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ABSTRACT

The nuclear magnetic resonance sounding (MRS)
method is used increasingly as a tool for hydrological inves-
tigations. Compared to other geophysical methods, the ad-
vantage of MRS is that it is directly sensitive to the presence
of water in the subsurface. Data interpretations can also be
used to get information about the subsurface pore structures,
which under special conditions can be related to hydraulic
properties such as aquifer transmissivity. However, to
broaden the usage of this information in hydrological mod-
eling, the uncertainties related to these transmissivity esti-
mates must be determined. Otherwise, properly balanced
weights cannot be given to the prior information obtained
from MRS transmissivity estimates as compared to the
hydrological data sets when used for groundwater model
calibration. We have developed a methodology to estimate
the uncertainties of MRS-based transmissivity estimates.
Compared to previous studies, the methodology is well de-
fined, and it takes into account important factors such as the
uncertainties of the hydraulically estimated transmissivities,
the uncertainty of the correlation factor in the petrophysical
relation, and the uncertainties and correlations of the geo-
physically estimated parameters. We have determined the
correlations and uncertainties of the geophysical parameters
using a linear and a nonlinear method, and we find that the
results are comparable.

INTRODUCTION

Groundwater models are usually set up with a predefined internal
structure or hydrostratigraphy that is defined on the basis of geo-
logic information, geophysical data analysis, and prior knowledge
of the area investigated. Within this structure, model parameteriza-

tion is defined such that the model parameters can be calibrated to
provide a reasonable fit between the observation data set and the
simulated equivalents. Normally, these data consist of hydrological
observations comprising static or dynamic water levels observed in
boreholes, stream flow discharge measurements, etc. As an inte-
grated part of the model inversion (often called model calibration
in the hydrological community), the uncertainty of these data sets is
evaluated to secure balanced weighting between the data when cal-
ibrating the groundwater flow model parameters. Ideally, the weight
matrix associated with the observation data set should equal the in-
verse of the observation error covariance matrix. The uncertainty
(here represented by the weighting) of the data set has implications
for the estimated parameters. Parameters informed only by uncer-
tain observations will be estimated with less confidence than param-
eters informed by observations of low uncertainty. Parameters of
groundwater flow models may also suffer from parameter correla-
tion. One example of this is the strong positive correlation between
estimates of recharge and transmissivity that is the typical outcome
when a groundwater model is calibrated to hydraulic head data only
(e.g., Anderson et al. [2015], pp. 79–80). In such a case, indepen-
dent prior information on transmissivity could potentially reduce
parameter correlation and parameter uncertainties, and thereby re-
duce the uncertainty of predictions later made by the calibrated
model. In cases where multiple estimates of local transmissivity
can be obtained within an aquifer system, important information
can be obtained on aquifer heterogeneity. This information can
be valuable when hydrological models are set up in a highly para-
meterized context (Hunt et al., 2007). This is often done to resolve
aquifer heterogeneity. However, this heterogeneity can rarely be re-
solved properly using hydraulic heads and flows only. Two exam-
ples of highly parameterized groundwater model setups can be seen
from Doherty (2003) and Fienen et al. (2009). It is likely that both
of these model studies would have benefitted from having point
estimates of aquifer transmissivity.
Several studies have documented magnetic resonance soundings

(MRS) as a geophysical method that can support hydrological in-
vestigations. Compared to other geophysical methods, MRS has a
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more direct relation to hydrological parameters such as storage/
storativity (e.g., Lubczynski and Roy, 2007) and hydraulic conduc-
tivity/transmissivity (e.g., Legchenko et al., 2002) due to the direct
sensitivity of the observed MRS signal to the presence of water in
the subsurface. Potentially, estimates of local transmissivities
(which is the focus in the present study) and storativities derived
from MRS can be used for constraining parameter variations of
groundwater models, such that these can be used more effectively
as tools for decision support for groundwater and surface water
management. It is outside the scope of this paper to discuss the
MRS method itself, and for this, we therefore refer to the compre-
hensive MRS review papers by Legchenko and Valla (2002) or Beh-
roozmand et al. (2015).
A key obstacle for usage of MRS in hydrological modeling is

estimation of the uncertainty of the derived transmissivity estimates.
References suggesting how uncertainty of transmissivity (or hy-
draulic conductivity) can be estimated from MRS are numerous
(e.g., Legchenko et al., 2004; Chalikakis et al., 2008; Plata and Ru-
bio, 2008; Boucher et al., 2009; Günther and Müller-Petke, 2012;
Vilhelmsen et al., 2014) but the methods or their documentation are
often incomplete. In some references, it is just stated that the un-
certainty given for the MRS-estimated transmissivities takes into
account the uncertainty of the MRS data, MRS parameters, and
transmissivity estimates (Legchenko et al., 2004; Boucher et al.,
2009), but the method is not documented or explained. Chalikakis
et al. (2008) estimate the uncertainty of the MRS-based transmis-
sivity estimates, but they only seem to take equivalent solutions into
account. Uncertainties of effective hydraulic conductivity can be
estimated using joint inversion between TEM, MRS, and aquifer
test models (Vilhelmsen et al., 2014), but the methodology is tedi-
ous and remains to be documented for sites with multiple MRS and
aquifer tests. Plata and Rubio (2008) provide a detailed analysis of
the importance of the uncertainty of transmissivities estimated using
hydrological methods, but they do not give a detailed description on
how to take this uncertainty into account. One of the few studies
documenting the methodology used for estimating MRS-based
transmissivity uncertainties is the study of Günther and Müller-
Petke (2012). However, they do not take into account the potential
MRS parameter correlation between, e.g., layer thickness and water
content, which may or may not be profound.
In the following, we suggest and demonstrate a consistent meth-

