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ABSTRACT

The laterally and mutually constrained inversion (LCI and MCI) techniques allow for the

combined inversion of multiple geophysical datasets and provide a sensitivity analysis of all model

parameters. The LCI and MCI work with few-layered models, and are restricted to quasi-layered

geological environments. LCI is used successfully for inversion of surface wave (SW) seismic data

and MCI for combined inversion of SW data and continuous vertical electrical sounding (CVES) data.

The primary model parameters are resistivity or shear wave velocity and thickness, and depth to

layer interfaces is included as a secondary model parameter.

The advantages and limitations of LCI and MCI are evaluated on synthetic SW data. The main

conclusions are: Depth to a high velocity halfspace is generally well-resolved even if thicknesses of

overlaying layers and the velocity of the halfspace are unresolved; Applying lateral constraints (LCI)

between individual SW soundings improves model resolution, particularly for velocities and depths,

and; Adding mutual constraints (MCI) to resistivity data improves model resolution of all parameters

in the shear wave velocity model. When applied to field data, model resolution improves significantly

when LCI or MCI is used, and resistivity and velocity models correlate structurally with better

correlation to lithological interfaces identified in drill logs.

Introduction

Inversion of geophysical data is most often the last step

in the interpretation for a geophysical model. The inverted

model can be interpreted directly for the physical features

that it describes which is not the case for the measured data.

However, the inverted model has limitations that are im-

portant to acknowledge. Data collection is time consuming

and it is often impossible to obtain the data quality that is

needed to resolve a given physical model. Geophysical data,

and surface wave seismic data in particular, are by nature

insufficient, inconsistent and inaccurate (Jackson, 1972).

Therefore, the geophysical model may have problems with

hidden or suppressed layers, non-uniqueness, equivalence

and lack of resolution in parts of the model.

Two ways to get an improved estimate of the inverted

model are use of a priori information in the inversion and

combined or joint inversion of different datasets. The use of

good quality a priori information has been shown to be a

successful approach (e.g., Jackson, 1979; Wisén et al.,
2005). When more than one geophysical dataset is available,

joint or combined inversion is an option. Examples of joint

inversion of different combinations of geophysical data with

different common model parameters have been presented

earlier by Vozoff and Jupp (1975), Schmutz et al. (2000),

Hertrich and Yaramanci (2002) and Christiansen et al.
(2004). Examples of joint inversion combining seismic and

DC resistivity methods include: Underground vertical seis-

mic profiling (VSP) and DC resistivity (Dobroka et al.,
1991); Continuous VES (CVES) and seismic travel times

(Gallardo and Meju, 2004), and; Refraction seismic and

VES (Kis, 2002). In Hering et al. (1995) basic ideas for a

joint inversion algorithm for VES and surface wave (SW)

seismic data are presented, and in Misiek et al. (1997)

two applications of this inversion algorithm are presented.

Comina et al. (2002) also present joint inversion of VES and

SW data based on the work of Hering et al. (1995) and

Misiek et al. (1997). A fundamental assumption of joint

VES and SW inversion methods are that the electrical and

elastic interfaces are coincident, that is, the layer parameters

have some kind of linear relationship.

We present a combined inversion of CVES and SW

seismic data using a layered model description with lateral

constraints. We use the layered and laterally constrained

inversion scheme (LCI) presented by Auken and Christian-

sen (2004) as a base for a mutually constrained inversion

(MCI) between the two data types. The seismic shear wave

velocity models are coupled to each other with lateral
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constraints on layer shear wave velocities and depths to layer

interfaces. Likewise the resistivity models are coupled to

each other with constraints on layer resistivities and depths

to layer interfaces. Hereafter, LCI implies that a set of

resistivity or surface wave data are inverted independently

with lateral constraints, and MCI implies coupled inversion

of the two datasets with lateral and mutual constraints.

With this inversion technique it is possible to invert the

SW data using a layered model description incorporating

a priori information. It also provides a full sensitivity analysis

enabling quantitative evaluation of all model parameters. The

method works with few-layered models, and is restricted to

quasi-layered geological environments. The advantages and

drawbacks of the combined inversion are examined through

a thorough analysis of a range of synthetic models. Finally,

the combined inversion is applied to a field dataset from a site

investigation where a large number of geotechnical drill logs

are available for verification of the results.

