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ABSTRACT
The physical parameter derived from the inversion of electromagnetic surveys, the dis-
tribution of subsurface conductivity, is interesting in itself only in very few instances.
In most cases, the conductivity distribution will have to be interpreted in terms of the
target properties of the survey, for example: a geological interpretation of lithology;
a hydrogeological interpretation of hydraulic conductivity; a biohazard/geotechnical
interpretation of polluted/not-polluted ground; and/or an archaeological interpreta-
tion of manmade/natural finds. The parameters of interest in these categories are often
called derived products, indicating that the parameter of interest is not the same as
the parameter whose distribution is found in the inversion process of the geophysical
data. The interpretation process can be done in a wide variety of ways; from a pre-
dominantly cognitive approach based on professional experience, to an application
of rigorous quantitative relations found from scientific endeavours.
In most practical situations, the number of locations with independently measured

information on the derived product is considerably smaller than the number of geo-
physics locations. It is precisely this sparsity of primary information on the derived
product that encourages the use of geophysical inversion results as a sort of qualified
interpolator through a formulation of a correlation between a geophysical parameter
and the parameter characterising the derived product. In this paper, a general, quan-
titative approach to deriving the parameter of interest is presented using statistical
analytic measures and an advanced use of an interpolation method that takes uncer-
tainties into account. The approach is demonstrated in a field example from Ølgod,
Denmark, where the cumulated clay thickness in the upper 30 m is estimated using a
combination of borehole drilling records and an airborne transient survey.
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INTRODUCTION

Apart from the situation of grounding electrical infrastructure
elements, such as power lines and transformer stations, the
subsurface conductivity is not interesting in itself; it needs to
be interpreted/translated into values or categories of the pa-
rameter of interest (PI). Examples are found in essentially ev-
ery published paper on geophysical surveys with areal cover-

∗E-mail: nbc@geo.au.dk

age. The geophysical method referred to in this paper is an air-
borne transient electromagnetic (EM) survey, but the method-
ologies of this paper are relevant for other types of combina-
tion of a geophysical survey with areal coverage and sparse,
direct measurements of the PI.

The most common way of deriving estimates of the PI is
to formulate a relationship between the parameter of interest
and a geophysical parameter derived from the EM inversion
and then ‘calibrate’ the relationship. That is, determine the pa-
rameters defining a functional relation, based on the measured
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values of the PI and the corresponding values of the geophys-
ical parameter at the PI locations.

EM and resistivity data are commonly used in hydro-
logical investigations to derive information of importance
to hydraulic modelling and related environmental charac-
terizations. Hinnell et al. (2010) presented an overview of
approaches used to extract hydrological information from
geophysical data. They focus on hydrogeophysical applica-
tions in which a hydrological model parameter (e.g., water
content and solute concentration) is indirectly estimated
using a geophysical method. Several other efforts of applying
geophysical methods in hydrogeological context could be
mentioned here (Gonzales et al., 2019; Commer et al., 2020;
De Carlo et al., 2020). In the same context, Hubbard and Ru-
bin (2000) present an overview of available correlations used
to link geophysical data with hydrological model parameters.
Linking electrical conductivity to hydrological parameters is,
in many cases, a two-step procedure where conductivity is
first interpreted in terms of lithology, and then subsequently
the lithology is linked to hydraulic properties. Gunnink and
Siemon (2009), Jørgensen et al. (2012) and Jørgensen et al.
(2013) build a full three-dimensional lithological clay-sand
model from an airborne EM investigation targeted for further
hydrological use. Kirsch et al. (2003) use geophysical data to
produce an aquifer vulnerability index based on the electrical
conductance in depth intervals (the product of electrical
conductivity with layer thickness) to estimate clay content. In
a study by Christiansen et al. (2014), some of the elements of
the above approach are implemented to predict clay thickness
over a survey area from measurements in boreholes with
the aim of deriving a measure of aquifer vulnerability to
pollutants infiltrating from the surface. An intuitively obvious
application is one where the electrical conductivity is used
as a proxy for pore water salinity, for example, Rhoades
et al. (1989), Ley-Cooper et al. (2008) and Shevnin et al.
(2007) amongst many others. There are numerous studies
where porosity is linked with seismic velocities and their
variation with lithology (e.g.; Han et al., 1986; Klimentos,
1991; Graeves et al., 1996), and Paasche et al. (2006) use
tomographically inverted seismic velocity, radar attenuation
and velocity data to arrive at porosity estimates.

A CONCEPTUAL ANALYSIS OF THE AIMS
OF THIS STUDY

The issue addressed in this paper is the prediction of the cu-
mulated clay thickness in the upper 30 m of the ground in
a survey area as a proxy for the vulnerability of an underly-

ing aquifer towards infiltration of unwanted substances from
the surface: for example, pesticides, herbicides, nitrates, phos-
phates, and other types of pollutants that might degrade the
quality of the underlying aquifer. In the survey area, a lim-
ited number of boreholes are found where the clay thickness
in the upper 30 m is estimated from drilling reports. How-
ever, the borehole coverage is quite sparse, and to assist in the
interpolation/extrapolation of the clay thickness over the en-
tire survey area, the conductivity models from the inversion of
an airborne transient electromagnetic survey which cover the
area much more densely are brought into play. This is done by
assuming that a correlation exists between the cumulated clay
thickness and the mean conductivity of the inversion models
in the same depth interval.

Prediction of a parameter value at locations where
it has not been measured is a problem of interpola-
tion/extrapolation: the predicted value is found as a weighted
sum of the measured data. There are a plethora of methods of
interpolation, but there are three fundamental parameters that
determine the weights: the uncertainty of the primary data (if
available at all); a function of distance between the primary
data and the location of the predicted data; and a selection
criterion on which the primary data should come into play. As
an example, different types of kriging come with and without
including the data uncertainty and with various selection cri-
teria and distance functions. Natural Neighbour interpolation
is built on a Delaunay triangulation and involves the voronoi
cell in which the location of the predicted data is situated and
the surrounding cells, but does not take the data uncertainty
into account. If the interpolation problem is solved as an in-
verse problem – as is the case with the Lateral Parameter Cor-
relation method to be introduced below – the uncertainty of
the primary data is included as a data error covariance matrix,
and the distance issue is taken care of by including a model co-
variance matrix. In the case of including a second data set con-
sisting of data correlating with the primary data, an approach
will have to be formulated to the three basic issues mention
above, and the correlation must be quantified in some way.

