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A B S T R A C T
Conventional regularized nonlinear inversion methods for estimating electrical conductivity
from observed electromagnetic data seek to find a single model that fits the data while mini-
mizing a user-imposed model regularization norm. By contrast, Bayesian sampling techniques
produce a large suite of models, all of which fit the data adequately, providing a wealth of
statistical information about the model parameters. Importantly, this includes quantitative un-
certainty estimates as well as any statistical property of interest. In this work, we apply a
Bayesian trans-dimensional Markov chain Monte Carlo scheme to recover subsurface con-
ductivity from airborne transient electromagnetic (TEM) data collected over Taylor Glacier,
Antarctica, to image subglacial hydrologic structure. We provide a synthetic model study, fol-
lowed by inversions of real soundings. Our results identify a zone of conductive, wet sediments
beneath the glacier, corroborating interpretations from previous studies that used regularized,
smooth inversions. Our results provide, however, the opportunity to examine a rich suite of
additional information, including uncertainty estimates on the conductivity within the con-
ductive subglacial layer as well as quantitative estimates of its total conductance. We apply
principles of Bayesian information theory for estimating the depth of investigation of the air-
borne TEM data and apply it to this data set. Additionally, we use the model ensemble to derive
estimates of pore fluid resistivity within the conductive layer, with associated uncertainties.
Finally, we use Bayesian model studies to explore the range of ice thicknesses and conductive
layer thicknesses that could be resolved with ground or airborne TEM data if they had one to
two orders of magnitude lower noise levels.

Key words: Antarctica.; Inversion; Electromagnetic induction; Statistical methods; Hydrol-
ogy.

1 I N T RO D U C T I O N

Electromagnetic (EM) methods use passive or active source EM
fields to probe subsurface conductivity structure. Depending on the
frequency content of the source fields, the depth of investigation
(DOI) can range from hundreds of kilometres to just a few metres.

The past two decades have seen rapid advances in airborne sys-
tems. Both frequency domain and transient systems have been de-
veloped with a wide range of applications, including ground water
mapping (e.g. Siemon et al. 2009) and mineral exploration (e.g.
Fountain et al. 2005).

Helicopter transient electromagnetic (TEM) systems consist pri-
marily of a large wire loop slung beneath the helicopter in which
a current is pulsed at regular intervals. The primary magnetic field

produced by this current induces secondary EM fields whose rate of
decay is a nonlinear function of the local subsurface conductivity.
These secondary EM fields are measured using a magnetic field re-
ceiver also towed beneath the helicopter. Because the strength and
duration of the secondary magnetic field depends on the currents
induced in the subsurface, the TEM method is primarily sensitive
to subsurface conductive rather than resistive structures.

These systems have a number of desirable features, including the
ability to collect data with a dense spatial sampling within a rel-
atively short acquisition time frame and nominal depth sensitivity
of more than 400 m, depending on conductivity structure (Legault
2015; Sørensen & Auken 2004). In addition, having the transmit-
ter and receiver collocated makes the data more suitable for 1-D
modelling than long-offset soundings.

C© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1919

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/214/3/1919/5043225 by Aarhus U

niversity Library user on 08 D
ecem

ber 2018

mailto:daniel.blatter@columbia.edu


1920 D. Blatter et al.

The measured fields must be inverted to recover an estimate of
subsurface conductivity. The standard inversion technique for TEM
data, as well as EM geophysical data in general, relies upon an ob-
jective function that is typically the sum of the data misfit between
measured and forward modelled data, and a regularization penalty
against model roughness and/or difference from a reference model.
Gradients in the objective function are then used to attempt to dis-
cover the model that minimizes this function. An efficient approach
is to invert each airborne TEM sounding separately for a 1-D Earth
model, where the 1-D approximation is justified by the relatively
narrow sensitivity footprint of the collocated TEM transmitter and
receiver system, compared to typical lateral variability of subsurface
structures. However, in regions of high spatial heterogeneity, the 1-D
assumption breaks down. The resulting 1-D models can be stitched
together to form 2-D or 3-D images. Auken & Christiansen (2004)
extend this approach to quasi-2-D models by including smoothness
constraints not only with depth but also laterally along the flight
path of the helicopter. Viezzoli et al. (2008) produce quasi-3-D
models by adding smoothness constraints between all neighbouring
1-D models in any horizontal direction. More physically rigorous
3-D modelling (Newman & Alumbaugh 1995) and inversion (Cox
et al. 2012) algorithms have also been developed and applied to
field data (Yang & Oldenburg 2012). In all of these approaches, the
inversion is run until it produces a model that fits the data to within
a user specified tolerance—ideally to within the data uncertainty.
Other nearby models can also be found by adjusting the data fit tol-
erance or by adjusting the relative weighting of the model roughness
norm, which results in finding one or more additional models that
are usually in a neighbourhood of the original best fitting model.

What these methods leave unaddressed is the uncertainty in
the estimated model parameters. Most nonlinear inverse problems
are non-unique—meaning that, depending on how one chooses to
parametrize the Earth’s conductivity structure, an infinite number
of models may adequately explain the measured data. In fact, reg-
ularization must be introduced in the formulation of the objective
function precisely to constrain this non-uniqueness and allow the
inverse algorithm to converge to a solution. However, it is often
the case that estimating parameter uncertainty and/or model non-
uniqueness is as important as estimating the parameter values them-
selves. If, for instance, a geologic interface characterized by strong
conductivity contrasts is known to exist at some depth in the sub-
surface, one might wish to know the range of depths this interface
can span while fitting the data to within its uncertainty. Also of
interest in EM induction methods is an estimate of the DOI—the
maximum depth in the Earth at which the data are still sensitive
to the electrical conductivity structure. Approximate methods for
estimating the DOI include using a half-space skin depth or the
Jacobian sensitivity matrix (e.g. Christiansen & Auken 2012), yet
these fail to take into account the nonlinear sensitivity of the DOI
to conductivity structure.

Bayesian sampling-based inverse methods are a class of algo-
rithms that provide an estimate of model parameter uncertainty by
generating an ensemble of models—each of which fits the data,
and from which statistical properties of the model parameters can
be inferred (Mosegaard & Tarantola 1995). They do not require
linearization, nor do they require regularization, and they provide a
more robust measure of the DOI. These benefits come at the price of
significant, additional computational cost. In this work, we sample
the Bayesian posterior probability density function from TEM data
using a Markov chain Monte Carlo (MCMC) method based on the
Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings
1970).

2 M O D E L PA R A M E T R I Z AT I O N A N D
F O RWA R D C A L C U L AT I O N S

Motivated by the reasonableness of the 1-D assumption for this ap-
plication and the high computational cost of MCMC, we choose
a 1-D parametrization of the Earth such that our model con-
sists of k layer interfaces and k + 1 layers, each with an asso-
ciated electrical resistivity. The model, then, consists of k inter-
face depths z = [z1, z2, ...zk] and k + 1 layer resistivities ρ =
[log(ρ1), log(ρ2), ...log(ρk), log(ρk+1)]. The last layer is assumed
to be a semi-infinite half-space.

The vertical magnetic field Bz(t) produced by the combined ef-
fects of the loop source and the resulting ground response is cal-
culated by computing the path integral of point horizontal electric
dipoles distributed over the eight wire segments of the octagonal
transmitter loop. The point dipole fields were first computed in the
frequency domain using a variant of the 1-D code described by Key
(2009) and were subsequently transformed to the time domain us-
ing the digital filter method (e.g. Newman et al. 1986; Key 2012).
The path integrals were efficiently computed using Gauss-Legendre
quadrature. Because the current in the transmitter loop cannot be
switched instantaneously, it is also necessary to model correctly
the finite duration of the ramp-on and ramp-off in the transmitter
current, which for the particular TEM system considered here were
8 × 10−4 and 6.5 × 10−6s, respectively. Here we use the efficient
convolution method of Fitterman & Anderson (1987) to simulate
the ramp-on and -off effects. The data was modelled at time gates
of roughly 10−5 to 10−2 s, depending on the system noise. All re-
sponses are normalized by the transmitter moment, which is the
product of the loop area (499 m2) and the current (500 A).

3 B AY E S I A N I N V E R S I O N F R A M E W O R K

Bayesian probability describes how additional information (pro-
vided by measured data) modifies a priori assumptions to generate
a posteriori probabilities. For an accessible discussion, see Scales
& Snieder (1997). Bayesian information is summarized in Bayes’
rule

p(m|d) ∝ p(d|m)p(m) (1)

where the variables to the left of | are conditional on those to the
right. In other words, p(a|b) is the probability of a given that b is
known. m is a vector of parameters that constitute our model of the
Earth (in our case, k, z and ρ), while d is the vector of observed
data. We will discuss each term in (1) individually.