Surface Wave Method

In seismic methods the propagation of a wavefield is

observed in order to characterize mechanical properties of

the ground. Surface wave methods (SWMs) generally utilize

the dispersive nature of Rayleigh waves in a layered medium

to obtain a shear wave velocity (Vs) profile. Surface wave

methods have been under development for several decades,

and a thorough and up to date description of the available

techniques is found in Socco and Strobbia (2004).

Data Processing

In this study the wavefield, measured in time and space

(t-x) domain using a multi-station technique (e.g., Park et al.,

1999; Foti, 2000), is transformed into frequency and phase-

velocity (f-c) domain. In the f-c domain the energy dis-

tribution and dispersion of body and surface wave events can

be analyzed. In this study only the fundamental mode

dispersion curve, assumed to be dependent only on the

Rayleigh wave, is extracted. The wavefield transformation of

field data has been performed using the multi-channel

analysis of surface waves (MASW) technique (Park et al.,
1999). The wavefield transformation and dispersion curve

extraction comprise the processing of the SW data. Dif-

ficulties in extracting the fundamental mode dispersion curve

can in some cases prevent this approach from functioning

satisfactorily. Multi-modal observation and modeling (e.g.,
Beaty and Schmitt, 2003), full wavefield modeling for

inversion of either the f-c image (Forbriger, 2003a, b; Rydén,

2004) or effective dispersion curve (O’Neill, 2003) can

overcome the restriction to a purely fundamental-mode as-

sumption, but are not considered in this study. In Fig. 1, an

example of a shot gather is presented in both t-x domain (Fig.

1a) and f-c domain (Fig. 1b).

Forward Response

Theoretical dispersion curves for a layered elastic

medium can be calculated with a matrix formulation based

on wave propagation theory. In this study, the stiffness

matrix method proposed by Kausel and Roesset (1981) is

used. Each layer is represented with a stiffness matrix where

loads and displacements are expressed as a function of the

material properties; Poisson’s ratio (r), Vs, thickness (t),

density (q) of each layer, and the Rayleigh wave properties;

radial frequency (x) and c. By satisfying the boundary

conditions at each layer interface, all layer matrices are

assembled to a system matrix (S) describing the complete

layer model. Each point on a dispersion curve is a function

of x and c and represents a solution to S where all boundary

conditions are satisfied simultaneously. For modal solutions

to exist S must be singular, i.e., its determinant must be zero.

Discussion

Data collection and data processing are two parts of the

investigation with large influence on data quality. These parts

have not been investigated in this study. The impact on the

final result from changes in r and q are very small, less than

5% (Nazarian, 1984) compared to the impact from changes

in Vs, and therefore r and q are treated as fixed model

parameters in the inversion. In all modeling performed in this

study r equals 0.4 and q equals 2 g/cm3. These figures are

based on results from geotechnical investigations performed

in the field area.

Resistivity Method

DC resistivity measurements have been continuously

developed for several decades and used with good results.

Figure 1. A 96-channel shot gather from a seismic
survey. (a) t-x domain. The distance between traces is
1 m. Only odd-numbered traces are plotted. (b) f-c
domain. The fundamental mode is identified from
10–19.5 Hz. Higher modes are also present at higher
frequencies.

252

Journal of Environmental and Engineering Geophysics



Continuous profiling to obtain a 2D image of the subsurface

resistivity variation is a well-documented method (e.g.,
Griffiths and Turnbull, 1985; Overmeeren and Ritsema,

1988), based on the fact that different geological materials

have different electrical resistivities. Resistivity measure-

ments have many different applications, both environmental

and engineering (e.g., Dahlin, 1996; Pellerin, 2002).

Data Collection

In order to obtain good resolution in the inverted

model a high data density is an important factor. Modern

resistivity measuring systems produce extensive datasets,

and in this study resistivity data were collected as CVES

data with a multi-electrode system (Dahlin, 1996).

Forward Response

In the 1D case used in this approach, forward

responses are calculated as a summation of pole-pole

responses over a layered earth as described by Telford et al.
(1990). The potentials are computed using the Hankel

transform filters of Johansen and Sørensen (1979) as calcu-

lated by Christensen (1990).

Inversion Methodology

The inversion methodology of the LCI is identical to

that presented by Auken and Christiansen (2004). However,

in this study two different data types and two different

physical model descriptions are used.