odology for estimating the uncertainty of an MRS-based transmis-
sivity. The methodology takes into account factors such as MRS
data quality (noise level), the according covariance of MRS-derived
parameter estimates, the uncertainty of estimated transmissivities
from the hydrological investigations ðTHYDÞ, and the uncertainty
of the relationship between MRS parameters and THYD. The sug-
gested methodology is simplified by using linearized approxima-
tions for parameter covariances. We demonstrate the validity of
this simplification by a comparison with results obtained by non-
linear analysis.

METHODS

Hydrological methods

As outlined previously, estimates of transmissivity or effective
hydraulic conductivity are often of practical importance for hydrol-
ogists because they can provide important information about the
variability or heterogeneity within an investigated aquifer. Often

the transmissivity is thought of as the hydraulic conductivity times
the thickness of the aquifer. This is, however, not strictly correct
because the hydraulic conductivity can vary significantly vertically
and horizontally within an aquifer comprising varying types of de-
posits. Hydraulic conductivity is thereby an intrinsic property of the
sediments in the aquifer. In cases where the aquifer is heterogeneous
(which is often/always the case), the transmissivity of an aquifer is
defined as (Bear [1988], p. 214)

THYD ¼ keff � l; keff ¼
1

l

Zl

0

kðzÞdz; (1)

where THYD is the aquifer transmissivity, keff is the effective hori-
zontal hydraulic conductivity, l is the aquifer thickness, and kðzÞ
represents the vertically varying hydraulic conductivity. When per-
forming hydraulic tests on aquifers to determine their properties,
one can usually only estimate THYD, or keff within a depth interval,
but not kðzÞ.
Estimates of transmissivity can be obtained by aquifer tests or

slug tests. An aquifer test can be performed in several ways, but
the most typical is to pump from a single well with constant rate
while observing drawdown in the pumping well and/or in nearby
observation wells. Aquifer transmissivity and storativity can be es-
timated by analysis of the drawdown observations. The observa-
tions can also provide important information about existence,
type, and location of aquifer boundaries. For a more complete re-
view of aquifer test analysis, we refer to Kruseman and de Rid-
der (2000).
The slug test is a more simple methodology to estimate hydraulic

parameters of the aquifer. At the beginning of the test, the ground-
water level in the well is increased or decreased instantaneously
(often by dropping or extracting a solid slug/object into or from
the well), and the resulting aquifer response is observed by meas-
uring how the hydraulic head in the well falls back to its static level.
The effective hydraulic conductivity within a depth interval can be
estimated by analyzing this response. Butler (1998) gives a detailed
description of how slug tests can be carried out, analyzed, and
processed.

Slug test analysis

The slug test data collected for the field case presented later was
analyzed using the KGS model solution (Butler [1998], pp. 94–99)
for confined aquifers. Due to noninstantaneous insertion/extraction
of the slug, the initial part of the measured curve was disturbed, and
the data were, therefore, processed using the translation method
(Butler [1998], p. 52). In total, 22 slug test data sets were collected
in two boreholes using slugs of two different sizes.

Pumping test analysis

Due to the large areal influence of long duration aquifer tests, the
analysis of these can be more complex to interpret than slug tests.
This is for example the case when geologic or hydrological boun-
daries influence on the drawdown response. In the field case pre-
sented later, the pumped aquifer is located in a buried valley
structure incised into a low permeable substratum, and there are in-
ternal boundaries inside the valley as well. Methods to analyze aqui-
fer tests performed in such valley structures have been given by,

WB64 Vilhelmsen et al.

D
ow

nl
oa

de
d 

02
/0

8/
18

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



e.g., Vandenberg (1977), or Butler and Wenzhi (1991), and in the
presence of internal boundaries by van der Kamp and Maathuis
(2012). However, the limitations of the analytical solutions make
especially the Vandenberg solution inapplicable for the present
analysis due to the long distance to some of the observation wells.
The analysis presented by Butler and Wenzhi (1991) would likely
be applicable to the present case, but due to their complicated sol-
ution, we found it easier to set up a simple numerical groundwater
model to perform the analysis.
The numerical model was set up in MODFLOW2005 (Harbaugh,

2005), using one layer and a horizontal discretization of 10 m. The
edges of the valley structure were applied as no flow boundaries,
and the width and the thickness of the valley were assumed constant
throughout the entire valley length. The aquifer system was simu-
lated as confined with a constant transmissivity and storativity
throughout the valley. To evaluate if the numerical discretization
of the model was adequate, the numerical solution was compared
to the analytical Theis solution (Theis, 1935) for drawdown in con-
fined aquifers with infinite areal extent. After validation of the
numerical resolution, we incorporated the valley into the model.
The outlet of the valley was simulated as a constant head boundary
conditions (BC) at a distance of 10 km from the pumping well. In-
creasing this distance further did not change the simulation results.
After setting up the numerical groundwater model, the parame-

ters of the model were estimated by nonlinear regression using
PEST (Doherty, 2010). Based on the optimized parameters, the
parameter covariance matrix was determined as