Background

In Denmark, 99% of the drinking water comes from untreated
groundwater. The fact that we have access to clean groundwa-
ter is a very precious asset, and a comprehensive mapping ef-
fort has taken place over the past decades to gain insight into
the presence and state of this resource and to develop dynamic
hydrogeological models that would provide a scientific basis
for sustainable abstraction in the future.
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The National Groundwater Mapping Programme was
started in 1999 and the first phase of the program ended in
2015. Note that 40% of the Danish land area was involved
in the investigations, using hydrogeophysical, geological and
hydraulic sciences, and a large number of methods and pro-
cedures (Thomsen et al., 2004; Møller et al., 2009a, 2009b).
The aims of the program were to locate and estimate the po-
tential of all the most important aquifers in Denmark, to assess
their vulnerability to pollution, and, based on these findings,
to establish political and administrative measures to protect
the groundwater. At the moment, new areas are being included
in an extension of the project.

The issue of vulnerability is a very complex one; it in-
herits the complexity of the geological setting in an area cre-
ated and disturbed by several consecutive glaciations, and, as a
consequence, the complexity and spatial variability of infiltra-
tion from the surface. However, assessing the vulnerability of
aquifers is crucial for a sustainable administration of the nat-
ural resources, no matter the complexity of the task. It should
be regarded as a ‘must’ in a program of this scope.

Concepts and assumptions

The first postulate regarding the vulnerability issues is: Clay
thickness is a good proxy for the level of protection. However,
this statement is a contested one, and for good reasons. It is
known – and was studied as part of the National Program
– that clay formations, especially near-surface formations of
moraine clays, are fractured, meaning that such clay forma-
tions do not offer the degree of protection that can be eval-
uated based on their thickness alone (Reynolds and Kueper,
2001; Aguilar-López et al., 2020).

The next postulate is that clay thickness can be estimated
from borehole drilling reports. However, drilling reports span
a large range of reliability that depends on the drilling method,
the geological expertise of the drilling crew, whether the bore-
hole was cored for later close inspection, etc. This means that
clay thicknesses estimated from boreholes come with a large
uncertainty that necessarily also must be assessed.

The third postulate that needs to be addressed is that at-
tributes that correlate well with the clay thickness can be ex-
tracted from inversion models of electromagnetic data with
areal coverage and serve as a proxy for the clay thickness and
thereby assist in a more reliable interpolation/extrapolation
of the primary borehole clay thickness data. In this paper,
we have suggested the electrical conductance (or equivalently:
the mean conductivity) of the depth interval in question as a
proxy. However, clays are not just clays; they can have quite

varied electrical conductivities, so clay thickness is not always
a simple, increasing function of mean conductivity.

With the uncertainties outlined above, both conceptually
and with regard to the quality of measured/estimated data, it
could be argued that a task of estimating clay thickness as a
proxy for the degree of aquifer protection is unreasonably op-
timistic and that any results should be taken with a large pinch
of salt. We agree! However, as mentioned, estimating the vul-
nerability of aquifers is crucial for a sustainable abstraction
of groundwater, so it is a given task! It simply has to be done!
Taking all of the above into account we have responded to this
inevitability by presenting methods that we find appropriately
simple, considering all the uncertainties, but also adequately
robust and productive. An important aspect has also been to
present a methodology with some generality and applicability
in other situations with a challenge of estimating derived prod-
ucts.

METHODS AND TOOLS

The methods/approaches used in this study will not be pre-
sented in a dedicated theoretical section of the paper. They
will be introduced along the way with a discussion about their
suitability in connection with the field example and the actual
task of predicting clay thickness over an entire survey area
from a combination of clay thickness data, as estimated from
borehole drilling reports, and the mean conductivity found in
inversion results of a airborne transient EM (TEM) survey.
The methods are presented in more detail in two Appendices.

There are mainly two methods that will be brought into
play: The Lateral Parameter Correlation method (LPC); and
the Continuous Wavelet Transform (CWT) methodology. The
LPC was developed as a technique for lateral correlation of
one-dimensional earth models after individual inversions of
the data from a survey area (Christensen and Tølbøll, 2009;
Christensen, 2016b). In the present context, the LPC is used
mainly as an advanced interpolation tool, and it is introduced
in Appendix A. It is characterized by being able to take both
the data uncertainties and the spatial correlation between the
input data into account and it permits all data to influence
all other data. The spatial correlation is defined by the model
covariance matrix of the inversion setup defining the LPC
method and introduces a smoothing of user-defined strength.

The CWT methodology is most often used to find the
‘natural’ layer boundaries in a complex log (e.g., Hill and
Uvarova, 2018; Hill et al., 2020) or as a tool to find ‘natural’
clusters/bins in a set of parameters (Christensen, 2018), and it
is introduced in Appendix B. In essence, the CWT is a tool to
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reduce the complexity of a given data set to a user-defined
level, approximating the original data set with a piecewise
constant function defined by the interval (bin) boundaries and
the resulting mean values within the bins. A unique property
of the CWT analysis is that it offers a hierarchy of importance
between the bin boundaries.

Nomenclature

A word about nomenclature: in the following text, the follow-
ing symbols are used:
TBH
c The cumulated clay thickness of the upper 30 m of the

ground estimated from borehole drilling reports.
�TBH

c The estimated absolute uncertainty of TBH
c estimated

from borehole drilling reports.
TGFX
c The predicted/interpolated value of clay thickness at

the geophysics locations.
�TGFX

c The estimated absolute uncertainty of TGFX
c .

CGFX
m The mean conductivity of the upper 30 m of the ground

calculated from the inversion models of the airborne TEM
data as the cumulated conductance (sum of conductivity times
layer thickness) divided by 30 m.
CBH
m The mean conductivity values interpolated to the bore-

hole positions.