Independent, unconstrained inversion of two datasets

produces two uncorrelated models. Joint inversion implies

that two related datasets are used in the same objective

function, and one model is produced through the optimiza-

tion process (Vozoff and Jupp, 1975). The laterally and

mutually constrained inversion, presented here, optimizes

two (or more) separate models that are geometrically

constrained. Thus, it falls between the independent inversion

and the joint inversion.

Laterally and Mutually Constrained Inversion

The term ‘‘constrained inversion’’ has previously been

used when a concept or a priori data constrains the inversion.

The term ‘‘laterally constrained inversion’’ (LCI) is here used

for inverting data along a profile by minimizing a common

objective function (Auken et al., 2004). Hence, the LCI is

a parameterized inversion of data of the same type with

lateral constraints on the model parameters between

neighboring models. The lateral constraints can be consid-

ered as a priori information on the geological variability

within the investigated area; the smaller the expected

variation of a model parameter, the more rigid the constraint.

The resulting model section is laterally smooth with sharp

layer interfaces as depicted in Fig. 2.

The term ‘‘mutually constrained inversion’’ (MCI) is

used to describe the process in which two or more datasets

with different geophysical properties and/or sensitivities,

such as SW data and CVES data, are inverted. The MCI

produces the same number of models as there are datasets,

with a correlation between the models established through

equality constraints between corresponding parameters as

outlined in Fig. 3. Conversely, in joint inversion, e.g., as

presented in Hering et al. (1995), a common objective

function is minimized resulting in just one inverse model.

Thus, the MCI scheme offers a hybrid between individual

and joint inversion. MCI allows the interpreter to incorporate

the difference between the sensitivities of the contributing

Figure 2. Schematic illustration of the LCI concept whereby 1D models are constrained laterally to create a section.

Figure 3. Schematic illustration of the MCI model con-
cept, where different data types are connected via con-
straints on the model parameters.
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datasets. The MCI was originally developed to combine

electromagnetic and DC resistivity data, but because of the

soft bounds between the two models, the approach is quite

robust and can be used in a general approach.

In this paper we apply the LCI concept to the SW

data. Also, we combine the LCI and the MCI concept to SW

profile data and CVES data. The SW and CVES datasets are

internally connected with lateral constraints to form a chain

along the profile. The SW-LCI chain is then connected to

the CVES-LCI chain through mutual constraints from

individual shear wave velocity models to resistivity models.

Hence, information from the SW data migrates to the CVES

models and vice versa.

Since both methods provide information on depth to

layers, the set of model parameters will be better resolved.

Hidden or suppressed layers can be resolved, and ambiguity

in solutions from potential methods, such as DC resistivity,

can be reduced. If the depths to layer boundaries (which is

the common model parameter and assumed to be the same

in the two models) in reality disagree, there will be an error

in one or both of the solutions. This will, however, be

evident in the residual error of the mutual constraints.

Linearized Optimization

A detailed description of the practical implementation

of the constraints is given in Auken et al. (2004), of which

this is a short summary. The primary model parameters of

the inversion scheme are layer resistivities, velocities and

thicknesses. Depths to layer boundaries are included as

secondary model parameters because constraints on depths

are often preferred over constraints on thicknesses.

The dependence of the physical parameters of the

subsurface is generally described as a non-linear, differen-

tiable forward mapping. We use a linearized approximation

by the first term of the Taylor expansion

dobs ffi gðmref Þ þGðmtrue �mref Þ þ eobs; ð1Þ

where g is the non-linear mapping of the model to the data

space, dobs and eobs is the error on the observed data. The

true model, mtrue, has to be sufficiently close to some

arbitrary reference model, mref, for the linear approximation

to be valid. The Jacobian matrix, G, contains the partial

derivatives of the mapping

Gst ¼
@ds

@mt

¼ @ logðdsÞ
@ logðmtÞ

¼ mt

ds

@ds

@mt

: ð2Þ

The logarithm ensures positivity of the data and the model

parameters (Johansen, 1977; Ward and Hohmann, 1988);

however, operating in the logarithmic model space compli-

cates the calculation of derivatives with respect to depths

because the sum of thicknesses no longer translates to depth.

We refer to Auken and Christiansen (2004) for the full

derivation.

