this is certainly not enough
evidence to rule out bootstrapping in two dimensions for all cases.
Our claim that bootstrapping is effective at characterizing uncertainty
in surface NMR is based on our observations that bootstrapping repro-
duces uncertainties based on “known” noise well.

Similar to the results of Guillen and Legchenko (2002), Müller-Petke
et al. (2011) and Chevalier et al. (2014), neither our simulated data nor
our field data necessarily result in increased uncertainty as a function of
depth as has been shown for other geophysical soundings such as
frequency-domain electromagnetic data (Minsley, 2011). At the
greatest depths, regularization plays a strong role in determining the
surface NMR inversion results, aswell as a reduced spatial resolution in-
herently leading to a smoother inversion result (Müller-Petke et al.,
2011). Both of these factors also influence the uncertainty at depth. In
this paper we treat the uncertainty as the variation in inversion results
driven by ambient electromagnetic noise, the most common contribu-
tor to reduced surface NMR signal quality.

5.2. Comparison of field examples

The limited set of past studies available for comparison does not ad-
dress uncertainty in T2* relaxation time, so here we only focus on VWC.
Müller-Petke et al. (2011) investigated an ice-covered lake and found
the NMR signal had 5% uncertainty at 1 m3 m−3 VWC using an ensem-
ble of stacked measurements and the diagonal elements of the covari-
ance matrix to calculate uncertainty. Günther and Müller-Petke
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(2012) report that most VWC estimates in their aquifer (~0.35m3 m−3

VWC)measurements had between10% and 20% uncertainty, and all un-
certainties fell within half of an order of magnitude by testing how pa-
rameters may be varied within the magnitude of the noise. Chevalier
et al. (2014) estimated uncertainty from a MCMC inversion of 3D sur-
face NMR and found a maximum uncertainty of ~0.18 m3 m−3 in
terms of VWC in an aquifer reported having up to 0.5 m3 m−3 VWC.
Based on a visual inspection of their results, this resulted in a range of
uncertainty values averaging about 40%. In this case we do not have a
“true” uncertainty to compare our results with; instead we assume
that the uncertainty replication shown in the synthetic data sets dem-
onstrates that the uncertainty distributions calculated for the field
data are reliable. Comparison with direct measurements is not relevant
in this case because we are not trying to demonstrate how closely sur-
faceNMR can recreate the subsurface or howaccurate theparameter es-
timates (i.e. VWC) are, as has been done many times before (e.g.
Legchenko and Shushakov, 1998; Walsh, 2008). We only seek to reveal
information already included in the geophysical measurement about
the effect of noise on the data and howmuch variability could be intro-
duced into the VWC and T2* profiles for a given noise level.

5.3. Additional considerations

One observation that may be made about the uncertainty estimates
in our smooth models is that we do not explicitly represent uncertainty
to subsurface interfaces as can be seen on blocky inversions such as
Günther and Müller-Petke (2012). In a basic sense, we assume the as-
sessment of uncertainty with depth is captured by the smoothness of
themodel. This can be clearly seen in Fig. 5where elevated noise and as-
sociated uncertainty results in smoothing over larger depth intervals
and therefore a broader depth range over which one might chose as
the interface. However, this means that there are some cases where
our bootstrapping approach as implemented may not be suitable: for
example, if the depth to the interface is the primary measurement ob-
jective, than amethod utilizing blocky inversionmay bemore appropri-
ate than the smooth approach we demonstrate. However, we suggest
that a revised version of our bootstrapping approach could be imple-
mented into a blocky inversion framework.

As is common practice in surface NMR inversion, we choose to solve
for a monoexponential signal with one T2* relaxation per depth layer
(Müler-Petke and Yaramanci, 2010; Legchenko and Shushakov, 1998).
This simplification results in a substantial reduction in the model
space for an already ill-posed problem. Monoexponential signals in
each depth layer still can fit a total signal that is multiexponential and
if a multiexponential signal is measured, it is still possible to fit a single
exponential relaxation decay. Although this is a simplification, it is a
necessary one tomake themodel space smaller andmore computation-
ally manageable. A stretched exponential (e.g. Behroozmand et al.,
2012) is a different simplification approach that may be preferred and
could be attempted with our bootstrapping analysis in the future. We
choose the monoexponential because our method is intended to be
compatible with themost commonly used inversion approaches. None-
theless, this monoexponential simplification detail is independent from
our uncertainty framework and we suggest that this could be imple-
mented with other inversion approaches in the future.

It is important to note that other considerations should also be con-
sidered when determining the uncertainty in the estimated VWC and
T2* profiles. Bootstrapping allows us to characterize the uncertainty in
the inversion results based on the noise level. The resolution of the sur-
vey at different depths must also be considered, at great depths resolu-
tion decreases resulting in an inherently smoother model at those
depths due to the increased area contributing to the volume integration
that determines the signal amplitude. In this paper we do not explicitly
treat variation in measurement resolution with depth that may be
accounted for by supplementing this technique with the use of the res-
olution matrices (Müller-Petke and Yaramanci, 2010).
One last limitation of bootstrapping in general is that this statistical
analysis may be computationally expensive given the need to run the
many inversions to build the ensemble of resampled results. In compar-
ison with deterministic inversions, the contrast in speed may be signif-
icant, however we note that the simulations run for the examples
within thismanuscriptwere conducted in several hours using a desktop
computer. This is possible because MRSMatlab builds one kernel that
can be used in each of the resampled inversions; other implementations
of our approach that use a different strategy may not run as quickly.

6. Conclusions

Using forward models of surface NMR data based on a simulated
subsurface, we have demonstrated that bootstrapping can reproduce
the uncertainty in the inversion VWC and T2* results that would have
been expected due to known noise conditions. Our approach is a resam-
pling based on one data set— a single stacked sounding.We are not try-
ing to generate new data sets or simulate noise; our uncertainty
estimates are driven only by the variability in the data as it has been ac-
quired. We have also applied this method to field data under variable
noise. As expected, we find that uncertainty in the resolved NMR pa-
rameters increases with ambient electromagnetic noise. Although we
did not find that the uncertainty estimates were statistically equivalent
in all cases, we do find the uncertainty to be similar or overestimated
using bootstrapping in almost all cases — an acceptable result. Further-
more, the visual comparison clearly shows that the bootstrap estimated
uncertainty has a very similar character to the known uncertainty in all
cases. We highlight this non-parametric bootstrapping approach as an
easily implemented way to assess uncertainty due to ambient electro-
magnetic noise, the most frequently encountered detriment to surface
NMRmeasurements in the field. Widespread implementation of uncer-
tainty estimates to surface NMR data is important for the future
integration of this geophysical data into hydrologic models and for
transparency when reporting geophysical results for hydrologic science
questions.
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