CðpÞ ¼ σ2ðXTωXÞ−1; (2)

where X is the Jacobian matrix for the optimized parameter set, ω is
the inverse of the observation error covariance matrix, and σ2 is the
reference variance determined as

σ2 ¼ Φ
m − n

; (3)

where Φ is the objective function (equal to the sum of squared
weighted misfit between the data and the modeled responses), n
is the number of parameters, and m is the number of data points.
In the present analysis, the observation error covariance matrix

for the drawdown observations was assumed to be diagonal and
the standard error associated with the drawdown observation i
was determined as

ei ¼ ew þ epct � di; (4)

where ew is the internal noise of the transducer and data logger used
to monitor drawdown, epct is a scalar, and di is the observed draw-
down. In this noise model, the first term accounts for measurement
error, whereas the second term accounts for other error contribu-
tions such as error caused by simplifications of the applied model
(model structural error, for example negligence in the model of
aquifer heterogeneity). We, thus, expect model error to increase
with drawdown. In the present analysis, ew was determined to
0.01 m based on analysis of data collected just before initiation
of the pumping test, and epct was set to 0.15 based on an analysis
of data variability during the tests as well as on the expected effects
of the model simplifications.

Geophysical methods

MRS uses the basic principle of nuclear magnetic resonance to
excite the nuclei of the hydrogen protons found in the water mol-
ecules in the subsurface. This excitation is done by transmitting an
alternating current tuned at the local Larmor frequency through a
transmitter coil laid out on the surface. This creates a time-varying
energizing magnetic field that tips the net magnetization vector of
the hydrogen protons away from the alignment with the earth mag-
netic field. Once the energizing pulse has been terminated, the net
magnetization vector relaxes back into equilibrium with the earth
magnetic field. During this process, a signal is emitted, which
can be measured in the receiver coil (e.g., Legchenko and Valla,
2002; Behroozmand et al., 2012b).
The simplest form of an MRS experiment uses a single excitation

pulse and observes the following decay of the net magnetization
back to equilibrium, also known as free induction decay (FID).
Its envelope can be described by a monoexponential decay given
by (Behroozmand et al., 2012b)

Vðq; tÞ ¼
Z

Kðq; zÞwðzÞ exp
�
−

t
T�
2ðzÞ

�
; (5)

where Vðq; tÞ is the measured signal, Kðq; zÞ is the 1D kernel func-
tion, wðzÞ is the water content as a function of depth ðzÞ, T�

2ðzÞ is the
relaxation rate including dephasing effects as a function of depth,
and t is time after the pulse. The signal is dependent on the pulse
moment (q), which is the product of the current amplitude and
the pulse duration. By gradually increasing q, the sensitivity of
the MRS experiment shifts to greater depth, thereby providing
depth-related information.
The propagation of the used electromagnetic fields and thus the

kernel Kðq; zÞ is dependent on the conductivity structure of the sub-
surface. This conductivity structure can be determined from a tran-
sient electromagnetic sounding (TEM) (Behroozmand et al.,
2012a). Subsequently, the two data sets are jointly inverted deter-
mining layer thickness, resistivities, water content, and relaxation
rate suggested by Behroozmand et al. (2012a). Forward responses
for the TEM and MRS models were simulated using the algorithm
AarhusInv (Auken et al., 2014), whereas the inversions were per-
formed using PEST (Doherty, 2010). The uncertainties of the esti-
mated parameters were determined using equation 2, where the data
uncertainties were determined from the gated signal and by adding
3% of uniform noise.
The collected data sets for the field case presented later were

processed using the methods described by Dalgaard (2014), Dal-
gaard et al. (2012), and Larsen et al. (2014). This includes despik-
ing, coherent noise cancelation, stacking, and envelope detection.

Petrophysical relation

Under the assumption of fast diffusion, the permeability (k) of the
subsurface can be determined from MRS using what is known as
the Schlumberger-Doll Research equation presented by Kenyon
et al. (1988) as (Dlugosch et al., 2013; Dlubac et al., 2014)

k ¼ b � wm � ½T2�n; (6)

where b is a correlation factor, w is the water content or effective
porosity, T2 is the transversal relaxation time, and m and n are
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constants. For unconsolidated sediments, these constants are often
set to 1 and 2, respectively (e.g., Legchenko et al., 2004). Because it
can often be assumed that the density and viscosity of groundwater
within the same region is constant, the hydraulic conductivity can
be calculated from permeability by a simple linear transformation
(Bear, 1988, p. 133). Moreover, in cases where the effects of mag-
netic field inhomogeneities can be neglected, the hydraulic conduc-
tivity can be estimated as

KMRS ¼ Cp � w � ðT�
2Þ2; (7)

where Cp is an empirical constant, most often determined by cross-
correlation to effective hydraulic conductivity determined from
pumping or slug or tests (KHYD). Care should be taken when apply-
ing equation 7 to estimate KMRS. In cases in which T�

2 is dominated
by magnetic field inhomogeneities (e.g., due to magnetic materials
in the subsurface), the relation between pore geometry and decay
time deteriorates (Legchenko et al., 2002; Grunewald and Knight,
2011) and equation 7 becomes invalid.
For a vertically homogeneous aquifer with thickness l, the trans-

missivity (TMRS) can be determined from equation 7 as

TMRS ¼ Cp � w � ðT�
2Þ2 � l; (8)

to facilitate the use of TMRS in hydrological decision support, it is
important to determine its reliability by estimating its uncertainty.
The method to do so is described in the following.
First, equation 8 is log transformed (in the present, this refers to

base 10) to give the linear equation

logðTMRSÞ ¼ logðCpÞ þ logðwÞ þ 2 � logðT�
2Þ þ logðlÞ;

(9)

subsequently, by assuming that the logðCpÞ estimate is independent
from the other estimated terms used on the right side of the equa-
tion, the variance of logðTMRSÞ can be written as

var½logðTMRSÞ� ¼ var½logðCpÞ� þ var½logðwÞ
þ 2 � logðT�

2Þ þ logðlÞ�; (10)

using basic probability theory, the variance related to the MRS-de-
rived parameters can thus be determined as

var½logðwÞ þ 2 � logðT�
2Þ þ logðlÞ�

¼ var½logðwÞ� þ 4 � var½logðT�
2Þ� þ var½logðlÞ�

þ 4 � cov½logðwÞ; logðT�
2Þ�

þ 4 � cov½logðT�
2Þ; logðlÞ� þ 2 � cov½logðwÞ; logðlÞ�; (11)

where var½x� is the variance of x and cov½x; y� is the covariance be-
tween x and y. In cases where correlation between the MRS-derived
parameters is negligible, equation 11 simplifies to

var½logðwÞ þ 2 � logðT�
2Þ þ logðlÞ�

¼ var½logðwÞ� þ 4 � var½logðT�
2Þ� þ var½logðlÞ�; (12)

the correlation constant logðCpÞ and its associated uncertainty
var½logðCpÞ� can be determined from weighted linear regression

of equation 9 where TMRS is substituted by THYD. The system of
equations simplifies to

logðCpÞ ¼
P

n
i¼1 ωi � yiP

n
i¼1 ωi

; (13)

where n refers to the number of equations (pairs of MRS and
THYD). The weights (ωi) associated with each equation in the
linear regression is given by 1∕ðvar½logðwiÞ þ 2 � logðT�

2iÞ þ
logðliÞ� þ varðlogðTHYDiÞÞÞ, and yi is given by logðTHYD;iÞ−
½logðwiÞ þ 2 � logðT�

2iÞ þ logðliÞ�. By applying this methodology,
it is secured that uncertain data sets are down weighted when de-
termining Cp and that the uncertainty of the Cp factor can be taken
into account when determining TMRS. Subsequently, var½logðCpÞ�
can be determined for this simple case as (Aster et al., 2005)

varðlogðCpÞÞ ¼
�Xn

i¼1

ωi

�−1
; (14)

to determine var½TMRS�, the variance of THYD as well as the vari-
ance-covariance of the parameters pertaining to the MRS inversion
these must be determined. This can be done from either the pos-
terior linear analysis obtained from the MRS inversion using equa-
tion 2 (e.g., Behroozmand et al., 2012b) or through nonlinear
analysis as described in the following.

Parameter variance estimation by nonlinear procedure

The nonlinear procedure has three steps:

1) Generate sets of parameters resulting in equivalent models as
for the joint MRS/TEM setup.

2) Use these parameter sets to generate an estimate of the variance-
covariance matrix for the geophysical parameters.

3) Use the element values of this estimated matrix in either equa-
tion (11) or (12) to calculate the variance related to the MRS-
derived parameters.

In step 1, to generate parameter sets we applied a modified
version of null-space Monte Carlo (NSMC) (Tonkin and Doherty,
2009). In this nonlinear approach, the inverted model for MRS is
used to define the calibration null space. Based on the Jacobian ma-
trix determined from the optimized MRS parameters (XMRS), the
following equation can be determined through singular value de-
composition,

XT
MRSωMRSXMRS ¼ VSVT ; (15)

where ωMRS is the inverse of the MRS observation error covariance
matrix, V is a matrix of eigenvectors, and S is a diagonal matrix
containing the singular values arranged in decreasing order. In cases
where the inversion of the MRS model is ill posed, some diagonal
elements of S are small (≈0), the XT

MRSωMRSXMRS matrix is singu-
lar, and the inversion problem cannot be solved without applying
some sort of regularization. In such cases, equation 15 can be writ-
ten as

XT
MRSωMRSXMRS ¼ ½Vp V0 �

�
Sp 0

0 S0

�
½Vp V0 �T;