The constraints are connected to the true model by

Rdmtrue ¼ drþ er; ð3Þ

where er is the error on the constraints with 0 as the

expected value, and dr ¼�Rmref claims identity between

the parameters tied by constraints in the roughening matrix,

R, containing 1 and �1 for the constrained parameters and

0 in all other places. The covariance matrix, CR, describes

the strength, or variance, of the constraints. In the LCI

approach we only operate with lateral constraints. In the

MCI approach vertical constraints are also used in order to

constrain the number of layers in the shear wave velocity

model to a lesser number than in the resistivity model.

Rearranging equation (1) and combining it with

equation (3) we write the inversion problem as

G
R

� �
�dmtrue ¼

ddobs

dr

� �
þ eobs

er

� �
; ð4Þ

or more compactly

G9�dmtrue ¼ dd9þ e9: ð5Þ

If a priori data are used to constrain the inversion another

row is added to equation (4). The covariance matrix for the

joint observation error, e9, becomes

C9 ¼
Cobs 0

0 CR

� �
: ð6Þ

where Cobs is the covariance matrix for the observational

error, eobs.

The model estimate

dmest ¼ ðG9
TC9

�1G9Þ�1
G9

TC9
�1dd9; ð7Þ

minimizes

Q ¼ 1

N þ A
½ðdd9

TC9
�1dd9Þ�

� �1
2

; ð8Þ

where A is the number of constraints and N is the number of

data (Menke, 1989).

All datasets are inverted simultaneously, minimizing

a common objective function, and the number of output

models is equal to the number of 1D soundings. The

constraints and the data are part of the inversion.

Consequently, the output models form a balance between

the constraints, the physics and the data. Model parameters

with little influence on the data will be controlled by the

constraints and vice versa. Information from one model

will spread to neighboring models through the lateral and

mutual constraints.

Constraints

In this study we combine two different geophysical

methods with very different sampling density, as shown

schematically in Fig. 4a. For each 1D sounding we have
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a 1D model. The constraints between the models are based

on the following three points:

1. Every DC model is constrained to its nearest neighboring

DC models in both directions. Similarly, every SW

model is constrained to its neighboring models on each

side. This is illustrated in Fig. 4b.

2. The neighboring SW and the DC models are constrained

to each other, as illustrated in Fig. 4c.

3. All lateral constraints, Cl, are scaled according to the

model separation, d, using

Cl ¼ Cr

ffiffiffiffi
d

dr

r
ð9Þ

where Cr is a reference constraint for the reference

distance, dr. Therefore, if the distance between two

constrained models is twice that of the reference distance,

the constraint values between the two models are mul-

tiplied by a factor of
ffiffiffi
2
p

, which is a less tight constraint.

Combining the constraints applied in above points

1 and 2 yields the full set of constraints as sketched in

Fig. 4(d). In the case of just one data type (e.g., LCI on SW

data) only points 1 and 3 are applied.

In these examples we used reference constraints, Cr,

of 0.1 on resistivities and velocities and 2 m on depths,

except depth to bedrock which was set to 1 m (this is due to

a much smaller expected variation of this depth). The

mutual constraint was 2 m on all depths to allow for geo-

metrical differences in the resistivity and shear wave velo-

city models. The reference distance, dr, is 4 m, reflecting the

sounding distance employed for the CVES data. This means

that layer resistivity and velocity are allowed to vary

approximately 10% and interface depths by at least 6 1 m

over a distance of 4 m.

Analysis of Model Estimation Uncertainty

The sensitivity analysis of model parameters can be

used to assess the resolution of the inverted model. The

parameter sensitivity analysis of the final model is the

linearized approximation of the covariance of the estimation

error, Cest, (Tarantola and Valette, 1982):

Cest ¼ ðG9
TC9G9Þ�1

: ð10Þ

Standard deviations on model parameters are calculated as

the square root of the diagonal elements in Cest. Because the

model parameters are represented as logarithms, the analysis

gives a standard deviation factor (STDF) on the parameter

ms that is defined by

STDFðmsÞ ¼ exp
ffiffiffiffiffiffiffiffiffiffiffi
Cest;ss

p� �
: ð11Þ

Thus, the theoretical case of perfect resolution has a STDF¼
1. We define well-resolved parameters to have a STDF ,

1.2, which is approximately equivalent to an error of 20%,

moderately resolved parameters fall within 1.2 , STDF ,

1.5, poorly resolved parameters 1.5 , STDF , 2, and

unresolved parameters have a STDF . 2.