The p(d|m) term on the right hand side is called the model like-
lihood, and is a measure of data fit. The likelihood is the probability
that the modelled data differ from the measured data purely due to
random measurement error. Details on the specific form of the like-
lihood can be found in Appendix A. The p(m) term on the right hand
side of (1) is the a priori probability density function of the model
parameters, known simply as the prior. It represents all the informa-
tion known and assumptions made about the model—independent
of the measured data.

Finally, the product of the prior and the likelihood yields the a
posteriori probability density function (PDF) of the model param-
eters, known as the posterior and written as p(m|d). Each element,
m, of the model space has an associated probability, conditional on
the measured data. Obtaining a good approximation to the posterior
is the objective of sampling-based Bayesian inverse methods, as
the posterior contains all the information about the model param-
eters provided by the measured data and prior information. If the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/214/3/1919/5043225 by Aarhus U

niversity Library user on 08 D
ecem

ber 2018



Bayesian inversion of Antarctic TEM data 1921

posterior closely resembles the prior, then the data have provided
little new information, while any major differences indicate that
the data have modified our prior assumptions. For nonlinear inverse
problems we must draw samples from the posterior, as its analytical
form is unknown. Once enough samples have been drawn, they can
be used to approximate the posterior PDF.

In the next section we review our Bayesian sampling method:
a trans-dimensional MCMC algorithm using the Metropolis–
Hastings criterion.

3.1 Trans-dimensional MCMC

One algorithm for drawing samples from the posterior that has seen
widespread use across many disciplines due to its efficiency, ro-
bustness, and simplicity is MCMC, which samples the model space
using a kind of guided random walk. The algorithm produces an
ensemble of models that converges to the posterior as the number of
samples in the ensemble grows (for a helpful discussion of MCMC,
see Gilks et al. 1995).

The particular sampling method used here is the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970), in
which the Markov chain (the model ensemble) grows iteratively
by adding a new model to the end of the chain at each step. A pro-
posal model m′ is generated by drawing from a proposal distribution
q(m′|m). The notation for the proposal indicates that this is done by
perturbing the last model in the chain, m, in some way. Then, either
m′ is accepted as the newest member of the chain, or m is retained
(and thus appears in the chain twice in a row). Whether or not m′ is
accepted depends upon the acceptance probability α(m′|m), which
will be discussed shortly.

Green (1995) extended the Metropolis-Hastings algorithm to al-
low the proposed model, m′, to have a different number of model
parameters than the model, m, from which it was derived. This
trans-dimensionality is accomplished by means of the so-called re-
versible jumps and allows the number of model parameters to be it-
self a model parameter. Both the number of layer interfaces and their
depths are variable in our trans-dimensional MCMC algorithm. This
additional flexibility is an advantage in that the appropriate number
of interfaces and their locations are typically not known a priori.
Instead, the trans-dimensional MCMC algorithm allows the infor-
mation provided by the data to drive the choice of k, ρ and z. In this
process, for a given data fit, models with fewer layers are preferred
by our algorithm over models with more parameters due to the nat-
ural parsimony implicit in Bayes’ rule (MacKay 2003; Malinverno
2002). Bayesian parsimony does not guarantee that only the models
with the minimum possible number of interfaces/layers will be ac-
cepted in the model ensemble. Rather, all else being equal, Bayesian
inversion prefers models with fewer parameters. While reversible
jump MCMC technically allows jumps of any size (from k model
parameters to k

′
, where both k and k

′
are arbitrary integers), we

implement here the ‘birth-death’ scheme (Geyer & Moller 1994),
whereby each successive model in the chain may have one more
layer interface, one fewer, or the same number of interfaces.

Trans-dimensional MCMC has been applied successfully to a
wide range of problems in the Earth sciences. In seismology, it has
been applied to acoustic seabed reflectivity (Dettmer et al. 2010),
receiver functions (Agostinetti & Malinverno 2010), microtremor
(Dettmer et al. 2012), surface wave tomography (Saygin et al. 2015;
Galetti et al. 2016) and full waveform inversion (Ray et al. 2016). In
electromagnetics, it has been applied to frequency domain airborne
EM (e.g. Minsley 2011), time domain airborne EM (e.g. Hawkins

et al. 2017; Brodie & Sambridge 2012) and controlled-source elec-
tromagnetics (e.g. Ray & Key 2012; Ray et al. 2014; Gehrmann
et al. 2015); Luo (2010) applied it to gravity data, while Laine &
Tamminen (2008) applied it to modelling atmospheric aerosols.

The acceptance probability, α(m′|m), is the key to ensuring that
the Markov chain converges to the posterior since it draws samples
according to the posterior’s density. Convergence is guaranteed if α

is chosen to be:

α(m′|m) = min[1, likelihood ratio × prior ratio

×proposal ratio × |J |] (2)

= min

[
1,

(
p(d|m′)
p(d|m)

)1/T p(m′)
p(m)

q(m|m′)
q(m′|m)

× |J |
]

.

(3)

The matrix J is the Jacobian of the jump from m to m′ (not to be
confused with the forward sensitivity matrix of partial first deriva-
tives). J in a sense normalizes out the difference in volume between
the spaces inhabited by m and m′. For the types of trans-dimensional
jumps used in this paper, |J| = 1 (Agostinetti & Malinverno 2010),
so this term can be ignored from here on. T is a tempering value ≥1,
explained in detail in the next section. The logic of this definition of
the acceptance probability can be understood intuitively, in the case
where the prior is uniform and the proposal is symmetric, since α

simplifies to just the ratio of the likelihoods. Thus, if the likelihood
(i.e. the data fit) improves by moving from m to m′, then the move
will always be accepted. If the likelihood at m′ is lower than at m,
the move can still be accepted, but with probability equal to the ratio
of the likelihoods (which will be less than one). This will ensure that
the high probability regions of the model space are more densely
sampled than lower probability regions. Further details concerning
the specific form of the proposal and the acceptance probability can
be found in Appendix A.

3.2 Parallel tempering

One limitation of Bayesian sampling methods is the difficulty of
effectively sampling a high dimensional model space in a feasible
amount of time. In order to accelerate convergence of the Markov
chains to the high probability regions of the model space, we im-
plemented a technique known as parallel tempering (PT) (Geyer
1991; Falcioni & Deem 1999) which was first developed for use
in molecular dynamics (Swendsen & Wang 1987) but has more re-
cently been applied to inverse problems in geophysics (e.g. Dosso
et al. 2012; Ray et al. 2013).

The key idea behind PT is the augmentation of the model space
with a new dimension, represented by the variable T. If we define

π (m, T ) = C−1 p(d|m)1/T p(m), (4)

where C is the normalizing constant, then the role of T (or ”temper-
ature”) becomes apparent. For large values of T, the likelihood term
goes to one and π becomes the prior. For T = 1, on the other hand,
π becomes the posterior. For intermediate values, T has the effect
of tempering the impact of the likelihood, thus allowing Markov
chains with temperature T > 1 to sample the model space more
freely because they are more tolerant of models at higher values of
misfit. This permits these warmer chains to escape local maxima (in
terms of posterior probability) and more efficiently and completely
sample the model space.