(16)
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where Vp contains the eigenvectors spanning the solution space, V0

contains the eigenvectors spanning the null space, and Sp and S0
contains the singular values pertaining to the solution space and
the null space, respectively. In the present case, we wish to use
V0 estimated from equation 16 to reduce the parameters space to
be investigated to determine the contribution of model nonlinearity
to parameter variance and covariance. According to Tonkin and
Doherty (2009), this can be done by generating a set of realizations
of random parameters pst. This random parameter set could be gen-
erated using the posterior parameter covariance matrix CðpÞ. In the
present case, this covariance matrix could be approximated by using
the outcome of the linear analysis as described previously. However,
because we seek to investigate the contribution from model nonli-
nearities to parameter uncertainties, selecting random parameters
based on a linearized approximation of CðpÞ could potentially result
in underestimation of the uncertainty. Instead, we generated random
parameter values within the 99% confidence intervals estimated by
the linear analysis (pst). A new parameter set that nearly fit the data
(p̄;) can then be calculated as (Tonkin and Doherty, 2009)

ðp̂ − pstÞ 0 ¼ V0VT
0 ðp̂ − pstÞ p̄ ¼ p̂þ ðp̂ − pstÞ 0; (17)

where V0VT
0 functions as a null-space projection matrix, and

ðp̂ − pstÞ 0 is the null-space projection vector. Due to model nonli-
nearity, the parameter set ðp̄Þ generated by the null-space projection
may not fit the calibration data set within the uncertainties of the
conditioning data set. In this case, p̄ is slightly adjusted by perform-
ing up to a maximum of three inversion iterations. If the data are still
not fitted within its uncertainty, the projected parameter set is re-
jected as nonbehavioral. In the present study, this process was re-
peated 2000 times for each MRS location. Parameter statistics was
subsequently calculated based on the subset parameter combina-
tions for each sounding resulting in behavioral models.
Because the MRS inversion problems in the present field case are

all well posed, S does not have near-zero eigenvalues. However, in
the context of Monte-Carlo analysis equation 17 can still be used to
reduce to parameter space to be investigated. This is here done by
selecting a truncation limit between Sp and S0 such that Sp has
np∕2 diagonal elements, where np is the number of parameters
in the inversion problem. This threshold was selected as a trade-
off, where the aim was to reduce the number of iterations in the
inversion of each set of parameters, while representing potential sig-
nificant nonlinearities.
One of the challenges of applying this analysis is selecting the

acceptable data fit resulting in behavioral models. In the present
study, this is evaluated individually for each MRS by visual inspec-
tion of the fitted data curves from the linear analysis. The threshold
was then set as a percentage above the minimum objective function
obtained in the linear analysis. The percentage chosen was deter-
mined different for each sounding depending on the fit in the opti-
mal model. Often this was in the order of 50% above the minimum
objective function. This approach is similar to the one applied by
Tonkin and Doherty (2009).

FIELD CASE

The suggested methodology to estimate MRS-based transmissiv-
ity uncertainties is demonstrated using a data set collected near a
wellfield used by the water supply of Aarhus, Denmark (see Fig-
ure 1). The data set consists of five MRS, two aquifer tests, and slug

tests performed in two wells. The MRS data and the slug test data
were collected during a field campaign in 2014, whereas the aquifer
tests were conducted by the Danish consultant company NIRAS in
2002 (well: DGU78.860) and as a part of a master thesis project in
2006 (well: DGU78.343) (Blæsbjerg, 2006), respectively. A few
details about the two pumping tests are given in Table 1.
The studied aquifer is located within a buried valley structure

(Figure 1c), which is a part of a regional system of buried valleys
found within the area outlined in Figure 1b (Jørgensen and Sander-
sen, 2006; Møller et al., 2009). The valleys are incised into Pale-
ogene clay, which acts as an impermeable bed of the deepest
aquifer. The aquifers in the area primarily consist of meltwater de-
posits of sand and gravel. In areas with confined aquifers, aquitards
are typically made up of clayey till and to a minor extent, lacustrine
clay. The valley structures were primarily mapped using airborne
TEM (Sørensen and Auken, 2004; Aarhus Geophysics, 2014),
which have given detailed information about their extend. The
MRS data sets were collected using NumisPoly equipment from IRIS
Instruments using 16 pulse moments, ranging from 0.073 to 8.39
As, and between 75–150 stacks. The number of stacks was chosen
based on the local noise level. A 100 × 100 m square loop configu-
ration was used to secure high-depth penetration.

RESULTS

Hydrological analysis

Figure 2 shows the observed and simulated drawdown responses
for the two aquifer tests. Directly from the data, it is apparent that
the aquifer is located in a valley structure, which gives the observed
drawdown curves a characteristic straight-line shape in a log-log
plot (Butler and Wenzhi, 1991). This shape has been observed from
aquifer tests performed in similar structures elsewhere (e.g., van der
Kamp and Maathuis, 2012).
The transmissivity is estimated to be 0.1374 m2∕s for the

DGU78.343 aquifer test, and 0.0871 m2∕s for the DGU78.860
aquifer test, respectively. Some of the difference between the
two estimates is due to uncertainties of the analysis. However,
the primary explanation is likely to be a change in lithology to
coarser sediments near DGU78.343. The uncertainties of the trans-
missivity estimates were determined using equation 2. This gave a
logðTHYDÞ standard deviation of 0.056 for the DGU78.343 deter-
mined transmissivity, and a logðTHYDÞ standard deviation of 0.14
for the DGU78.860 determined transmissivity, respectively.
Figure 3 shows examples of the slug test data sets collected from

two wells (DGU78.776 and DGU78.779) near Ristrup08 (see Fig-
ure 1). In total, 14 slug tests were performed in DGU78.776 and
eight slug tests were performed in DGU 78.779. Due to the appli-
cation of the translation method, the initial displacement of the

Table 1. Details on the performed aquifer tests.