Discussion

The CVES dataset (and thus inverted model) is

positioned according to the lateral focus points of the

various electrode configurations. For symmetric configu-

rations the lateral focus point is equal to the center of the

array. Similarly, in multi-channel phase velocity analysis,

Figure 4. Schematic illustration of lateral and mutual
model constraints indicated by arrows: (a) A simplified
sketch of the distribution of SW and DC soundings and
their corresponding models, (b) lateral constraints
internally between the DC and internally between the
SW are applied, (c) mutual constraints between the DC
and SW are applied, and (d) a summary of the total
set of constraints.
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the dispersion curve represents the average response under

the recording array. For both methods the corresponding

plane parallel layered model for inversion is arbitrarily

positioned at the center of the recording spread. In ‘‘roll-

along’’ surveys, the shot spacing is usually much smaller

than the spread length, thus there is a large degree of

propagation path overlap. Lateral geological variations

strictly void both 1D surface wave and resistivity inversion.

However, relatively gentle dips can be imaged in

a ‘‘smeared’’ fashion, depending on the degree of overlap.

The laterally constrained inversion scheme is quite robust

and handles this systematic error well.

Synthetic Resolution Study

To better understand the SW model resolution and

how LCI and MCI affect the SW model resolution

a synthetic resolution study was performed. This test is

performed as the parameter sensitivity analysis presented in

equations (10) and (11). It takes into account only the model

and the size of the dataset and is not preceded by an actual

inversion. All models used resemble the expected velocity

model in the field study. The datasets used resemble typical

datasets for a single sounding in the field study. The

synthetic SW dataset has a frequency range of 11–30 Hz.

This is the typical range within which reliable fundamental

mode dispersion data have been measured in the field study

presented in this paper. The single sounding DC dataset

extracted from a full CVES dataset contains 53 data points

with unique Schlumberger configurations and/or midpoints.

This is the exact amount of data with midpoints in a 4 m

interval along the measurement line as in the field study. For

both datasets the standard deviation is set to 5%. The

sensitivity analysis of individual parameters is presented as

a four-graded gray scale ranging from well-resolved (white)

to unresolved (black). The analysis presents sensitivities of

shear wave velocities (Vs), thickness of layers (t) and depths

to layer boundaries (d).

Resolution of an Intermediate Layer

The aim of this test was to investigate the resolution of

intermediate layer boundaries and velocities. Figure 5a

presents fifteen, 3-layer models where the shear wave

velocity of layer 1, Vs,1, is equal to 300 m/s, Vs,2 is 300–

1,000 m/s gradually changing in steps of 100 m/s, Vs,halfspace

is 1,000 m/s, the thickness of layer 1, t1, is 4 m and t2 is 6 m

and hence the depth to halfspace, dhalfspace, is 10 m. The

sensitivity analysis of this test, Fig. 5b, shows that Vs,1 and

Vs,halfspace is well resolved or resolved (white and light

gray), and that Vs,2 is poorly resolved or unresolved (dark

gray and black) except when it is very close to Vs,1. The

analysis also show that t1 and t2 are mostly unresolved but

that dhalfspace is well resolved or resolved as long as Vs,2 is

not higher than 600 m/s. Figure 5c presents the sensitivity

analysis of the model in Fig. 5a when MCI with resistivity

data is used.

Resolution with Varying Depth to Halfspace

This test aimed to show how the resolution changes

when dhalfspace increases. Figure 6a presents nineteen, 2-

layer models where Vs,1 is 300 m/s, Vs,halfspace is 1,000 m/s

and dhalfspace is gradually increasing from 2 m to 20 m. The

sensitivity analysis of this test, Fig. 6b, shows that Vs,1 is

well resolved, except when dhalfspace is 2 m where it is

unresolved, Vhalfspace is well resolved or resolved as long as

dhalfspace is not greater than 10 m and finally that dhalfspace is

resolved or well resolved except when it equals 2 m.

Resolution with Varying Frequency Content

This test aimed to show how the resolution changes

when the low frequency content of the SW data changes

from fmin of 5 Hz to fmin of 15 Hz. For this study a two-layer

model where Vs,1 is 300 m/s, Vs,halfspace is 1,000 m/s and

dhalfspace is 12 m was used (model number 11 in Fig. 6b).