Of course, the misfit space one wishes to sample is that of T = 1.
The tactic employed in PT, then, is to run multiple chains in parallel
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Figure 1 Model swapping between chains accelerates convergence of un-
tempered (T = 1) Markov chains to the low-misfit regions of model space.
Two chains—at T = 3 (red) and T = 1 (blue)—swap models with probability
α, where Lc and Lh (plotted in blue and red, respectively) are the likelihood
functions for the untempered (cold) and tempered (hot) misfit spaces. The
dots represent the pre-swap state of each, while the crosses represent their
post-swap states. Because the untempered likelihood is extremely low at
mc, the ratio on the right in the swap probability, α, dominates, and a swap
is certain to occur. As a result, the effect of PT is to facilitate swaps that
accelerate the convergence of the colder chains to the lower misfit regions
of model space.

at different temperatures, and to allow them to swap models at each
step. This can be done such that the swapping does not bias the
posterior distribution for the T = 1 chain. Writing the likelihood for
the ith temperature as Li (m) = p(d|m)1/Ti , the swap probability is

αswap(i, j) = 1 ∧
[

Li (m j )

Li (mi )
× L j (mi )

L j (m j )

]
, (5)

with models mi and m j in the ith and jth chains, respectively.
Markov chains exploring the untempered misfit space often find

it difficult to converge from regions of model space that fit the data
moderately well—a root-mean-square (RMS) misfit of, say, 2.0—
to regions that fit the data well (an RMS of roughly 1.0). This is
primarily because, by RMS 2.0, fine-scale changes are needed to
improve the fit to the data, while the perturbations at each step in the
MCMC algorithm are random. Fig. 1 shows how PT is effective at
accelerating untempered chains through this phase of convergence.
In Fig. 1, the untempered likelihood and a tempered likelihood (for
T = 3) are plotted as a function of RMS misfit. The hot chain has
found a model, mh, that fits the data better than the cold chain, at
model state mc (RMS misfits of 1.2 and 2.0, respectively). This
is precisely the scenario where swapping models would accelerate
the convergence of the untempered chain to the regions of high
likelihood. If the two chains propose to swap models, the right-
most ratio of αswap will be very large, guaranteeing a swap so long
as there is some non-trivial overlap between the two likelihood
functions. That is, so long as the left-most ratio of eq. (5), and
on the left in Fig. 1, is not �1. The idea is to construct a ladder
of temperatures such that there is a ‘Goldilocks zone’ of overlap
between each pair of adjacent likelihood functions—not too little
overlap, which makes the likelihood of a swap too low; nor too
much overlap, which renders the adjacent chains largely redundant.
A well-constructed temperature ladder ensures that as the warmer
chains explore the model space, any lower-RMS misfit models they

find will be quickly swapped down the temperature ladder to the
coldest chains.

In summary, PT enhances the robustness and efficiency with
which the T = 1 Markov chain samples the model space, leading to
a better approximation of the posterior distribution in fewer steps.
For a more thorough discussion of PT with numerical examples, see
Sambridge (2013). In Appendix B, we provide a short pseudo-code
that illustrates the flow of the complete algorithm.

4 S Y N T H E T I C E X A M P L E

To demonstrate the efficacy of our MCMC algorithm, we conducted
a synthetic test. Synthetic data were generated by computing the for-
ward response of a three-layer subglacial-conductor model (Fig. 2;
left panel, in blue), then adding random noise. We used a simplified
noise model consisting of 5 per cent relative Gaussian noise applied
to all time gates, plus absolute Gaussian noise at a noise floor equal
to 10−14 V Am−4 (Fig. 2, right panel, in blue). Synthetic data below
the noise floor were removed. The transmitter loop was flown 35 m
above the surface, and the data were normalized by the transmitter
moment.

The upper 150 m of the model are resistive (10 000 ohm m, con-
sistent with a layer of ice), beneath which is a 50 m thick conductive
layer (10 ohm m). The final layer is a resistive (1000 ohm m) half-
space. We also computed the forward response of a background
model which is identical in the upper 150 m, but which transitions
to the 1000 ohm m basement immediately thereafter (shown in red
in both panels of Fig. 2) for comparison. The larger response of the
subglacial conductor model is due to the presence of the conductor,
which sustains larger induced currents than the background model.

We ran the MCMC algorithm with this synthetic data set using
PT with eight chains (three at T = 1, using the temperature ladder
T = [1, 1, 1, 1.15, 1.32, 1.52, 1.74, 2]) for 260 000 iterations. The
total computation consisted then of 2 080 000 (8 × 260 000) forward
computations, all of which were done serially in MATLAB. Each
computation took roughly 0.2 s, for a total computation time of
roughly 5 d. This could be reduced further by a factor of 8 (the
number of chains) by using parallel computing constructs to run the
chains in parallel using 8 processing cores. Further speed ups could
be accomplished by computing each forward model response in
parallel, given the independent linear systems associated with each
frequency and wave-number required by the 1-D TEM calculations.
If both the PT chains and 1-D soundings were computed in parallel,
the algorithm could easily scale to use hundreds of processors and
obtain a significant speedup over the time required for the serial
version we implemented here. Inverting an entire airborne TEM
data set in this way could, in theory, be accomplished rapidly—
albeit requiring significant computational resources.

We verified convergence using plots of RMS misfit and chain
swap rate as a function of model number in the chains (Fig. 3).
We combined the final 200 000 samples (the post-burn-in samples)
from the three T = 1 chains, and computed an estimate of the poste-
rior from this ensemble. The final model ensemble from which the
posterior was estimated, then, contained 600 000 models. Fig. 4(a)
shows the estimate of the posterior probability density function of
resistivity and depth. Warmer colours indicate higher probability
density, while cooler colours indicate lower density. One way of un-
derstanding this kind of plot is to view each horizontal slice across
the plot as the PDF of resistivity at that particular depth. Red lines
indicate the resistivity at which the 5th and 95th percentiles oc-
cur at that depth. The black dashed line indicates the true model.
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Figure 2 A synthetic subglacial-conductor model, representing 150 m of resistive ice (104 ohm m) with a 50 m thick conductive (10 ohm m) wet sediment
channel overlying a half-space (103 ohm m), is plotted in blue on the left panel, and its corresponding forward response, with added noise, is also plotted in
blue on the right panel. For reference, a resistive two-layer background model and its response are similarly plotted in red.

Figure 3 Convergence of Markov chains to high probability (low RMS misfit) region of model space (upper panel), and swap rate among chains (lower panel).
Eight PT chains were run, three at T = 1 (plotted in black). The chains converge rapidly from high misfit, then densely sample the low misfit region. Inset plot
shows convergence to low misfit within the first several thousand steps. The swap rate indicates the temperature ladder is encouraging mixing among the eight
chains.
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Figure 4 Inversion results from a synthetic test. The posterior probability density of resistivity (a) is plotted as a function of depth. Warmer colours indicate
higher probability density. The red lines indicate the 5th and 95th percentiles at each depth—the range of resistivity between them represents the 90 per cent
credible interval. The black dashed line is the true synthetic subglacial-conductor model. The probability density of interfaces as a function of depth (b),
regardless of resistivity contrast, plotted against prior assumptions: a uniform distribution (dashed line). A loss of model resolution is evident below 400 m in
both the resistivity plot, where the 90 per cent credible interval expands to encompass nearly the entire prior range, and the interface probability density plot,
where the probability of an interface becomes uniform. Bayes’ rule is parsimonious, leading the trans-dimensional MCMC algorithm to prefer simpler models
to more complex ones, if both fit the data adequately (c). This is demonstrated in (c), where the difference between the uniform prior on k (the dashed line) and
the posterior on k clearly indicates a preference for smaller k.

Fig. 4(b) is the probability density of interface location as a function
of depth. The dashed line indicates the prior (a uniform distribution
of interfaces).

There are a few points that can be taken from these synthetic
results. First, our MCMC algorithm captures the true model in the
sense that it lies within the 90 per cent credible interval at nearly
all depths. The second, however, is that it does more than simply
recover the true model; it provides uncertainty estimates for resis-
tivity at each depth - estimates that depend on the data, the forward
modelling, and the model parametrization. For instance, Fig. 4 in-
dicates that the airborne TEM method can much more accurately
resolve conductive structures than resistive ones, as indicated by the
much tighter 90 per cent credible interval over the depth range 150–
200 m. This has been known for a long time, but the Bayesian inverse
method quantifies the model uncertainty. Additionally, imaging be-
neath a conductive structure is quite difficult for the TEM method,
as the currents induced in the conductive region rapidly attenuate
the primary magnetic signal and thus greatly reduce signal strength
at greater depth.

A third result, demonstrated by Fig. 4(b), is that the top of a
conductive layer is more sharply resolved than the bottom. This is
likely the result of at least three factors—the tendency, just men-
tioned, of conductive bodies to mask the structures that lie beneath
them; the diminishing resolution with depth; and the well-known
trade-off between the thickness of a layer and its conductivity. For
a buried conductive layer, the TEM method is generally more sen-
sitive to conductance (the product of conductivity and thickness)
than the layer’s conductivity or thickness alone. This is because
thinner, more conductive layers can produce the same TEM signal
as thicker, less conductive layers. In general, the top of a conductive
layer is better resolved than its base. This is evident in Fig. 4(b),

where the peak at 150 m depth is narrower than the shorter, broader
one at 200 m.

Finally, the posterior distribution suggests that these synthetic
TEM data were unable to clearly resolve the resistivity of the ice
or the resistive layer beneath the conductive sediments. The loca-
tion of the 95th percentile near or at the resistive boundary of the
prior indicates that the upper limit on resistivity at these depths is
unknown. The 5th percentile, on the other hand, indicates that both
regions have a lower limit to the resistivity that is compatible with
the data.