Pumping
well

Abstraction
rate (m3∕s) Duration

Number of observation
wells included in analysis

DGU78.860 0.04508 12 April–15
May, 2002

3

DGU78.343 0.01667 21 June–16
August, 2005

5
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water table was estimated from data curves
and not based on the volume of the slug.
The length of the well screens was determined
from the borehole logs to 3 m. Based on
the analysis, Keff of the upper part of the
aquifer (DGU78.779) was estimated to be
1.54 × 10−4 m∕s, whereas the Keff was 1.01 ×
10−4 m∕s for the deeper part of the aquifer
(DGU78.776). The standard deviation of the es-
timated Keff was determined from the repeated
experiments in each well. This gave a standard
deviation for logðKeffÞ of 0.12 for DGU78.776
and 0.10 for DGU78.779, respectively.

MRS parameter analysis

Figure 4 shows fitted FID for the MRS
Ristrup09.The fitted decays include the optimal
model from the least-squares nonlinear inversion
and those obtained using NSMC simulation. In
total, 1170 out of 2000 parameter sets were se-
lected as behavioral in the NSMC analysis of
Ristrup09, in which behavioral was defined as
an objective function value less than 322. In gen-
eral, there is a good agreement between simula-
tions and observations, and only a slight bias is
seen for pulse moments Q15 and Q16. This bias
could have been avoided by setting up the inver-
sion as a five-layer structure. The difference be-
tween the overall model structure obtained by
using five instead of four layers was, however,
limited, and we still obtained a two-aquifer sys-
tem with a subdivision of the aquitard into two
layers with similar parameter estimates. How-
ever, the five-layer structure resulted in increased

Figure 1. Field site used in the study.

Figure 2. Results from aquifer test interpretations.
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parameter uncertainty, and we, therefore, decided to use the four-
layer structure in the analysis.
Figure 5 shows the parameter distributions used to generate the

results shown on Figure 4. Because the bottom of the system is lo-
cated at a depth of up to 120 m, the MRS method cannot reach the
aquifer bottom. We therefore chose to simulate the last two layers of
the MRS model as one resulting in a three-layer model for water
content and decay time and a four-layer model for resistivity. It
is thereby assumed that the aquifer is vertically homogeneous. Pri-
marily based on the resistivity values, the results
indicate a two-aquifer system with an upper un-
confined aquifer from terrain down to 10 m be-
low terrain and a lower primary aquifer from
approximately 20 m down to approximately
120 m below terrain. It is also evident from
the resistivity curve that there is a correlation be-
tween resistivity and layer thickness for layer
two. Parameter values for water content and de-
cay time for the upper two layers appear to be
poorly determined. This is likely caused by lim-
ited water content and thereby signal. This is sup-
ported by the relative high resistivity observed
for this layer and the low signal for small pulse
moments. For the present analysis, this is, how-
ever, insignificant because the parameter esti-
mates of the deep aquifer (layer 3) are the
main target.
Figure 6 shows the parameter distributions

for MRS Ristrup08 together with a simplified
version of the well log from DGU78.776 lo-
cated at a distance of approximately 50 m from
the southeast corner of the main loop. From
the two wells DGU78.776 and DGU78.779,
we know that there is an upper confining
clay layer and there are an upper and a deeper
sand layer (aquifer) separated by a clay layer
(aquitard). The clay layer near terrain can
be observed in the decay time curve, which
shows a fast decay and unresolved water con-
tent. The two aquifers can be observed as layers
with slightly higher decay time and better re-
solved water content. As expected, the clayey
aquitard cannot be resolved due to its small
thickness. Below 60 m, there is an indication
of an additional aquifer. However, this is highly
uncertain because the depth of investigation is
approached and because no validation data
from boreholes are available. A close look at
the NSMC results presented in Figure 6 indi-
cates parameter correlations. This is seen as
gradual changes between layers in the NSMC
results. For the resistivity, there is correlation
between layers 1 and 2 (depth interval 10–
15 m), layers 3 and 4 (depth interval 55–
65 m), and layers 4 and 5 (depth interval
90–100 m). For the water content, there is cor-
relation between layers 2 and 3 (depth interval
20–35 m). The pattern is more ambiguous for
the decay time distribution.

Analysis of MRS transmissivity uncertainty

We used equation 11 to calculate the combined uncertainty per-
taining to the MRS parameters for all soundings. Table 2 summa-
rizes the results. In general, there is a good agreement between the
linear analysis and the nonlinear analysis. The only exception is
Ristrup09, in which the nonlinear analysis estimates a variance
of the MRS parameters that is significantly higher than for the linear
analysis.

Figure 3. Examples of slug test data with fitted type curves. The slug tests were per-
formed in two close boreholes screening the upper (DGU78.779 – 34–37 m below ter-
rain) and the deeper (DGU78.776 – 47–50 m below terrain) part of the aquifer,
respectively (see Figure 6).