Interpolation methods of the plots

Efforts have been made in all of the figure captions to make it
clear how the plots have been produced, and the reader should
be aware of the following:
1 All of the rendering of the plot frames in the figures,
whether they display raw data or processed/predicted data,
have been produced in MATLAB using the Natural Neigh-
bour (NN) interpolation option, (e.g., Sibson, 1981; Belikov
et al., 1997; Ledoux et al., 2005). All interpolation methods
are based on some assumption about the lateral correlation
between points. For every point where a value is to be pre-
dicted, the primary data are weighted in a way that depends
on the distance between the selected point and a selection of
the primary data – or all of them.The NN interpolation can be
described as a generalization of a linear interpolation scheme.
It is quite robust with no or very few artefacts. Interpolation
is possible only to points within the convex hull of the set of
primary data points, and it does not take the uncertainty of
the primary data into account.
2 In some of the figures, raw data have first been subjected
to an interpolation – either to the original data positions or
interpolated/extrapolated to other positions – using the LPC

method that takes both the data value and the data uncertainty
into account and introduces a lateral correlation, that is, a lat-
eral smoothing. The strength of the spatial correlation is user-
definable, and in this paper it is decided using an ‘Occam’s ra-
zor’ principle: the error-normalized residual between raw and
LPC-interpolated data is of the order of unity, meaning that
the result is an even-handed compromise between acknowl-
edging the information contents of the data and the wish to
produce a smooth result that does not depend too much on
data outliers.

F IELD EXAMPLE : US ING AIRBORNE EM
DATA TO ESTIMATE CLAY THICKNESS

Borehole data and geophysics data

We present a field case from the area of Ølgod, Denmark,
which has been the object of dense geophysical mapping with
electrical, electromagnetic and seismic methods in connection
with the KOMPLEKS project 2008–2012 aimed at mapping
large-scale geological structures to improve hydraulic mod-
elling (Høyer et al., 2011, 2013a, 2013b, 2014; He et al.,
2013). In this paper, we focus on the airborne transient elec-
tromagnetic survey carried out with the SkyTEM system in
2006 and 2009 (Sørensen and Auken, 2004; Auken et al.,
2006, 2009, 2017) and inverted with theWorkBench program
(Auken et al., 2014). Throughout the field example, the pa-
rameter that we are interested in and wish to predict over the
entire survey area in the best possible way is the cumulated
thickness of clay within the upper 30 m of the ground, Tc,
based on the borehole data, TBH

c , and the mean conductivity
of that depth range calculated from results of inversion of the
TEM data,CGFX

m . This is one of the standard measures in the
national mapping effort.

The location of the survey area, the TEM flight lines and
the borehole positions are shown in Fig. 1. All coordinates in
this paper are given as UTM coordinates for zone ED50/32N.
The primary data volume consists of 15,948 TEM soundings
and 168 boreholes with estimates of TBH

c . Note that the final
edited coverage of TEM soundings displays fairly large ‘holes’
where data sets have been discarded due to cultural electro-
magnetic (EM) coupling.

The data quality of TBH
c varies considerably from bore-

hole to borehole, depending on the age of the bore, the
drilling method and the bore crew’s level of expertise in de-
scribing the borehole material. Every borehole drilling re-
port has been carefully examined by an experienced geolo-
gist to estimate TBH

c and �TBH
c . This resulted in defining four
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Figure 1 (a) The location of the Ølgod survey area. (b) Flight lines of the airborne TEM mapping in red together with the borehole positions
where clay thickness is estimated marked by black dots. The survey area lies in the UTM coordinate interval of: E 470000 to 484000 and N
6174000 to 6188000. The geographical coordinates of the centre of the survey area are: Lat 55.7741◦ and Long 8.6334◦.

categories of�TBH
c of 3, 6, 9 and 15m, reflecting the reliability

of the drilling reports. The values of TBH
c and the uncertainty

�TBH
c are plotted in Fig. 2a and b, respectively.
All the data used in this study are publicly available

from the GERDA data repository administered by GEUS: The
Geological Survey of Denmark and Greenland, and can be
retrieved at: https://eng.geus.dk/products-services-facilities/
data-and-maps/national-geophysical-database-gerda.

In the context of this paper, we seek to develop a method-
ology that permits an estimate of the clay thickness over the
survey area, which is an important parameters in the subse-
quent geological-hydrogeological interpretation of the area.
The details of the actual interpretation can be found in Høyer
et al. (2013b), which also shows plots correlating seismic pro-
files and resistivity profiles from the EM survey with overlap-
ping borehole lithology logs.

Predicting clay thickness through interpolation

The most simple approach to predicting TGFX
c over the en-

tire survey area is to just interpolate TBH
c without involving

geophysical information. Figure 2a shows the result of using
a Natural Neighbour (NN) interpolation method on the raw
TBH
c data, and Fig. 2b shows the uncertainty,�TBH

c . Figure 2c
shows a map of the interpolated borehole clay thickness using

a more advanced interpolation tool: The Lateral Parameter
Correlation (LPC) method. The LPC method produces inter-
polated values taking both �TBH

c and the lateral position of
the borehole data into account, see Appendix A. The LPC for-
mulates the prediction as an inversion problem involving the
identity mapping where the uncertainty is included as a data
covariance matrix. The LPC method also includes a model co-
variance matrix that imposes a user-defined smoothness on
the result. The standard deviation of the model covariance ma-
trix determines the degree of smoothness and has been chosen
so that the error-weighted residual between TBH

c and the pre-
dicted value of the clay thickness at the borehole positions
is approximately unity. Throughout this paper, the criterion
of an error-weighted residual of approximately unity, an ‘Oc-
cam’s razor’ principle, has been used to define the strength of
the lateral correlation of the LPC interpolations. A more com-
prehensive presentation of the LPC method is given in Ap-
pendix A. The clay thickness values of Fig. 2c are predicted
to all borehole and geophysics positions over the area before
plotting, but do not involve any geophysical information.