5 A P P L I C AT I O N T O F I E L D DATA

Given the success of the synthetic test, we applied our algorithm
to a portion of a TEM data set collected over the McMurdo Dry
Valleys (MDV) in Antarctica. The Dry Valleys are remarkable for
being Antarctica’s largest ice-free zone and have been extensively
studied—most recently as part of a US long-term ecological re-
search program. However, knowledge of the subsurface hydrology
remains incomplete. A drilling program combined with limited seis-
mic and DC resistivity soundings in Taylor Valley, one of the Dry
Valleys, produced an unclear picture as to whether subsurface wa-
ter was extensive throughout the MDV or localized (Cartwright &
Harris 1981; McGinnis & Jensen 1971).

An extensive airborne TEM data set covering most of Taylor Val-
ley and other areas of the MDV was collected in 2011 using the
SkyTEM system (Sørensen & Auken 2004). The data was inverted
using a quasi-3-D, gradient-based inversion (Viezzoli et al. 2008)
with regularization. In this framework, all of the soundings were
inverted together for 3-D models with first difference smoothing in
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the lateral and vertical directions, but all forward modelling was car-
ried out using a 1-D model beneath each sounding location. Using
this inversion method, Foley et al. (2015) found an extensive, con-
ductive feature beneath Taylor Glacier and much of Taylor Valley.
They interpret this result as evidence for a layer of brine-saturated
sediments that could potentially harbour microbial life (Mikucki
et al. 2015).

In order to provide quantitative uncertainty bounds on the elec-
trical resistivity beneath Taylor Valley, we applied our MCMC al-
gorithm to two soundings over Taylor Glacier—one representative
of a thin section of the glacier (sounding A, near the glacier’s ter-
minus), and the other representative of a thick section (sounding
B, some 4 km from the terminus). See (Fig. 5). Each sounding was
inverted separately. The soundings themselves are plotted in Fig. 6,
along with the responses of 50 randomly sampled models from the
ensemble.

Fig. 7 shows the inversion results from the two soundings. Our
results are indeed consistent with the smooth, constrained inver-
sions from Foley et al. (2015), which are plotted in white and fall
almost entirely within the 90 per cent credible zone. The additional
information provided by the full posterior PDF, however, is imme-
diately clear. For instance, the upper 125 m and 250 m of the top and
bottom rows, respectively, of Fig. 7 clearly indicate that the TEM
data collected over Taylor Glacier are unable to resolve resistivities
above 1000 ohm m. Above this resistivity, over the specified depth
range, the left panels of both figures look uniform—indicating that
the data contain no information other than that the model must be
more resistive than 1000 ohm m.

Some of the lessons learned from the synthetic test are notable
here as well, applied to real field data. The top middle panel of Fig. 7
clearly indicates that the top of the conductive brine channel is more
sharply resolved than the bottom. Additionally, the resolution of
model parameters beneath the channel is poor, and rapidly deterio-
rates to zero, indicated by the 90 per cent credible zone expanding
to fill the entire range defined by the prior distribution. In addition,
the low resistivity equivalence (conductivity-thickness trade-off) is
clearly evident in the top left panel of Fig. 7: the wedge-shaped
conductive zone between roughly 150 and 250 m depth shows that
thinner conductive layers are compensated by higher conductivity,
while thicker layers are offset by lower conductivity.

Fig. 7 also reveals the complex, nonlinear relationship between
the depth resolution of airborne TEM data and conductivity struc-
ture. The depth sensitivity estimates of Foley et al. (2015) (indicated
by the black dashed lines in the left panels of Fig. 7) are much shal-
lower for the sounding over thin ice. This is because of the tendency
of conductive layers to mask structures beneath them. Because the
conductive layer is shallower in the top left panel of Fig. 7 than in
the bottom left panel, the estimates of the limit of depth resolution
are correspondingly shallower.

The posterior distribution obtained for the sounding over thicker
ice (sounding B, Fig. 7b) merits further discussion. The bimodal
distribution at 300 m depth seems to indicate that either regime
is likely, possibly because of the inability of the data to determine
the precise depth of the transition from glacier ice (resistive) to
wet sediments (conductive). However, upon further inspection, the
conductive mode at 300 m depth is found to occur only in models
that also possess highly conductive layers below 350 m (<1 ohm m).
Because there is no likely geologic explanation for resistivity this
low in sub-glacial sediments (they are more consistent with a highly
saline lake, such as West Lake Bonney), we interpret these models to
be among those that are mathematically acceptable (they fit the data)
yet geologically unreasonable. The low probability region at 400 m

depth (between 1–10 ohm m) is likely a result of the competition
between the geologically reasonable and unreasonable models.

One strength of Bayesian inversion is that, once the model en-
semble is obtained, it can be queried for information at relatively
minimal computational cost. In this case, geologically unreason-
able models could be identified using some criterion and excluded
when estimating the posterior. This could have the desirable effect
of tightening the bounds of the posterior distribution further.

In Fig. 8, we show an example where we selected the subset of
models for sounding B that have resistivity greater than 500 ohm
m in the upper 350 m, and thus are compatible with the radar-
determined ice thickness (Hubbard et al. 2004). By ruling out mod-
els that have conductive layers within the depth range of the glacier,
we now see a significantly improved resolution of the lower limit
on the resistivity of the subglacial sediments and deeper structure.
Whereas the previous result had the lower limit unbounded be-
neath 350 m, the new result suggests resistivity beneath the glacier
is at least a few ohm m. In the remaining sections the full, un-
constrained model ensemble was used in order to demonstrate the
fundamental resolution of airborne TEM data. Improved resolution
could be obtained, however, if independent constraints—such as ice
thickness—are incorporated, as demonstrated in Fig. 8.

5.1 Model resolution and depth of investigation

A comparison of the top and bottom rows of Fig. 7 reveals the effect
of increasing depth on the resolving power of TEM data. That
resolution should decrease with depth is not surprising, given the
diffusive nature of the TEM method. But it prompts the important
question of how deep one can resolve electrical conductivity using
airborne TEM. Often referred to as the DOI, this question seeks the
depth below which the data are no longer sensitive to changes in the
model. A first-order method for depth sensitivity estimation is the
skin-depth, which is the depth at which the primary signal has been
attenuated to 1/e of its original strength. However, the skin-depth
assumes a conductive whole space and does not take into account
the nonlinear effects of conductivity structure or the uncertainty of
the data.

A more sophisticated approach that is in common use is to com-
pute a Jacobian sensitivity matrix (the matrix of partial first deriva-
tives of the data with respect to the model parameters) and use the
norm of each column of the matrix as a measure of the sensitivity
of the data to the corresponding model parameter (Christiansen &
Auken 2012). While the sensitivity of airborne TEM data clearly
decays in a continuous fashion (rather than abruptly, at the DOI), the
point at which the sensitivity measure falls below a certain threshold
can be used as a rough guide to where the model can no longer be
trusted.

This method of measuring DOI is a good choice for inverse meth-
ods that produce only one best-fit model. Its weakness, however, is
that it is a linearization about only one model. It is conceivable that
this DOI measure could be substantially different for other models
that fit the data equally well. Additionally, if the data dependence on
the model parameters is highly nonlinear about the chosen model
(e.g. models with complicated structure or large trade-offs), this
DOI estimate may not be accurate.

Having access to the full posterior PDF allows a more complete
answer to the question: how much can I trust my model as a function
of depth? The complete answer is contained in the posterior—that
is, the shape of the posterior will indicate precisely how well the
data are able to resolve each portion of the model. Areas where the
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1926 D. Blatter et al.

Figure 5 Map of Taylor Glacier, at the head of Taylor Valley, Antarctica. Soundings measured during the survey are marked in pink. Soundings we inverted
using our MCMC algorithm in this study are marked in blue (A, over relatively thin ice) and orange (B, over relatively thicker ice).

Figure 6 Field data, plotted as red circles, from soundings A (left) and B (right). The responses of 50 models chosen at random from the model ensemble are
plotted in grey.

data provide minimal illumination will closely resemble the prior
distribution and our prior assumptions about the model will remain
unchanged. On the other hand, areas where the data illuminate the
model should reveal marked differences from the prior. For example,
the bottom left panel of Fig. 7 below 500 m looks scarcely different
from a uniform distribution (our prior assumption), indicating that
the data are incapable of resolving the model parameters at these
depths. By contrast, the top left panel of Fig. 7 at a depth of about
175 m is focused and, by any measure, very dissimilar to a uniform
distribution. In other cases, the posterior may look quite different
from the prior and yet be poorly resolved—for example, the bottom
left panel of Fig. 7 at a depth of 300 m, which is bimodal.