The sensitivity analysis of this test, Fig. 7, shows that

Vs,halfspace is well resolved or resolved for fmin equal to 9 Hz

or lower and that dhalfspace is well resolved or resolved for

the entire frequency range.

Figure 5. Models and results from the synthetic
resolution study: (a) Fifteen 3-layer models with
gradual increase in velocity of layer two, (b) sensitivity
analysis of the models in (a), and (c) sensitivity analysis
of the models in (a) when MCI with a resistivity dataset
is used.
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Resolution with Mutual Constraints to CVES Data

The last test aimed to show how MCI with CVES data

affect the resolution of the velocity model. For this study the

velocity models in Fig. 5a is coupled to a resistivity model

through constraint on depths. The resistivity in the model

layer 1, R1, is 50 �m, R2 is 25 �m, Rhalfspace is 150 �m and

the thicknesses are the same as in the velocity model. The

sensitivity analysis of this test, Fig. 5c, shows that the

resolution of Vs,1, Vs,2, t1, t2 and dhalfspace is significantly

improved. The effect on the resistivity model resolution is

not considered in this study.

Discussion

Conclusions that can be drawn from these synthetic

studies are that:

(i) Depth to halfspace is generally well-resolved, even

when the lowest available frequency increases and/

or depths to halfspace increase;

(ii) Resolution of the halfspace shear wave velocity

decreases when the low frequency content in the SW

data decreases and/or when the depth to halfspace

increase;

(iii) the shear wave velocity and thickness of the

intermediate layer in a three-layer model is generally

poorly resolved but the velocity is resolved as long

as it is close to or only slightly higher than the

velocity of the top layer;

(iv) Individual thicknesses are generally poorly resolved

and;

(v) MCI with CVES data generally improves the model

resolution. This is valid for all model parameters,

even velocities that are not directly coupled.

The depth to a boundary can be well resolved without

the individual overlying thicknesses being well-resolved, in

fact it will often be the case in models where a high-contrast

boundary is below one or more low-contrast boundaries. In

this study that is the case for a high-velocity layer covered

by two or more layers with lower velocity. An equivalent

example is a low-resistivity layer covered by two or more

high-resistivity layers mapped by an electromagnetic

method (Danielsen et al., 2003).

The low sensitivity of intermediate layers imposes that

the number of layers should be kept as low as possible

without violating the data fit. For the analysis to be valid the

residual error should be kept lower than the standard

deviation of the data. Since thicknesses are generally poorly

resolved it is important to note that the inversion also

includes depth as a secondary model parameter. The fact

that depth to the high-velocity halfspace is well-resolved in

most conditions is positive. Even without low frequency

content in the SW data and/or with halfspace depth of up to

(or possibly above) 20 m a good estimate of the depth to

halfspace is achieved.

Case Study

The case study presented here is from the City Tunnel

Project (CTP) in the city of Malmö in southern Sweden. The

seismic data were collected on two occasions (2001 and

2004) in order to evaluate the SWM. The resistivity data

were collected as part of the site investigation for a railway

connection to CTP. The geological environment consists

of 10–15 m of glacial deposits underlain by limestone.

The glacial deposits can be subdivided into two separate

clay tills with an embedded sandy and/or silty layer of

inter-morainic sediments that exist in parts of the field area.

Near the surface post-glacial coarse-grained sediments can

be found.

Field Procedures and Model Parameterization

The seismic survey was performed with a 24-channel

seismograph and 4.5 Hz geophones, either coupled to the

Figure 6. Models and results from the synthetic
resolution study: (a) Nineteen 2-layer models with an
increasing thickness of layer one, and (b) sensitivity
analysis of the models in (a).

Figure 7. Models and results from the synthetic re-
solution study: sensitivity analysis of 11 reproductions
of model 11 in Fig. 6a using 11 different datasets with
lowest frequency ranging from 5 Hz until 15 Hz.
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ground by spikes or mounted on heavy steel plates

connected by a wire and pulled by a vehicle. Geophone

spacing was 1 m. Based on the assumption of reciprocity

between source and receivers, 48–96 channels were

simulated with a walk-away approach. In practice the

source was moved an array length away from the geophones

instead of moving the geophones. A number of 24-channel

shot gathers were then concatenated to give a simulated

larger dataset. The source consisted of a sledgehammer

impacting on a steel plate for better coupling. The aim was

to collect a dataset that consists of a number of seismic

‘‘soundings’’ along a measuring line. The sounding spacing

differs along the line but was in general 10 m. For most

datasets 48 channels were used for analysis.