Correlation between borehole clay thickness and mean
conductivity

The scarcity of primary TBH
c data and the dense areal cov-

erage with TEM soundings invites the use of the latter to
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Figure 2 (a) Simple NN plot of the borehole clay thickness data,TBH
c , over the survey area. (b) Simple NN plot of the uncertainty of the borehole

clay thickness data,�TBH
c , over the survey area. (c) Plot of the predicted borehole clay thickness,TBH

c , over the entire area using the LPC method
on the primary borehole data. (d) Simple NN plot of the mean conductivity,CGFX

m , over the survey area. (e) Simple NN plot of the binned mean
conductivity over the survey area, CGFX

m . (f) Simple NN plot of the clay thickness over the survey area, TGFX
c , derived from the binned mean

value of the conductivity. In all of the subplots, the unit of clay thickness is metres, and the unit of mean conductivity is mS/m.
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Table 1 The table shows the correlation coefficients between TBH
c and CBH

m for a series of selection criteria based on �TBH
c . < TBH

c > and
< CBH

m >indicate the mean values (bias) of TBH
c and CBH

m . For every selection criterion, the table also shows the number of boreholes involved

BH Selection # of BH < TBH
c > [m] < CBH

m > [mS/m] Correlation

All BH 168 11.56 22.53 0.42
�TBH

c ≤ 9 m 156 11.33 22.61 0.46
�TBH

c ≤ 6 m 96 12.11 23.57 0.53
�TBH

c ≤ 3 m 52 13.67 24.97 0.64

assist in improving the prediction of TBH
c over the entire sur-

vey area. This requires defining a parameter derived from the
geophysics models that correlates well with TBH

c . In our case,
the geophysical parameter that is deemed to correlate the best
with clay thickness – and thereby be the best one to guide an
extrapolation of TBH

c – is the mean conductivity in the depth
interval 0–30 m, CGFX

m . Among the lithologies present in the
Ølgod area, clay formations have the highest conductivity, and
it is expected that TBH

c would be an increasing function ofCm.
Figure 2d shows a plot of CGFX

m , the mean conductivity in the
top 30 m, derived from the TEM inversion models.

In the Danish open geophysics database: GERDA (Møller
et al., 2009a, 2009b), data, system parameters and inversion
results of all recent geophysical surveys in Denmark can be
found, but unfortunately the posterior uncertainty of CGFX

m

is not part of the stored information. Neither is the poste-
rior covariance matrix of the inversions from which we could
have derived the uncertainty. However, experience from in-
versions of similar TEM data sets with another inversion pro-
gram (Christensen, 2016a) indicates that the relative uncer-
tainty of the mean conductivity in the top 30 m is around 0.2
with only small variations. In the depth range of 0–30 m, there
are no problems at all with depth penetration or resolution
(Christiansen et al., 2014; Christensen, 2021), and, further-
more, the mean conductivity in a certain depth interval is often
the best determined parameter in a TEM sounding.

TEM sounding locations do not necessarily coincide with
the borehole positions, so to estimate the correlation between
the two parameters, CGFX

m values have been interpolated to
all borehole positions. The interpolation is carried out using
the Lateral Parameter Correlation method, see Appendix A,
on log (CGFX

m ) with a relative uncertainty of 0.2. Figure 3, plot
frames a–d, shows plots of TBH

c as a function ofCBH
m . The fig-

ure reveals a quite erratic picture from which it is not easy
to infer a correlation. A strategy sometimes suggested when
using geophysical measurements to improve the interpolation
of TBH

c is to fit a simple smooth function that maps CBH
m into

TBH
c (Christiansen et al., 2014). However, it does not seem

justifiable to fit the erratic data in Fig. 3 with a smooth func-

tion, and instead we shall use statistical tools to express the
relationship in an adequately simple way, thereby also avoid-
ing having to justify the many assumptions lying behind the
choice of a smooth function.

To investigate the correlation between TBH
c and CBH

m , a
simple statistical analysis was carried out for different selec-
tion criteria based on the absolute error, �TBH

c . The results
are seen in Table 1. It is seen that the mean values of TBH

c

and CBH
m do not change much for the different selections, and

that the correlation coefficient, as expected, increases when
the selection becomes more restrictive. The values of the cor-
relation coefficients indicate a weak, but not vanishing corre-
lation, highlighting the challenge to choose a proper data pro-
cessing and a proper quantitative definition of the mapping
from CBH

m to TBH
c .

Instead of postulating a simple smooth functional rela-
tionship, the method that we shall advocate is to approximate
the mapping with a simple piecewise constant function. To do
so, an appropriate number of conductivity intervals need to be
defined within which a weighted mean value of TBH

c will be
found, so the question naturally arises: What is the best way
of selecting the number of intervals and their boundaries? To
choose the interval boundaries for the conductivity, the sec-
ond of the methods that play a major role in the methodology
suggested in this paper: the Continuous Wavelet Transform
(CWT), is used on all values of CGFX

m . The method is outlined
in Appendix B where its use in finding ‘natural’ intervals for
a parameter is explained, see also Christensen (2018).

In Fig. 4, the CWT spectrum (scalogram) pertaining to the
binning of CGFX

m and the mean values of CGFX
m for each of the

bins are shown (see Appendix B for a more detailed descrip-
tion). It is seen from the CWT spectrum that the cases of two,
four and six bins are quite distinctly defined while the number
of bins increases rapidly from eight bins and upwards when
reducing the averaging only slightly. An additional constraint
on the binning, demanding that the relative difference in bin
averages must be larger than 0.2, has the result that both the
8- and 10-bin cases will reduce to six bins. For these reasons,
we have chosen six bins.
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Figure 3 (a) Plot of TBH
c as a function of CBH

m at the borehole locations for the selection �TBH
c < 15 m (all boreholes). (e) The binned value

of TBH
c for each of the six bins of CGFX

m found through the CWT analysis. The next three rows, (b)–(e) and (f)–(h), show similar plots for the
selections: �TBH

c < 9 m, �TBH
c < 6 m and �TBH

c < 3 m. The binned models of clay thickness in subplots (e)–(h) are shown as histograms with
the mean value marked with circles with a vertical line indicating the standard deviation.
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Figure 4 (a) The CWT spectrum (scalogram) of CGFX
m values over the survey area. (b) The piecewise constant function approximating CGFX

m

when using six bins (reduced from 10 bins).