While the most complete picture is the posterior itself, it is oc-
casionally useful to summarize the information it contains more
concisely. One such concise estimate of the DOI derived from the
posterior is the Kullback–Leibler (KL) divergence, which is a mea-
sure of the relative entropy of two distributions.

Entropy is a measure of randomness and can be used to quantify
the information content of a distribution. For a discrete distribution,
it is defined as (MacKay 2003)

H (P) = −
∑

i

P(xi )logP(xi ) (6)

where the above is defined at P(xi) = 0 since limP→0+ P log(P) = 0.
To understand the connection with information, consider the case

of a discrete uniform distribution with probability UN = 1
N . The

entropy of this distribution is

H (UN ) = −
N∑

i=1

1

N
log

1

N
(7)

= log N . (8)

The larger N, the wider UN’s bounds and the less information it
contains—or, in other words, the larger its entropy, which grows per
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Bayesian inversion of Antarctic TEM data 1927

Figure 7 Inverted results for a sounding near the terminus of Taylor Glacier (a), and a sounding 4 km further up the glacier (b). For a description of each panel,
see Fig. 4. The black dashed lines in the left panels are two linearized estimates of the limit of the data’s depth sensitivity to the model (Christiansen & Auken
2012). The white dashed lines indicate our estimate of the ice thickness, using the posterior. The solid white lines show the regularized inversion result of Foley
et al. (2015) at the respective locations. The black line is the median of the distribution at each depth. The wedge-shaped region between 150 and 250 m depth
in the resistivity distribution of the thin ice sounding (a) reveals the trade-off between conductivity and layer thickness. In the thin ice sounding, the upper
boundary of the conductive feature is more sharply resolved than the bottom. The depth sensitivity estimates for the thick ice sounding are much deeper than
for the thin ice sounding, indicating that depth sensitivity of TEM data is a complex, nonlinear function of conductivity structure.

Equation 8 as the log of N. The KL divergence measures the relative
entropy of two distributions and is defined, for discrete distributions,
as (MacKay 2003)

DKL(P||Q) =
∑

i

P(xi ) log
P(xi )

Q(xi )
. (9)

In a Bayesian context, Q and P in eq. (9) represent the prior and
posterior, respectively. The posterior differs from the prior due to
the additional information contained in the data. The KL divergence
measures this information gain. To see how this is so, consider again
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1928 D. Blatter et al.

Figure 8 Inverted results for sounding B using only those models from the full ensemble whose resistivity was compatible with that of glacial ice (>500
ohm m) above 350 m, the depth to the glacier bottom (determined from radar soundings). Compare with Fig. 7(b). Note the lower limit, indicated by the 5th
percentile, on the electrical resistivity in the subglacial sediments, which was unbounded when the full model ensemble was used to estimate the posterior.
Also note that the conductivity in the region of the wet, conductive sediments now has the same wedge-like shape as Fig. 7(a).

a uniform prior, Q = UN. The KL divergence of P and Q is then

DKL(P||Q) =
N∑

i=1

P(xi ) log
P(xi )

Q(xi )

=
N∑

i=1

P(xi ) logP(xi ) −
N∑

i=1

P(xi ) logQ(xi )

=
N∑

i=1

P(xi ) logP(xi ) − log
1

N

N∑
i=1

P(xi )

= −H (P) − log
1

N
= H (UN ) − H (P).

By rewriting eq. (9) in terms of entropy, the connection to infor-
mation gain is apparent: in a Bayesian context, the KL divergence
represents the entropy loss (or conversely, the information gain) in
going from the uniform prior to the posterior. Put another way, it
measures the information the data have added to our prior knowl-
edge.

We computed the KL divergence at each depth for the two sound-
ings of Fig. 7 to investigate their depth sensitivity. Fig. 9 shows the
KL divergence as a function of depth for these two soundings,
plotted next to their resistivity PDFs. Over the depth range of the
conductive sediments, the KL divergence of the sounding over thin
ice shows a strong increase against a background of decreasing re-
sistivity with depth. The KL divergence of the sounding over thick
ice shows the same drop off with depth, but the signal indicating the
presence of the conductive layer, while noticeable, is much weaker
since it occurs 200 m deeper.

5.2 Mining the ensemble for information

The Bayesian method is highly versatile: once the model ensem-
ble has been obtained, extracting information from it becomes a
matter of data mining. For instance, the sensitivity of the airborne
TEM method to conductance can be quantitatively measured from

the ensemble. This is feasible mostly for a buried conductor in
a relatively uniform resistive background. For each sounding, we
selected a depth range over which the posterior indicated low resis-
tivity consistent with the presence of a conductive channel (more
conductive than expected for background rock or overlying ice).
For sounding A, the depth range used was 140–225 m; for sounding
B, 345–445 m. We then calculated the conductance of each model
in the ensemble by integrating conductivity over that depth range.
Histograms of conductance, computed as described, for the two
soundings are shown in Fig. 10. While this is a somewhat subjective
process, we found that adjusting the intervals slightly had only a
minor effect on the conductance histograms.

Most of the signal in the histogram for the thin ice sounding is
concentrated in a peak around about 1.8 S (Siemens) that spans
only 2 S in width, while the upper left panel of Fig. 7 shows that
resistivity over the same depth range spans roughly two orders of
magnitude. Meanwhile, the sounding over the thick ice indicates a
similar peak in conductance at about 2 S, but reveals much greater
uncertainty due to the conductive layer’s greater depth. The useful-
ness of quantifying conductance is especially apparent when com-
paring Fig. 10 with the resistivity PDF of the sounding over thick ice
(lower left panel of Fig. 7). The 90 per cent credible interval spans
nearly 5 orders of magnitude of resistivity, yet the conductance his-
togram for this sounding yields a clear peak at the same value as the
sounding over thin ice, suggesting that, despite the diminished res-
olution, the data are detecting the same conductive channel in both
soundings.

In the course of interpreting inversion results, one is often in-
terested in variables other than, but related to, those estimated in
the model. For instance, a scientist interpreting inverted models of
electrical conductivity might be interested, depending on the survey
region, in deriving pore fluid salinity, the porosity of sediments, par-
tial melt fraction, or estimating net hydrocarbons. Using standard
inversion techniques, an interpreter is obligated to rely on a single
model estimate, without associated uncertainties, to infer the value
of the desired property. Access to the full posterior and a function
relating the model variable to the desired quantity make it possible
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Bayesian inversion of Antarctic TEM data 1929

Figure 9 Resistivity PDFs (left column) and Kullback–Leibler (KL) divergences (right column) for a sounding over thin ice (top row) and thick ice (bottom
row). The axis along the top of plots in the column on the right is the unnormalized KL divergence, while the axis along the bottom of each plot is the KL
divergence, normalized to the maximum for that particular sounding. The large peak in KL divergence in the upper right panel against a steady decline with
depth indicates that the data have clearly resolved the conductive channel. By contrast, the small peak at 400 m depth in the lower right panel suggests that the
conductive channel is much less well resolved in the sounding over thick ice.
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1930 D. Blatter et al.

Figure 10 Conductance histograms for the thin ice (blue) and thick ice (orange) soundings. The distribution of the thin ice sounding is concentrated over a
range of only 2 S, whereas its resistivity is distributed over nearly two orders of magnitude (see Fig. 7). Despite the much greater spread due to diminished data
sensitivity at depth, the thick ice sounding features a sharp peak at the same value as the thin ice sounding.

Figure 11 Histograms of pore fluid resistivity, ρw, in the conductive sediments beneath Taylor Glacier obtained from Archie’s Law assuming φ = 10 per cent
and m = 2. The bulk resistivity values, ρ, were obtained from the model ensemble. While the sounding over thin ice is sharply peaked, the sounding over thick
ice yields a broader distribution, indicating decreasing resolution with depth. Despite this, the mode of both distributions is nearly identical.

to produce an entire estimated PDF of these derived quantities of
interest, rather than just one plausible value.

To illustrate the utility of Bayesian inversion in estimating related
parameters, we used Archie’s Law (Archie 1942)

ρ = ρwφ−m, (10)

where ρ is electrical resistivity, ρw is pore fluid resistivity, φ is
porosity, and m is an empirically derived constant with a typical
value of 2. For a given sounding, we selected a depth, zbrine, con-
sistent with the centre of the conductive channel, using both the
resistivity PDF and interface PDF as guides. In particular, we chose
the depth of zbrine to capture the widest possible variation in resis-
tivity. In practice, this meant choosing zbrine to correspond with the
thickest portion of the conductivity-thickness trade-off wedge. For
sounding A, this was chosen to be 175 m; for sounding B, 400 m.
Then, for each model in the ensemble, we compute the pore fluid
resistivity, using Archie’s Law, assuming a porosity of 10 per cent

and m = 2, and the bulk resistivity of the model at zbrine. We then
produced a histogram of pore fluid resistivity at that depth, using
the values computed from the model ensemble.