The resistivity survey was performed with a multi-

electrode ‘‘roll-along’’ system. Minimum electrode distance

is 2 m, maximum electrode distance 148 m and the electrode

configuration was a combination of Wenner and Schlum-

berger.

The seismic dataset contains 21 separate dispersion

curves with different profile coordinates. The lowest

frequency of the fundamental mode varies from 9–22 Hz

with an average of 11.5 Hz and the upper limit of the

frequency varies from 13–55 Hz with an average of 25 Hz.

A standard deviation of 5% was assumed for all

frequencies. O’Neill (2003) show that the standard de-

viation is frequency dependent with smaller errors at high

frequencies and larger errors at low frequencies, compared

with what is assumed here. Since only one seismogram was

recorded for each measurement point it was not possible

to estimate the standard deviation of the data in this

field study.

For the seismic model four layers were used. A three-

layer model did not allow the data to fit and a five-layer

model was found to be poorly resolved. For the resistivity

model five layers were used. For the MCI it is necessary to

have an equal number of model parameters (depths to layer

boundaries) to constrain between the resistivity and velocity

models respectively. Thus, an equal number of layers in the

resistivity and velocity models are required. Here, both

the resistivity and velocity models have 5-layers. However,

the seismic model was effectively re-parameterized to four

layers (which is the number of layers used for the

independent inversion and LCI) by very tightly constraining

the velocities between layers three and four. In practice, this

regularization is achieved with a vertical constraint, as

mentioned in the inversion methodology section (above).

The standard deviation between the layer velocities is set to

zero percent, which makes the velocities in these two layers

equal. Elsewhere, the constraints used are the same as

described in the inversion methodology section (above);

layer resistivity and velocity are allowed to vary approxi-

mately 10% and interface depths by at least 6 1 m over

a distance of 4 m.

Independent Inversion and LCI

Figure 8a presents the resulting Vs models after

independent inversion on all SW data with the sensitivity

analysis of model parameters in Fig. 8b and the normalized

data misfits in Fig. 8c. The normalized data misfit is 1 if the

data are fit at the assumed observational error of 5% and

smaller for a smaller misfit. The model in Fig. 8a shows

Vs,halfspace ranging from 800–1,800 m/s and dhalfspace

ranging from 8–21 m. Figure 8b shows that very few model

parameters are resolved. The normalized data misfit in Fig.

8c is around 0.5 for all soundings which is well below the

assumed observational error.

Figure 8d presents the resulting Vs model after LCI on

all SW data, Fig. 8e presents the accompanying resolution

analysis of model parameters and Fig. 8f presents the

normalized data misfit for each dataset. In Fig. 8d lithology

from drill logs has been added for comparison. In the drill

logs, white represents sorted sediments, dark grey represents

clay till and light grey represents limestone. The model in

Fig. 8d shows Vs,halfspace ranging from 850–1,650 m/s and

dhalfspace ranging from 10–17 m. Most model parameters,

including all velocities and depths, are well-resolved or

resolved. Only thicknesses are generally poorly resolved or

unresolved. The normalized data misfit is only slightly higher

than for the independent inversion and still well below the

observational error.

The effect of performing LCI instead of independent

inversion can be seen clearly directly in the model, Fig. 8d.

The model parameters are now much more consistent along

the measuring profile. The resolution of the model

parameters (Fig. 8e) is dramatically improved. In particular

velocities and depths are improved. The alternative ways to

improve model resolution while employing a single surface

wave mode would be to use a model with fewer layers or to

use many more layers with fixed thickness and soft vertical

constraints between layer velocities. The first alternative

would not fit the data for most dispersion curves and hence

only be useful for a very small part of the data. The second

alternative would result in a smooth model without physical

resemblance to the sedimentary layered geology that is

present. Of course, incorporating higher modes and/or

broader frequency ranges would also assist, but this study

was restricted to the fundamental mode only.

MCI

Finally, the information from the CVES data is

combined with the SW data to see if it is possible to

improve the SW models by adding more information on the

thickness of layers and depths to interfaces. The result is

shown in Fig. 9. Figure 9a presents the resulting Vs and

resistivity model after MCI on all SW and CVES data.