Figure 4. Example of data fit with NSMC-analysis and nonlinear inversion (Ristrup09).
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To determine the transmissivity estimates derived from MRS, the
Cp correlation factor must be known. This is estimated by correla-
tion between w � ðT�

2Þ2 � lt and THYD data using equation 14. To
take into account the spatial variability of the aquifer thickness, lo-
cal estimates of THYD have been determined at each MRS sounding
location. For the aquifer test data sets, this was done by calculating
Keff at the pumping well based on the aquifer thickness obtained
from the borehole log, Keff was subsequently used to calculate
THYD at the MRS sites by multiplying Keff with the thickness ob-
tained from the linear analysis of the geophysical data.
Due to the local estimates of Keff obtained from slug test, these

results are only used for correlation to the Ristrup08 results (at a
distance of 50 m). The slug-test transmissivity values were deter-
mined by multiplying the hydraulic conductivity estimates with the
thickness of the aquifer estimated (see Figure 6). For aquifer 1, this
was determined based on the borehole information. For aquifer 2,
the thickness was determined from the joint geophysical inversion
because the borehole does not penetrate to the bottom of the aquifer.
Figure 7 shows the estimated transmissivities with corresponding

uncertainties. There is a general good agreement between the trans-
missivities estimated by two methods, and only for Ristrup10 and
Ristrup08 one or both of their 95% confidence intervals do not con-
tain the identity line with their uncertainties. Based on the correla-
tion, it can be seen that soundings with a combination of low
uncertainty for the MRS results and the hydraulic test results have
a high weight in the determination of Cp (seen by the closeness of
Ristrup05 and Ristrup06 to the identity line in Figure 7). Only in
one case, the estimate TMRS has lower uncertainty than the corre-
sponding estimate THYD (Ristrup10). This can happen when THYD

has high uncertainty whereas the estimated MRS parameters have
low uncertainty. However, this is limited by the availability of hy-
draulic data with low uncertainty elsewhere in the data set, which
can be used to reduce the uncertainty of the estimated Cp factor. The

figure also shows estimated Cp factors with pertaining uncer-
tainties.
Figure 8 shows the estimated transmissivities with pertaining un-

certainties under the assumption that parameter correlation can be
ignored. In general, an increase in uncertainty can be observed, as
expected. However, the degree of increase is quite variable, and for
some soundings, there appears to be no effect from parameter cor-
relation. This can be exemplified by comparing the linear estimates
obtained from Ristrup06 and Ristrup09. The correlation matrix (not
shown) from Ristrup06 indicates high parameter correlation among
layer thickness, water content, and decay time for the aquifer. This
means that these parameters cannot be determined independently
and ignoring the parameter correlation increases the uncertainty
of the estimated transmissivity significantly. The corresponding cor-
relation matrix for Ristrup09 shows only limited correlation be-
tween the same parameters for the aquifer, and excluding the
covariance from the analysis has limited effect on the estimated un-
certainty of TMRS.

DISCUSSION

Having a well-defined methodology to estimate uncertainties of
MRS-derived transmissivities is important for the further usage of
MRS in hydrological modeling. When such estimates are available,
prior information on transmissivities from MRS can be properly
weighted in hydrological model calibration or prediction uncer-
tainty analysis in a similar fashion as often used for hydrological
data (e.g., hydraulic heads and stream flows). We have therefore
suggested application of a data-driven methodology to estimate un-
certainties of MRS-derived transmissivities. Contrary to previously
used and published methods, this methodology takes into account
uncertainties related to the geophysical and the hydrological data
sets and how the uncertainties propagate through the chosen petro-

Figure 5. Parameter estimation obtained from MRS and TEM at
Ristrup09, The plotted NSMC curves are for behavioral models re-
sulting in objective function values less than 322.

Figure 6. Parameter realizations for two aquifers system
(Ristrup08).
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physical relation. Using the proposed methodology for our field
study, we find that in most cases, estimates of transmissivity ob-
tained from MRS will have a higher uncertainty than the corre-
sponding hydraulically estimated transmissivities. Based on the
analysis of equations 10 to 13, this is a logical consequence because
the uncertainty of the hydrological data set propagates through cal-
ibration of the correlation factor in the petrophysical relation. How-
ever, in cases where multiple hydraulic data sets are used and where
some are associated with low uncertainty and others with high un-
certainty, the estimated uncertainty of the Cp parameter may be low.
Combining a well-estimated Cp, parameter with MRS parameters
with similar low uncertainty will thereby result in low uncertainty of
the derived TMRS. If the sounding resulting in such a TMRS estimate
is located close to hydraulic data set of high uncertainty, the uncer-
tainty of TMRS may be the smallest. Such a special case was present
for a single sounding in our field case, and the results can be seen
from Figure 7. However, in the general case with uniform uncer-
tainty on THYD, the uncertainty of TMRS will always exceed the cor-
responding THYD uncertainties due to the uncertainty of the
geophysical parameters as well as of the correlation factor.
We have suggested a methodology to estimate the uncertainty of