Table 2 The table shows the conductivity intervals of the six bins defined by the CWT analysis and the resulting mean values of the mean
conductivity: < Cbin

m >; plus the mean value of the clay thickness: < Tbin
c >; and its uncertainty: � < Tbin

c >, within each of the bins shown in
Fig. 4

Parameter Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

Cond_Interval [mS/m] 0 −11.84 11.84−16.60 16.60−23.77 23.77−38.36 38.36−41.36 41.36−∞
< Cbin

m > [mS/m] 9.05 14.21 20.00 29.85 39.90 55.41
< Tbin

c > [m] 5.71 11.15 11.66 15.11 21.71 19.34
� < Tbin

c > [m] 0.83 0.81 0.84 0.70 1.41 1.10

Within each of the bins, an uncertainty-weighted mean
value of TBH

c and its uncertainty �TBH
c are found. The re-

sults are shown in Table 2. It is seen that < TBH
c > is quite

well defined with � < TBH
c > close to unity. The uncertainty-

weighted residual between the original TBH
c data and the col-

lection of binned values is 1.42, indicating that the simplifi-
cation of the piecewise constant function does not violate the
original data much; it is quite reasonable. The bin boundaries
and the resulting < TBH

c > are also illustrated in Fig. 3e– h,
where the binning and averaging results are shown for four
possible selections of TBH

c based on �TBH
c . It is seen that the

binned values do not change much for the different selection
criteria.We take this as a confirmation of the robustness of the
binning process. In the following, all TBH

c data will be used.
Table 2 shows that the binning and averaging contradicts

the assumption that TBH
c will be a monotonically increasing

function of CBH
m . The sixth bin actually has a lower value of

< TBH
c > than the fifth bin. There can be several explanations

for that: maybe the assumption that TBH
c is an increasing

function of CBH
m is not generally valid; maybe the estimate

of TBH
c from the drilling reports was skewed towards lower

values when TBH
c was close to 30 m; and maybe there is

more than one sort of clay within the area. If some of the
clays are very conductive, it is possible that less clay will
be able to produce a higher CBH

m . We tend to believe the
latter. There are in fact several clay types in the area, both
moraine clay and heavy Tertiary clays, the latter with very
high conductivity, often above 100 mS/m. It is worth noting
that this behaviour would have been missed is the case of
using a smooth, monotonically increasing function to map
the correlation between TBH

c and CBH
m .

A simple clay thickness prediction including both borehole
and geophysical data

The simplification of the relation between TBH
c and CBH

m ob-
tained in the Continuous Wavelet Transform (CWT) analysis
can be used to predict TGFX

c at all the geophysics locations.
For each of the geophysics positions, the value ofCGFX

m is used
to find the bin to which it belongs, and the value of < Tbin

c >

for that bin is then used as the predicted value of TGFX
c at that

point. Figure 2e shows the map of binned conductivity val-
ues, and Fig. 2f shows the clay thickness predicted from the
conductivity bins.
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This is the simplest method of predicting TGFX
c in a way

that includes the geophysical information and the correlation
between TBH

c and CBH
m as determined by the CWT binning.

However, in this approach, every geophysical location is han-
dled separately, so the spatial correlation is not taken into ac-
count; there is no lateral correlation involved. One might ex-
pect that this approach, using a discontinuous function and no
spatial correlation,might result in a TGFX

c map equally discon-
tinuous and with sharp edges. However, evidently that is not
the case. The CGFX

m values come from a laterally correlated,
that is, smooth, inversion of TEM data and, as seen in Fig. 2,
the Cbin

m values produce a smooth map very similar to the one
for CGFX

m and less similar to the plot of TBH
c seen in Fig. 2.

The similarity between Fig. 2d and Fig. 2e testifies to the suf-
ficiency and robustness of the six bins of the CWT analysis to
describe the variability of CGFX

m and thereby the interpolated
values of TGFX

c .

Spatially correlated clay thickness prediction using all data

In this section, a method that takes both TBH
c and CGFX

m into
account in a way that involves the spatial correlation of all
data will be presented. It is based on sorting the geophysics
positions into six groups according to the bin value of CGFX

m

and performing the prediction of TGFX
c for each group, one at

a time. Subsequently, for visualization, the results are collected
into one set of predicted values of TGFX

c over the entire survey
area. The binned values ofCGFX

m constitute a set where there is
no overlap between any of the six bins and together they make
up all of theCGFX

m values of the entire survey area, that is, they
are disjoint and their union is exhaustive. However, we can-
not expect that the bins will be spatially compact, but that is of
no importance for the prediction procedure. The distribution
of bins can be gleaned from the map of binnedCGFX

m values in
Fig. 2. The approach is built on the Lateral Parameter Correla-
tion (LPC) method and is realized by ascribing a dummy value
for TGFX

c and a very large value of �TGFX
c for all geophysics

locations and including all borehole data TBH
c and their uncer-

tainties �TBH
c . The LPC procedure will then predict a value

of TGFX
c at the geophysics positions (and a slightly smoothed

value of TBH
c at the borehole locations). In this way, the spatial

correlation and the primary TBH
c data are taken into account.

For each of the bins, the structural information from the dis-
tribution of CGFX

m is included in the procedure by penalizing
the influence from the TBH

c values that do not belong to the
same conductivity bin as theCGFX

m bin being processed. This is
done by ascribing an additional data error covariance matrix
to TBH

c in such a way that the additional standard deviation is

proportional to the difference of the bin numbers so that the
total variance ascribed to TBH

c is

varnew = varold + varbindif = (�TBH
c

)2 + [Dadd · (i− j)]2, (1)

where i denotes the number of theCGFX
m bin of the geophysics

data, j the bin number of the borehole data, and Dadd is the
additional uncertainty in metres (see also Appendix A). The
value ofDadd determines how much the TBH

c data from neigh-
bouring bins are down-weighted. A large value ofDadd means
a heavier down-weighting and vice versa. This means that
as Dadd increases, the result will reflect the situation where
only the TBH

c data from the same bin will have an influence
(Fig. 5a); and for Dadd = 0, the result will be the same as ob-
tained when no binning is included, that is,CGFX

m is not taken
into account (Fig. 5d). Figure 5 shows the results for values of
Dadd = ∞, 24, 6, and 0 m. The plot for Dadd = 0 is the same
as the one seen in Fig. 2c.