Figure 9b presents the resolution analysis of the seismic

model parameters and Fig. 9c presents the normalized data

misfit for each SW dataset. Since there is about 5–10 times
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more CVES resistivity data than SW data the impact of the

seismic data on the resistivity model is very small. The

resistivity model presented here was verified earlier (Wisén

et al., 2005) and will not be analyzed here. The Vs model in

Fig. 9a shows Vs,halfspace ranging from 800–1,450 m/s and

dhalfspace ranging from 9.5–13.5 m. Most model parameters,

including all velocities, depths and most thicknesses are

well-resolved or resolved. The normalized data misfit

corresponding to the SW data is only slightly higher than

for the independent inversion and actually lower than for the

LCI on SW data alone. It is also well below the obser-

vational error.

The main difference between the Vs model in Fig. 9a

and the model in Fig. 8d is on the analysis of the thickness

Figure 8. Result from inversion of SW data: (a) Vs model from independent inversion on all SW data, (b) model
resolution analysis of the model in (a), (c) normalized data misfit presented for each dataset, (d) LCI on all SW data,
(e) model resolution analysis of the model in (d), and (f) normalized data misfit presented for each dataset. In the LCI
model lithology from drill logs is present. In the drill logs, white represents sorted sediments, dark grey represents clay
till and light grey represents limestone.
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and the variation of model parameters. Information on

thickness of the high-resistivity top layer found in the CVES

profile, helps constrain the shear wave velocity of that layer.

The velocity of the halfspace also changed a bit as a result

from additional information on the depth to the interface.

Moreover, the geophysically interpreted interfaces correlate

better with lithological interfaces identified in drill logs.

Figure 10 presents the measured data and model

response for the model at profile coordinate 1,429 m. For

this dataset the root mean square error is 1.6% for

independent inversion, 2.1% for LCI and 2.2% for MCI.

Combined, these model responses fit well within the

expected observational error of 5%. The largest misfit

occurs at the lowest frequency. At frequencies above 15 Hz

the error seems to decrease with frequency. The model

response from LCI and MCI agree well and both differ from

the model response from independent inversion. This is due

to influence from neighboring models through the lateral

and mutual constraints. Even though the model resolution is

improved in this case, it is not the new improved model that

is the main benefit from performing MCI, but rather the

knowledge that the resistivity model and the seismic model

actually correspond geometrically. This information is very

important and can be used in the geological and geo-

technical interpretation of other resistivity data in this area.

Conclusions

Both laterally and mutually constrained inversion

(LCI and MCI) is applied to both synthetic and field surface

wave (SW) dispersion data and continuous vertical electrical

sounding (CVES) data.

It is concluded from the synthetic study that the depth

to a high-velocity homogenous halfspace below one or more

overlying layers is well-resolved, more so than the shear

wave velocity. This applies both for an increasing depth and

a decreasing amount of low frequency content. The

intermediate layer in a three-layer model is generally less

resolved than that of the top layer and halfspace, unless the

layer velocity is similar to the velocity in the top layer.

Individual thicknesses of overburden layers are generally

poorly resolved, and therefore it is important to note that

the inversion also includes depth as a secondary model

parameter. MCI with CVES data generally improves the

Figure 9. Results from combined inversion of SW and CVES data: (a) Resistivity (color) and Vs (grayscale) model
after MCI, (b) model resolution analysis of the Vs model in (a), and (c) normalized data misfit presented for each
dataset. In the LCI model lithology from drill logs is present. In the drill logs, white represents sorted sediments, dark
grey represents clay till and light grey represents limestone.
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model resolution. This is valid for all model parameters,

even velocity, which is not directly coupled between the two

model types.

From a field survey, independent inversion of the SW

datasets gives models with a high degree of lateral variation

along the measuring profile. The model parameters in

a four-layer model are generally poorly resolved or

unresolved. The data fit is good, about half that of the

assumed observational error of 5%. Performing LCI instead

of independent inversion makes the model evolve smoothly

along the measuring profile without violating the data fit.

The resolution of the model parameters is dramatically

improved, in particular for velocities and depths. Performing

MCI results in a slightly improved resolution of the shear

wave velocity model. In particular the thicknesses are better

resolved, and the geophysically interpreted interfaces

correlate better with lithological interfaces identified in drill

logs. The main benefit from performing MCI is the

additional information on how the resistivity and velocity

models share similar structural features, which greatly

assists lithological interpretation.
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