the Cp parameter. However, the literature contains multiple refer-
ences to studies where these correlation factors have been estimated
for different types of lithology (e.g., Legchenko et al., 2002; Vouil-
lamoz et al., 2007; Mohnke and Yaramanci, 2008; Plata and Rubio,
2008; Ryom Nielsen et al., 2011). Provided reasonable uncertainty
estimates of these factors for various types of deposits can be esti-
mated, they can be used in combination with equation 10 in areas
with no or limited hydrological data. Without having made the
analysis, it is though our expectation that this will result in Cp fac-
tors with high uncertainty that will propagate through to the esti-
mated TMRS. This may however change in the future with
increasing experience on the ranges of the Cp factor.
To take into account the effect of parameter correlations in the

analysis, the full covariance matrix of the joint TEM and MRS in-
version problem needs to be estimated. This is needed due to the
complex parameter correlation pattern observed in the present
analysis. Parameters can thereby be correlated with layer thick-

nesses (in cases where TEM cannot resolve the layer boundaries)
and to parameters pertaining to layers below and above the target
aquifer. This means that the effect of disregarding parameter corre-
lation will be different depending on the local geologic structure. In
some cases, ignoring parameter correlation will increase the uncer-
tainty of the derived transmissivities significantly, making the esti-
mate conservative, whereas in other cases (in which parameter
correlations are less profound), the effect will be negligible.
For the field case studied here, we find that the linear and a non-

linear estimates of the parameter variance/covariance matrix are
similar, thereby resulting in similar uncertainty estimates for the de-
rived TMRS. Due to the linearity of the MRS forward problem, we
expect this to be similar for other field sites; however, our basis for
this argument is small given our limited data set. We therefore ad-
vocate for making further analysis of the contribution to parameter
uncertainty from nonlinear analysis, e.g., based on a full MCMC

Table 2. Results from the uncertainty analysis of the MRS parameters comparing the linear and nonlinear analyses. The second
and fifth columns show the product of the terms pertaining to the geophysical parameters (from the linear and nonlinear
analyses, respectively). The third and sixth columns show the variance of the products in which covariance is included into the
analysis, and the fourth and seventh columns show the variance of the product if covariance is ignored.

Sounding/hyd. data set

Linear analysis Nonlinear analysis

w � ðT�
2Þ2 � lt

With
covariance
varðlogðw�
ðT�

2Þ2 � lÞÞ

Without
covariance
varðlogðw�
ðT�

2Þ2 � lÞÞ
meanðw�
ðT�

2Þ2 � lÞ

With
covariance
varðlogðw�
ðT�

2Þ2 � lÞÞ

Without
covariance
varðlogðw�
ðT�

2Þ2 � lÞÞ
Ristrup05/DGU78.343 0.338 5.9E − 04 1.3E − 03 0.328 3.0E − 03 1.0E − 02

Ristrup06/DGU78.343 0.210 1.9E − 03 2.6E − 02 0.223 5.0E − 03 3.0E − 02

Ristrup08 Upper/
DGU78.779

0.031 1.1E − 02 2.1E − 02 0.035 8.3E − 03 2.2E − 02

Ristrup08 Lower/
DGU78.776

0.015 1.1E − 01 6.2E − 02 0.013 1.8E − 01 1.3E − 01

Ristrup09/DGU78.860 0.159 7.1E − 03 9.0E − 03 0.118 5.1E − 02 5.1E − 02

Ristrup10/DGU78.860 0.074 9.7E − 04 2.9E − 03 0.064 2.4E − 03 4.2E − 03

Figure 7. Transmissivity estimates with uncertainties (95% confi-
dence intervals). Estimated Cp values are shown with upper and
lower 95% confidence intervals given in the parenthesis.
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analysis. Should future analysis of the uncertainty show that linear
and nonlinear uncertainty estimates are similar, the uncertainty es-
timation method presented would benefit by making it much more
computational efficient, due to the limited computational effort
needed to estimate the linear estimate of the parameter covariance
matrix.

CONCLUSION

In this study, we have proposed an equation that can be used for
estimating the uncertainty of MRS estimated transmissivities
(TMRS). The estimate takes into account important factors such
as input parameter uncertainty and parameter correlations. These
input parameters originate from analysis of geophysical and hydro-
logical data that have an inherent uncertainty. This uncertainty
needs to be propagated through the petrophysical relation to
produce a reliable uncertainty estimate for TMRS. Because the pet-
rophysical relation needs to be calibrated to transmissivities (THYD)
estimated from available uncertain hydrological data sets, this will
in most cases result in higher uncertainty for TMRS than for the cor-
responding THYD.
We have also compared the uncertainty estimates of the geo-

physical parameters by performing a linear and a nonlinear uncer-
tainty analyses. In this study, we found that the parameter
uncertainty obtained by the nonlinear analysis was slightly higher
than that obtained by the linear analysis. However, due to our lim-
ited data set, it is difficult to draw any general conclusions and we
advocate for further analysis of this problem.
Based on crosscorrelation between TMRS and THYD, we have pro-

posed a method to estimate the uncertainty of the correlation factor
in the petrophysical relation. This methodology takes into account
that that the input can have variable uncertainty and that the largest
weight should therefore be given to data with the least uncertainty.
Other methods to estimate the correlation factor exist, and the lit-
erature holds multiple references. In areas with limited hydrological
data, it is therefore expected that TMRS can be estimated using these
literature values as long as the uncertainty is propagated correctly

through the petrophysical relation, by adding the corresponding un-
certainty to the correlation factor and by using the equations derived
in the present study.
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