The method outlined here fulfills the ideal criterion that
both TBH

c andCGFX
m should have an influence on the predicted

values of TGFX
c , and it offers a option of weighting the rela-

tive influence of TBH
c and CGFX

m . However, it also comes with
a requirement that the user must choose the parameter that
determines the relative weight: Dadd. Figure 5 illustrates the
effect of some of the choices of Dadd, but in essence, each user
must decide for her/himself.

Comparing all of the plots in Figs 2 and 5, the assets and
drawbacks of all the methods presented here can be compared
and discussed in terms of how/if they fulfil the criteria for an
optimal prediction of clay thickness which can be formulated
as: The prediction method must take both the primary TBH

c

data with their uncertainty �TBH
c and theCGFX

m attribute into
account in a balanced and consistent way.

The method of simple lookup in the list of < TBH
c > for

each of the conductivity bins gives a result that looks very
much like the map of CGFX

m seen in Fig. 1, however, with a
smaller dynamic range – as should be expected when using
average values. The method does not take spatial correlation
into account and the results do not reflect the TBH

c data as
much as we would wish. The plots in Figure 5 illustrate that a
large value ofDadd makes the resulting map look more like the
map ofCGFX

m with more short-wavelength details (see, Fig. 2d
and e), and a small value makes the resulting map look more
smooth and more similar to the map of TBH

c (Fig. 2c).

Work flow overview

Now that all of the methods have been presented, it might be
useful with an overview of the steps taken in the work flow. In
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Figure 5 Maps of predicted clay thickness at the geophysics positions, TGFX
c , obtained by using the binned approach and all values of the clay

thickness at the borehole positions, TBH
c , but for different values of Dadd, that is, for different down-weighting of the influence of TBH

c for the
borehole bins not equal to the CGFX

m bin. (a) A map of TGFX
c for Dadd = ∞, that is, when only the values of TBH

c for the same bin are included.
(b) A map of TGFX

c for Dadd = 6 m. (c) A map of TGFX
c for Dadd = 24 m. (d) A map of TGFX

c for Dadd = 0 m, that is, when all boreholes are
included without penalty for differences in bins. The latter plot is the same as the one seen in Fig. 2c.

the following points, the term ‘primary data’ denotes the val-
ues of the parameter of interest measured in a limited number
of locations.

(1) Decide which of the geophysical parameters/parameter
combinations would best correlate with the parameter of in-
terest.
(2) Calculate the geophysical parameter and interpolate it to
all locations where the primary measurements of the param-

eter of interest are measured to make the subsequent correla-
tion possible.
(3) Make plots of the primary data and the geophysical pa-
rameter for visual inspection and to evaluate if step (1) and
(2) seem reasonable, that is, if it seems likely that a correla-
tion exists.
(4) Bin the values of the geophysical parameter, thereby find-
ing the bin boundaries. Decide the number of bins as the
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smallest number that produces a map of the geophysical pa-
rameter that is sufficiently similar to a map of the unbinned
values. In this paper, we suggest using the Continuous Wavelet
Transform method because of its clear hierarchical structure.
(5) Distribute the primary data into the bins according to
the interpolated value of the geophysics parameter at the mea-
surement positions. Find the mean value and its standard de-
viation of the primary data within each bin. Evaluate again if
the choices made so far seem reasonable.
(6) Produce maps of the parameter of interest based on both
the geophysical and the primary data using the correlation
that has been found in 4 and 5. We suggest that a flexible
approach should be used in which the interpolated maps will
take all bins into account or doing it bin by bin – or by apply-
ing a method where the bins are included with weights that
decrease with the distance between bins.
(7) Based on additional geological/hydrogeological sources
of information, decide which of the weighted interpolation
schemes produces the most likely distribution of the parame-
ter of interest.

DISCUSS ION

Throughout this paper it has been argued that the uncertain-
ties in finding valid proxies for the vulnerability of aquifers
and the overall uncertainties of the computations and esti-
mates involved justify a simple/robust practical approach. A
basic tenet in this paper has been that clay thickness is a rea-
sonable proxy for vulnerability, and that the mean conductiv-
ity in a certain depth range is a reasonable proxy for the clay
thickness in that range. Based on these, we have developed a
series of methodologies that permit an estimate of clay thick-
ness in a certain depth range over a survey area based on a
limited number of primary borehole clay thickness estimates
and the mean conductivity in that same depth range estimated
from inversion of airborne TEM data.

A key tool for the realization of these methodologies is
the CWT analysis in which the airborne EM mean conductiv-
ity is clustered in six bins. In our case, the resulting piecewise
constant function permits a better/more robust representation
of the relation between mean conductivity and clay thickness
than a monotonically increasing smooth function. In the field
example of this paper, we found that clay thickness actually
decreases for increasing conductivity at large conductivities
and we attribute that to the presence of more than one type of
clays, some with a higher and some with a lower resistivity.

Coming back to the uncertainties involved in the whole
chain from vulnerability, to clay, to conductivity, it should be

considered if clay thickness is really such a good proxy for vul-
nerability – or if it would be better to go directly from conduc-
tivity to vulnerability. If the hydraulic and electrical conduc-
tivity of various clays can be established and geological back-
ground knowledge can supply knowledge of the clay lithology
within an area, a direct link between vulnerability and con-
ductivity might in fact be better. Heavy clays have a higher
electrical conductivity and lower hydraulic conductivity – and
are probably less fractured – than moraine clay, meaning that
the direct link might be a more robust approach than using
an unqualified clay thickness as an in-between link. However,
this is not the place to expand on this subject. It would require
a whole new line of investigations dedicated to the subject.