We followed this procedure for the thin ice and thick ice sound-
ings. The results, shown in Fig. 11, quantitatively show the di-
minishing resolution with increased ice thickness (i.e. depth to the
conductor). For example, the inter-quartile range (50 per cent cred-
ible interval) for the thin ice sounding gives a likely range of 0.25
to 0.42 ohm m, with a median value of 0.32 ohm m. The thick ice
sounding, by contrast, yields a likely range of 0.03 to 5.0 ohm m,
with a median value of 0.43 ohm m, reflecting the much greater
uncertainty inherent in trying to image a deep target. Despite the
greater uncertainty, the median value is nearly the same between
the two soundings, potentially giving rise to a false sense of cer-
tainty about the value of pore fluid resistivity from the thick ice
sounding if only one estimate were available. The uncertainty in-
formation contained in these histograms might be of use to, say, a
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Bayesian inversion of Antarctic TEM data 1931

Figure 12 Depth test (i.e. how deep can TEM see?). Columns represent 10−14 V Am−4 (left), 10−15 V Am−4 (centre-left), 10−16 V Am−4 (centre-right) and
the KL divergence for each noise floor (right). Rows represent depth: z = 500 m (top), z = 750 m (centre), z = 1000 m (bottom).

microbiologist seeking to understand and constrain the range of
environmental conditions that could exist within the brine layer.
Given the assumed 10 per cent porosity, the median value of pore
fluid resistivity is consistent with that of seawater at 1 oC (0.3 ohm
m). Taylor Valley was once covered by oceans, suggesting that the
fluid filling the pore space of the sediments beneath the valley today
might be ancient seawater.

6 F E A S I B I L I T Y O F D E E P E R I M A G I N G

As evidenced by Fig. 9, the ability of the data to resolve the con-
ductive channel beneath Taylor Glacier diminishes as the thickness

of the glacier increases. Because measurement error is a source
of model parameter uncertainty, it might be possible to increase
model resolution at depth by decreasing absolute measurement er-
ror, which would allow for data at later time offsets that provide
increased sensitivity to deeper structure. In the context of TEM,
this could be accomplished by placing the transmitter loop directly
on the ice in lieu of towing it under a helicopter. This sacrifices data
acquisition efficiency, but allows for repeat soundings to be collected
at the same location which can subsequently be stacked to reduce
the effect of measurement error. Of course, as the depth (and lateral)
sensitivity of the data increase, the 1-D assumption will eventually
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1932 D. Blatter et al.

Figure 13 Thickness test (can we see the bottom?). Columns represent N = 1 (left), N = 100 (centre-left), N = 10 000 (centre-right) and the KL divergence
for each N value (right). Rows represent thickness: τ = 50 m (top), τ = 200 m (centre), τ = 400 m (bottom)..

break down. Because they are fundamentally stochastic, Bayesian
sampling methods should be able to quantify this improvement in
resolution capacity, providing valuable insight into trade-offs be-
tween efficiency and resolution that are inherent in experimental
survey design.

To determine what impact a decrease in measurement error would
have on the ability to resolve the conductive channel under greater
ice thicknesses, we conducted a synthetic experiment where the
same conductive layer (50 m thick, 10 ohm m resistivity) was buried
under increasingly thick layers of ice. Additionally, for each depth
of ice (500, 750 and 1000 m), we decreased the noise floor by an
order of magnitude to simulate the power of a larger transmitter
moment (e.g. 75 A in a 100 × 100 m loop), longer data stacking
times, or both. As before, the noise in the synthetic data consisted of

a 5 per cent relative Gaussian error, plus an absolute Gaussian noise
centred at the noise floor, which we lowered from 10−14 V Am−4

(consistent with the airborne TEM data collected in 2011) to 10−16

V Am−4. Synthetic data below the noise floor were discarded.
One additional difference is that the synthetic data with a noise

floor of 10−14 V Am−4 were modelled assuming a transmitter height
of 35 m, typical of airborne TEM surveys, while the synthetic data
with lower noise floors were modelled assuming the transmitter
was located on the surface. The intent was to allow comparison of
airborne TEM to ground based TEM data.

We then inverted each synthetic data set. The results are shown
in Fig. 12. Each row reveals how the decreasing the noise floor
increases the resolving power of the data. Note how a noise floor
of 10−14 V Am−4 is entirely insufficient to resolve the conductive
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Bayesian inversion of Antarctic TEM data 1933

layer buried at any of the depths considered. A noise floor of 10−15

V Am−4, by contrast, is sufficient to partially resolve the layer, but
the data still permit many other models to satisfy the data, com-
plicating interpretation. A noise floor of 10−16 V Am−4, however,
permits an unambiguous interpretation at all three depths, with a
distribution clearly focused and centred on the true model. The KL
divergence indicates that the data contain increasing amounts of
information about the conductive layer as the noise floor decreases.
The highest noise floor registers nothing other than a steady de-
cline in information content with depth for all target depths. The
intermediate noise floor data show a clear spike in information con-
tent regarding the target at 500 m depth, but not at greater depths.
The lowest noise floor, by contrast, shows a clear increase in in-
formation at the appropriate depth for all burial depths shown,
although the signal decreases markedly with increasing burial
depth.

Another interesting question regarding the resolving power of
TEM data with depth is whether the bottom of a conductive layer
can be clearly resolved. Most often, the top of a conductive layer is
better resolved than the bottom, both because of the conductivity-
thickness trade-off and because the conductive layer dissipates the
EM signal more rapidly than the more resistive overburden. The
bottom row of Fig. 9 effectively demonstrates the difficulty: it is
possible that 450 m represents the bottom of the conductive layer,
but the loss of resolution at that same depth—indicated by both
the linearized estimates of DOI and by the KL divergence—renders
interpretation uncertain.

To investigate whether increasing the information content of the
data by lowering the noise floor could resolve this issue, we con-
ducted a second synthetic test. Keeping the top of the conductive
layer fixed at 500 m (with the same 10 ohm m resistivity as be-
fore), we varied the layer’s thickness. We generated synthetic data
using the same procedure as above, dropping the noise floor by an
order of magnitude each time, and inverted each using our MCMC
algorithm.

The results of this synthetic experiment are shown in Fig. 13.
As before, the airborne TEM setup (highest noise floor and 35 m
transmitter height) is unable to resolve any of the three layers, re-
gardless of thickness. If the noise floor is an order of magnitude
lower and the thickness of the conductive layer is 50 m, it is un-
clear whether the bottom of the layer has been identified. Because
TEM data contains little information about deeply buried resistors,
without knowledge of the true model it would be difficult to say
whether the drop in KL divergence at 550 m—the ‘true’ bottom of
the layer—is due to a loss of signal strength or to the transition from
the conductive layer to a more resistive underburden. The posterior
PDF suggests that these two factors are combining to cause a loss of
resolution at the same depth, making it impossible to distinguish be-
tween them or say definitively that the bottom of the layer has been
imaged.

By lowering the noise floor further, this ambiguity is resolved.
Below 550 m, the 5th percentile of the distribution rises above the
resistivity of the conductive layer, indicating that nearly all of the
models below 550 m are too resistive to represent a continuation of
the conductive layer. If the layer thickness is increased to 200 m,
the inverted results are again ambiguous if the noise floor is inter-
mediate: many of the models have the conductive layer continuing
indefinitely, revealing that these models fit the data just as well as
the true model. If the noise floor is decreased further to 10−16 V
Am−4, however, the bottom of the layer is identifiable, using the
5th percentile of the distribution below 700 m—the ‘true’ bottom

of the layer—as evidence. If the layer thickness is further increased
to 400 m, however, information about the depth of the bottom of
the layer is lost, and all three synthetic data sets show ambiguity at
depth.