CONCLUSION

We have presented a procedure to interpolate/extrapolate clay
thickness data estimated from borehole drilling reports over
an entire survey area, supporting this process by using an
attribute from a geophysical survey with dense areal cover-
age to produce more reliable results. The procedure involves
mainly two methods: The Lateral Parameter Correlation
(LPC) method and the Continuous Wavelet Transform
(CWT). In this context, the LPC method is used as an ad-
vanced interpolating/extrapolating tool that takes all available
data, their uncertainties and spatial positions into account.
The procedure ensures that all data influence all other data
and it offers an option of a user-defined degree of smoothing
on the results. The CWT has been used to provide a natural
binning of the geophysical parameter, the mean conductivity,
into a fairly small number of representative bins, and to solve
the clay thickness prediction problem using these bins one at
a time or all of them in a weighted scheme.

This study was carried out to assist in estimating the vul-
nerability of aquifers, a crucial parameter needed for a sus-
tainable abstraction of groundwater. The methods suggested
here solve the clay thickness prediction problem with due re-
gard to the data quality and other uncertainty factors in a way
that is both simple and robust. However, the methodology is
general and can be used in other situations of estimating de-
rived products from a sparse set of direct measurements and
a dense coverage with geophysical inversion products.
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APPENDIX A

BRIEF INTRODUCTION TO THE LATERAL
PARAMETER CORRELATION METHOD

The lateral parameter correlation method (LPC) was devel-
oped as a technique for lateral correlation of one-dimensional
earth models after individual inversions of the data from a sur-
vey area. Several methods have been presented in the literature
for this purpose: for example, Auken and Christiansen (2004).
In this Appendix, we give a brief description of the Lateral Pa-
rameter Correlation (LPC) procedure of Christensen and Tøl-
bøll (2009) with special emphasis on the use of the method as
an advanced interpolation-extrapolation method.

Given a certain parameter p as a function of spatial co-
ordinates r and with an uncertainty estimate, �p, the LPC is
designed to provide a spatially correlated/smoother version of
p, pcor, in such a way that both the uncertainties, �p, and the
spatial correlation between the parameters are taken into ac-
count. The procedure is based on an inversion formulation,
where �p is included in the form of a data error covariance
matrix and the spatial correlation is included in the form of
a model covariance matrix that introduces a smoothing effect
on the resulting pcor. The constrained inversion formulation
ensures that all data will influence all other data. For a de-
scription of the use of the LPC method in laterally correlat-
ing inversion models, see Christensen and Tølbøll (2009) and
Christensen (2016b). The forward mapping between p and
pcor is given by

p = Ipcor + e, (A1)

where I is the identity matrix and e is the observation error.
The model covariance matrix, Cm, is defined using a

broadband covariance function belonging to the von Karman
family of covariance functions

�ν,L(z) = σ 2
ν

21−ν

�(ν )

( |r|
L

)ν

Kν

( |r|
L

)
, (A2)

where Kν is the modified Bessel function of the second kind
and order ν, � is the gamma function, L is the maximum
correlation length accounted for and is best chosen as a few
times the maximum value of |r| over the survey area, and σν

is the standard deviation of the model covariance. Smoothing
increases for smaller values of σν and vice versa. For ν → 0,
the von Karman function effectively contains all correlation
lengths due to the logarithmic singularity of K0. This broad-
band behaviour ensures superior robustness in the inversion,
that is, model structure on all scales will be permitted if re-
quired by the data, and it makes the regularization imposed by
the model covariance matrix insensitive to the discretization
(Serban and Jacobsen, 2001; Christensen and Tølbøll, 2009).
Maurer et al. (1998) demonstrate that the von Karman covari-
ance functions possess both a smoothing and a damping as-
pect.

The least squares inversion solution to the mapping in
(A1) is

pcor = (
ITC−1

e I +C−1
m

)−1
ITC−1

e p = (
C−1
e +C−1

m

)−1
C−1
e p, (A3)

where Ce is the data error covariance matrix of the uncorre-
lated parameters. It is assumed that all data errors, �p, are
independent so that Ce becomes a diagonal matrix with ele-
ments 1/(�p)2. The posterior standard deviations of the cor-
related parameters are finally estimated as the square root of
the diagonal elements of the posterior covariance matrix Cest

given as

Cest = (
C−1
e +C−1

m

)−1
. (A4)

As a consequence of the smoothing involved in the cor-
relation process, the predicted values pcor are not equal to p,
the difference increasing for decreasing σν .

The LPC method as a tool for interpolation, extrapola-
tion and prediction

In this paper,we shall use the LPCmethod as a tool for in-
terpolation/extrapolation/prediction. There are basically two
different situations in which we will use the LPC method:
(1) As an advanced interpolator producing maps of measured
data that reflect their uncertainty and their spatial distribu-
tion; and (2) as an interpolation tool in the situation where
primary data are given only in a fraction of all the spatial
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positions and we wish to predict the values at positions where
there are no primary data.

The first situation can be used to produce, for example,
a smoothed map of TBH

c only involving the primary values of
TBH
c . Interpolating with the LPC method provides a means to

take not only the primary values of TBH
c into account, but also

�TBH
c and their spatial positions. The same approach can be

used to plot a map of CGFX
m . In both cases, all elements of p

and �p contain only primary data. The degree of smoothing
determined by the parameter σν can be chosen pragmatically
or by requiring that the error normalized residual,R, between
the original data and the predicted data:

R =
N∑
i=1

(
pi − pcori

)2
(�pi)

2 (A5)

should be close to unity, thereby respecting the original data
error �p. In this paper, the latter has been used as a guideline
in choosing σν .

The second situation, where the LPC method is used to
predict parameter values at locations where it has not been
measured, arises primarily in two situations in this paper: (1)
In the prediction of CBH

m from CGFX
m ; and (2) in the predic-

tion of TGFX
c from TBH

c . In these cases, the LPC method is im-
plemented by including all data positions, both borehole and
geophysics positions, in the inversion problem and by defining
data and data errors at all positions. At the positions where
there are no primary data, data are given dummy values with
infinite data uncertainties. The LPC method will take care of
the rest, that is, use the primary data with their errors and the
spatial correlations between all points to predict values at the
positions where there are no primary data, imposing a degree
of smoothness on the final results determined by σν .