7 C O N C LU S I O N S

We applied a trans-dimensional MCMC algorithm to provide
Bayesian inference on model parameters estimated from airborne
TEM data. We utilized parallel tempering to accelerate convergence
and improve robustness of the algorithm, and demonstrated its ef-
ficacy on both synthetic TEM data and field data recorded over
the Taylor Glacier in Antarctica. Our estimated resistivity distri-
butions corroborate the results of previous inversions of this data
set using standard, gradient-based techniques. They also provide a
wealth of additional information, including quantitative estimates
of model parameter uncertainty, a statistical approach to DOI esti-
mation derived from the KL divergence, and quantitative estimation
of related subsurface parameters, including conductance and pore
fluid resistivity. This last point is of significance, as it is often the
potential to place constraints on related subsurface parameters that
is of greatest interest to the wider scientific community. The parsi-
monious nature of the trans-dimensional MCMC algorithm means
that the data largely drive the choice of model complexity, implic-
itly preferring simpler models to more complex ones—rather than
placing this decision in the hands of the user. The generality of the
MCMC algorithm means it can be adapted to work with other types
of geophysical data.
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Özmaral, A., 2015. Trans-dimensional Bayesian inversion of controlled-
source electromagnetic data in the German North Sea, Geophys.
Prospect., 63(6), 1314–1333.

Geyer, C.J., 1991. Markov chain Monte Carlo maximum likelihood, in Com-
puting Science and Statistics: Proceedings of the 23rd Symposium on the
Interface, pp. 156–163, eds Keramidas, E.M. & Kaufman, S.M., New
York.

Geyer, C.J. & Moller, J., 1994. Simulation procedures and likeli-
hood inference for spatial point processes, Scand. J. Stat., 21(4),
359–373.

eds Gilks, W.R., Richardson, S. & Spiegelhalter, D., 1995. Markov Chain
Monte Carlo in Practice, CRC Press.

Green, P.J., 1995. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination, Biometrika, 82(4), 711–732.

Hastings, W.K., 1970. Monte Carlo Sampling Methods Using Markov
Chains and Their Applications, Biometrika, 57(1), 97–109.

Hawkins, R., Brodie, R.C. & Sambridge, M., 2017. Trans-dimensional
Bayesian inversion of airborne electromagnetic data for 2D conductiv-
ity profiles, Explor. Geophys., 49(2), 134–147.

Hubbard, A., Lawson, W., Anderson, B., Hubbard, B. & Blatter, H., 2004. Ev-
idence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarc-
tica, Ann. Glaciol., 39, 79–84.

Key, K., 2009. 1D inversion of multicomponent, multifrequency marine
CSEM data: methodology and synthetic studies for resolving thin resistive
layers, Geophysics, 74(2), F9–F20.

Key, K., 2012. Is the fast Hankel transform faster than quadrature?,
Geophysics, 77(3), F21–F30.

Laine, M. & Tamminen, J., 2008. Aerosol model selection and uncertainty
modelling by adaptive MCMC technique, Atmos. Chem. Phys., 8(24),
7697–7707.

Legault, J.M., 2015. Airborne Electromagnetic Systems–State of the Art
and Future Directions, CSEG Recorder, 40, 38–49.

Luo, X., 2010. Constraining the shape of a gravity anomalous body using
reversible jump Markov chain Monte Carlo, Geophys. J. Int., 180(3),
1067–1079.

MacKay, D., 2003. Information Theory, Inference and Learning Algorithms,
Cambridge Univ. Press.

Malinverno, A., 2002. Parsimonious Bayesian Markov chain Monte Carlo
inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3),
675–688.

McGinnis, L.D. & Jensen, T.E., 1971. Permafrost-hydrogeologic regimen
in two ice-free valleys, Antarctica, from electrical depth sounding, Quat.
Res., 1(03), 389–409.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller,
E., 1953. Equation of state calculations by fast computing machines, J.
Chem. Phys., 21(6), 1087–1092.

Mikucki, J.A. et al., 2015. Deep groundwater and potential subsurface habi-
tats beneath an Antarctic dry valley, Nat. Commun., 6, 1–9.

Minsley, B.J., 2011. A trans-dimensional Bayesian Markov chain Monte
Carlo algorithm for model assessment using frequency-domain electro-
magnetic data, Geophys. J. Int., 187(1), 252–272.

Mosegaard, K. & Tarantola, A., 1995. Monte Carlo sampling of solutions to
inverse problems, J. geophys. Res., 100(B7), 12 431–12 447.

Newman, G.A. & Alumbaugh, D.L., 1995. Frequency-domain modelling
of airborne electromagnetic responses using staggered finite differences,
Geophys. Prospect., 43(8), 1021–1042.

Newman, G.A., Hohmann, G.W. & Anderson, W.L., 1986. Transient elec-
tromagnetic response of a three-dimensional body in a layered earth,
Geophysics, 51(8), 1608–1627.

Ray, A. & Key, K., 2012. Bayesian inversion of marine CSEM data with
a trans-dimensional self parametrizing algorithm, Geophys. J. Int., 191,
1135–1151.

Ray, A., Alumbaugh, D.L., Hoversten, G.M. & Key, K., 2013. Robust and ac-
celerated Bayesian inversion of marine controlled-source electromagnetic
data using parallel tempering, Geophysics, 78(6), E271–E280.

Ray, A., Key, K., Bodin, T., Myer, D. & Constable, S., 2014. Bayesian
inversion of marine CSEM data from the Scarborough gas field using
a transdimensional 2-D parametrization, Geophys. J. Int., 199(3), 1847–
1860.

Ray, A., Sekar, A., Hoversten, G.M. & Albertin, U., 2016. Frequency domain
full waveform elastic inversion of marine seismic data from the Alba field
using a Bayesian trans-dimensional algorithm, Geophys. J. Int., 205(2),
915–937.

Sambridge, M., 2013. A Parallel Tempering algorithm for probabilistic sam-
pling and multimodal optimization, Geophys. J. Int., 196(1), 357–374.

Saygin, E. et al., 2015. Imaging architecture of the Jakarta Basin, Indonesia
with transdimensional inversion of seismic noise, Geophys. J. Int., 204(2),
918–931.

Scales, J.A. & Snieder, R., 1997. To Bayes or not to Bayes?, Geophysics,
62(4), 1045–1046.

Siemon, B., Christiansen, A.V. & Auken, E., 2009. A review of helicopter-
borne electromagnetic methods for groundwater exploration, 7(1303),
629–646.

Sørensen, K. & Auken, E., 2004. SkyTEM —a new high-resolution heli-
copter transient electromagnetic system, Explor. Geophys., 35, 194–202.

Steininger, G., Dettmer, J., Dosso, S.E. & Holland, C.W., 2013. Trans-
dimensional joint inversion of seabed scattering and reflection data, J.
acoust. Soc. Am., 133(3), 1347–1357.

Swendsen, R.H. & Wang, J.-S., 1987. Nonuniversal critical dynamics in
Monte Carlo simulations, Phys. Rev. Lett., 58(2), 86–88.

Viezzoli, A., Christiansen, A.V., Auken, E. & Sørensen, K., 2008. Quasi-
3D modeling of airborne TEM data by spatially constrained inversion,
Geophysics, 73(3), F105–F113.

Yang, D. & Oldenburg, D.W., 2012. Three-dimensional inversion of air-
borne time-domain electromagnetic data with applications to a porphyry
deposit, Geophysics, 77(2), B23–B34.

A P P E N D I X A : P RO P O S A L
D I S T R I B U T I O N A N D A C C E P TA N C E
P RO B A B I L I T Y

A1 Initialization

Initializing the trans-dimensional MCMC algorithm is simple. We
select an initial model for the ensemble by setting k = kmin. In our
case, kmin = 1, so our model has one interface and two layers. We
select the interface depth and layer resistivities uniformly within the
prior bounds.

A2 Likelihood

In this section we discuss our choice for the form of the likelihood
function, p(d|m). We use a simple Chi-squared (χ 2) framework
measure of misfit

χ 2 = (d − d̂)C−1
d (d − d̂) (A1)
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where C−1
d is the matrix of data covariances and d̂ is the modelled

data: f (m) = d̂ and f is the forward modelling function. This choice
of misfit corresponds to a Gaussian likelihood function

p(d|m) = exp

(−χ 2

2

)
. (A2)

A3 Prior

In this section we discuss the prior, p(m), in more detail. In principle,
the prior represents all known information about the model that is
independent of the measured data, but in practice this information
must be expressed in terms of a probability distribution. Because
our framework is trans-dimensional—the number of unknowns is
allowed to vary—the prior is actually a function of m and k and can
be written in two parts

p(mk, k) = p(mk |k)p(k) (A3)

where the first term of the right hand side is the prior on m given
a fixed number of layer interfaces, k. The second term on the right
hand side is the prior on the number of interfaces. Since we have
little idea beforehand how many parameters the data will require,
we choose for p(k) a uniform distribution with generous bounds:

p(k) =
{ 1

kmax−kmin+1 if kmin ≤ k ≤ kmax , k ∈ N
0 else.