A modified data error covariance matrix

In the paper, the last two approaches to predicting clay thick-
ness at the geophysics positions involve a binning of the geo-
physics positions according toCGFX

m and separate applications
of the Lateral Parameter Correlation (LPC) method for each
bin. In the first of the two, only TBH

c data values at locations
where CBH

m is in the same bin are involved in the LPC proce-
dure, and the previous section in this appendix explains how
that is realized. The second of the two approaches also in-
volves a separate application of the LPC method for each of
the bins, but now all TBH

c data are involved. Instead of includ-
ing only TBH

c values belonging to the same bin, now all bore-
hole data are included, but with a redefined weighting that
penalizes the difference between the geophysics and the bore-

hole bín value. This is done by adding an additional data error
covariance matrix to the one defined by �TBH

c proportional
to the difference in bin numbers so that the total variance as-
cribed to TBH

c is

varnew = varold + varbindif = (�TBH
c

)2 + [Dadd · (i− j)]2, (A6)

where i denotes theCGFX
m bin number and j the bin number of

CBH
m . In the paper, values of Dadd between 0 and ∞ have been

investigated and the results plotted in Fig. 5.

APPENDIX B

BINNING WITH THE CONTINUOUS
WAVELET TRANSFORM

Typically the continuous wavelet transform is used to find
layer boundaries in log data and other time series (Davis and
Christensen, 2013; Hill et al., 2020). It can also be used to
simplify a data set reducing its complexity by finding its ‘nat-
ural’ categories (bins) (Christensen, 2018). Defining the mean
value of the data lying within a bin to become the function
value of the bin produces a piecewise constant approximation
to the complexity of the original data set.

The CWT method

To introduce the methodology of the continuous wavelet
transform (CWT), the basic principles will be outlined in this
section illustrated with an example of using the CWT to find
layer boundaries in an electrical log. More detailed presenta-
tions of the method can be found in the references cited above
and inMallat (1998), Cowan and Cooper (2003), and Cooper
and Cowan (2009).

The CWT is defined as a spectrum of convolutions with a
wavelet function (Mallat, 1998), the scale of which is varied:

W [ f (u, s)] =
∫ ∞

−∞
f (t )

1√
s

�∗
(
t − u
s

)
dt, (B1)

where s is the scale, u the position, � is the wavelet used and
∗ indicates complex conjugate.

In all of the following, the positions of boundaries are de-
fined as the inflection points of the function, f , that is, where
the second derivative of the function is zero: f”= 0. Using
the so-called ‘Mexican Hat’ wavelet (also called the ‘Gauss2’
wavelet) given as the second derivative of a Gaussian function:

�∗ = d2

dt2

{
1

σ
√
2π

· exp
(

− t2

2σ 2

)}
= t2 − σ 2

σ 5
√
2π

· exp
(

− t2

2σ 2

)
, (B2)
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Figure B1 (a) The CWT spectrum of the electrical log. (b) A plot of the original electrical log data (black) and the piecewise constant approxi-
mation with 22 layers (grey).

where σ is the standard deviation of the distribution, now
playing the role of scale length, the CWT will deliver the sec-
ond derivative of f at different scales. In the presence of noise,
the CWT of f at small scales will produce several zeros that
are just an expression of the noise. For increasing scale length,
the CWT will provide an increasingly smooth version of the
second derivative, the number of zeros will decrease and only
the main boundaries will survive. Eventually the user must de-
cide the scale length or, equivalently, the number of boundaries
relevant for the interpretation.

The discrete numerical implementation of CWT is done
with discrete binomial filters. For increasing averaging scale,
the binomial filters will become an excellent approximation to
the Gauss2 wavelet.When the averaging process is completed,
the zeros of the CWT spectrum are contoured, see Fig. B1.
Now it is up to the interpreter to choose the appropriate av-
eraging level, that is, choose the number of zeros and thereby
the number of bins and their boundaries.

When the user has chosen the number of relevant bound-
aries by choosing the proper averaging level (a vertical line
through the CWT spectrum), the position of the boundaries
are chosen not as the actual position of the zeros at that av-
eraging level, but by following the zero contours to the zero
position at the lowest averaging level. This ensures that the
position is found with the best possible precision and that the
boundary thus defined does not change when/if more bound-
aries are added. This establishes a unique hierarchy between
the boundaries which is a prominent and very desirable prop-
erty of the CWT transform. Furthermore, due to the fact that
boundaries on a higher averaging level do not change when
more boundaries are added, it has the very valuable property

that bin interval end points do not change when more bins
are considered. This means that when more complex struc-
tures are permitted by introducing more bins, the complexity
is always expressed as a subdivision of already existing bins. In
this respect, it differs from traditional techniques of clustering
(Jain, 2010; Wu, 2012).

An example – finding layer boundaries in an electrical log

Figure B1 shows the (CWT) spectrum of the data from an
electric log acquired by the Ellog logging-while-drilling
method (Sørensen and Larsen, 1999), and a plot of the piece-
wise constant approximation to the logging data obtained by
choosing 22 layers. From the CWT spectrum, it is seen that
the most important layer boundaries appear well separated
from each other. The choice of 22 layers is arrived at by in-
specting the original log data and striking a compromise be-
tween demanding that the piecewise constant approximation
should contain the important variability of the log, while at
the same time avoiding fitting the noise that appears as the
‘undergrowth’ at the left side of the spectrum with very close-
lying zero contours.

Binning the mean conductivity

In this paper, the CWT is used to find the natural bins of the
mean conductivities of the top 30 m of the TEM inversion
models and the optimal number of bins, thereby simplifying
the relation between mean conductivity and clay thickness.
The procedure is the following:

1 Collect all values of the mean conductivities from all inver-
sion models within the survey area.
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2 Sort the array.
3 Use the sorted array as input array to the CWT analysis.

The boundaries found in the CWT analysis define the end
points of the natural intervals of the sorted array values, that
is, the values that naturally belong together. To establish the
desired correlation between mean conductivity and clay thick-
ness, a mean value of all the primary borehole data for which
the mean conductivity at the borehole position falls within the
bin, is found as a noise-weighted average of the borehole clay
thickness data.
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