(A4)

To ensure that kmax and kmin were sufficiently generous, the pos-
terior distribution on k, p(k|d), can be examined after the Bayesian
inversion has run to completion. The overwhelming bulk of the mod-
els should fall away from the edges of the distribution—otherwise,
a wider prior may be needed.

There is some correspondence between the prior and a reference
model used in regularized inversions, if the latter represents a priori
knowledge of the model. The analogy, however, can be misleading.
For instance, while a reference model is used to keep each model
parameter from straying too far from its reference value, a uniform
prior assumes all values are equally likely for each model parameter.

Importantly, the prior is agnostic as to the units of the various
model parameters, which are not required to have the same units—
e.g. interface depth (m) and layer resistivity (ohm m). This is because
the prior for each parameter is expressed as a probability.

The prior on the model, given a fixed number of interfaces (and
hence layers as well), must now be determined. While we expect
some correlation in the posterior distribution between the depths
of layers and their electrical resistivity, we do not know the form
this correlation will take, a priori, so we assume that the prior
distributions on the depths of interfaces and the resistivities of the
layers are independent, enabling us to write

p(mk |k) = p(z|k)p(ρ|k). (A5)

The conditional prior distribution on the layer interface locations,
p(z|k) is determined by first deciding that each of the k layer inter-
faces must lie within a depth range, �z, and that all locations within
that depth range are equally likely to host an interface. Then, we
recognize that p(z|k) is Dirichlet distributed, leading to

p(z|k) =
{ k!

�zk if zmin ≤ zi ≤ zmax ∀i = 1, 2, ...k
0 else.

(A6)

The Dirichlet distribution describes how a unit interval is divided
into k parts, and can be explained fairly simply: given k interfaces,
each distributed independently and uniformly over a depth inter-
val �z, there are k! ways of arranging those interfaces among the

selected depths. This yields eq. (A6). This prior is first used in
Steininger et al. (2013) and derived in detail in Dosso et al. (2014).

No prior knowledge of the resistivity, ρ, is assumed, only that it
must lie in some bounded interval (ρmin, ρmax). Because no known
prior correlation is assumed between the resistivity of the k layers,
the layer properties prior has the simple form

p(ρ|k) =
{ 1

�ρk+1 if ρmin ≤ ρi ≤ ρmax ∀i = 1, 2, ...k + 1

0 else

(A7)

where �ρ = ρmax − ρmin.
Finally, combining eqs (A3)–(A7), we obtain the full prior distri-

bution for k interfaces and k + 1 layers:

p(mk, k) = k!

�k�ρk+1�zk
(A8)

where �k = kmax − kmin + 1.

A4 Proposal distributions and acceptance probabilities

There is significant freedom in the choice of proposal distribution. In
theory, convergence of the Markov chain to the posterior is agnostic
of the choice of q(m

′ |m): the proposal only affects the rate of
convergence, not the guarantee of convergence itself. In practice,
however, computational cost is of paramount concern in Bayesian
methods, so making an effective choice of proposal distribution
is important. In our implementation of trans-dimensional MCMC
there are four ways to perturb the last model in the chain to produce
a proposal model: update, move, birth, and death. These moves are
summarized, along with their proposal distributions and acceptance
probabilities, in the following sections:

(i) A move shifts the location of an interface. The new location is
drawn from a Gaussian distribution centred at the current interface
location. If this new location would place the interface above or
below its nearest neighbours, the resistivity of the affected layers
are treated as if this perturbation were the same as a death followed
by a birth. This perturbation is chosen with probability 6/32.

(ii) An update does not change the dimensionality of the model.
Instead, we perturb the resistivity of each layer about its mean by
drawing from a Gaussian distribution. This kind of perturbation is
chosen with probability 16/32.

(iii) A birth adds a layer interface at a random depth chosen uni-
formly in the interval [zmin zmax]. The resistivity of the new layer
either above or below the new interface is drawn from a Gaus-
sian distribution, centred at the resistivity of the layer prior to the
perturbation. This perturbation is chosen with probability 5/32.

(iv) A death deletes one randomly selected layer interface. The
resistivity of the layer above or below the deleted interface is chosen
and applied to the new, larger layer. This perturbation is chosen also
with probability 5/32 (to ensure births and deaths are equally likely).

The acceptance probability α depends on the proposal ratio (see
eq. 3), not on the proposal directly, so the proposal ratios for each
move must be calculated.

A4.1 Update and move interface

For moves of fixed dimension (the number of model parameters does
not change), such as the update and move interface perturbations,
this is simple. We have chosen symmetric distributions (Gaussian
and uniform) governing these moves, so the move from m to m′
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should be equally as likely as a move from m′ to m. Likewise, the
prior is identical for fixed k (see Equation A8). This leads to a simple
form for the acceptance probability

α(m′|m)fixed dimension = min

[
1 ,

(
p(d|m′)
p(d|m)

)1/T
]

(A9)

which, for T = 1, is simply the ratio of the likelihoods. This, of
course, assumes that all the parameters within m′ fall within the
prior bounds for the allowed depth of interfaces and the bounds on
electrical resistivity.

A4.2 Birth

Because the selection of the new interface location and the selection
of the new resistivity are independent, we can write for the proposal

q(m′|m)birth = 1

�z
√

2πσbirth

exp

[
− (ρ ′ − ρ)2

2σ 2
birth

]
. (A10)

The reverse of a birth (going from m′ to m) is a death. In this case,
there are k + 1 interfaces to choose from (m′ has k + 1 interfaces),
so the proposal ratio for a birth is[

q(m|m′)
q(m′|m)

]
birth

= �z
√

2πσbirth

k + 1
exp

[
(ρ ′ − ρ)2

2σ 2
birth

]
. (A11)

Meanwhile, the prior ratio for a birth is[
p(m′)
p(m)

]
birth

= k + 1

�z�ρ
. (A12)

So the final acceptance probability for a birth is given by

α(m′|m)birth =min

[
1,

(
p(d|m′)
p(d|m)

)1/T √
2πσbirth

�ρ
exp

[
(ρ ′ − ρ)2

2σ 2
birth

]]
.

(A13)

A4.3 Death

A death deletes one randomly selected layer interface. The resistivity
of the layer above or below the deleted interface is randomly chosen
and applied to the new, larger layer. This perturbation is chosen
also with probability 5/32 (to ensure births and deaths are equally
likely).

Since we can remove any of k available layers, the proposal for a
death move is

q(m′|m)death = 1

k
. (A14)

The reverse is a birth move. This means that the proposal ratio
for a death is given by[

q(m|m′)
q(m′|m)

]
death

= k

�z
√

2πσbirth

exp

[
− (ρ ′ − ρ)2

2σ 2
birth

]
. (A15)

Meanwhile, the prior ratio for a death is given by[
p(m′)
p(m)

]
death

= �z�ρ

k
. (A16)

So the final acceptance probability for a death is

α(m′|m)death = min

[
1,

(
p(d|m′)
p(d|m)

)1/T
�ρ√

2πσdeath

× exp

[
− (ρ ′ − ρ)2

2σ 2
death

] ]
(A17)

A P P E N D I X B : T R A N S - D I M E N S I O NA L
M C M C P S E U D O - C O D E

Algorithm 1: Pseudo-code for transdimensional McMC
Bayesian inversion with parallel tempering. αswap(p, q) does
not require any further forward computation to evaluate as like-
lihoods for models in chains p and q have already been com-
puted in the i loop. Note also, that the traditional requirement
of only adjacent chains being allowed to swap has been relaxed,
as detailed in Sambridge (2013).

initialize chains with models x j for all temperatures
j = 1, 2, ..., nT emps
for i ← 1 to nSteps do

for j ← 1 to nT emps do
Select t ype from {rho, move, bir th, death} with
probability { 1

2 , 3
16 , 5

32 , 5
32 }

m ← x j [i − 1]
m ′ ∼ q(m ′|m)t ype

u ∼ U (0, 1)
if u < α j (m ′|m)t ype and p(m ′) > 0 then

x j [i] ← m ′

else
x j [i] ← m

end
end
for j ← 1 to nT emps do

u ∼ U (0, 1)
p ∼ U (1, nT emps), p ∈ I
q ∼ U (1, nT emps), q ∈ I, p �= q
if u < αswap(p, q) then

swap x p[i] and xq [i]
else

no swap
end

end
end
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