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ABSTRACT
Surface nuclear magnetic resonance is a technique capable of providing insight into subsurface 
aquifer properties. To produce estimates of aquifer properties (such as the spatial distribution of 
water content and parameters controlling the duration of the nuclear magnetic resonance signal), an 
inversion is required. Essential to the reliable interpretation of the estimated subsurface models is 
an understanding of the uncertainty and correlation between the parameters in the estimated models. 
To quantify parameter uncertainty and correlation in the surface nuclear magnetic resonance inver-
sion, a Markov chain Monte Carlo approach is demonstrated. Markov chain Monte Carlo approach-
es have been previously employed to invert surface nuclear magnetic resonance data, but the pri-
mary focus has been on quantifying parameter uncertainty. The focus of this paper is to further 
investigate whether the parameters in the estimated models exhibit correlation with one another; 
equally important to building a reliable interpretation of the subsurface is an understanding of the 
parameter uncertainty. The utility of the Markov chain Monte Carlo approach is demonstrated 
through the investigation of three questions. The first question investigates whether the parameters 
describing the water content and thickness of a layer exhibit a strong correlation. This question 
stems from applying concepts known to electromagnetic surveys (that the layer thickness and layer 
resistivity parameters are strongly correlated) to the surface nuclear magnetic resonance inversion. 
A water content–layer thickness correlation in surface nuclear magnetic resonance would not have 
large effects for quantifying total water content but would affect the ability to identify layer bound-
aries. The second question examines whether the parameter controlling the duration of the nuclear 
magnetic resonance signal exhibits a correlation with the water content and layer thickness param-
eters. The resolution of surface nuclear magnetic resonance typically does not consider the duration 
of the signal and focuses primarily on the distribution of current amplitudes that form the suite of 
transmit pulses. It is common to treat regions with short-duration signal with greater uncertainty, 
but it is important to understand whether the signal duration controls resolution for medium to long 
duration signals as well. The third question explores if the parameter uncertainty produced by the 
Markov chain Monte Carlo approach is consistent with that produced by an alternative approach 
based upon the posterior covariance matrix (for the linearised inversion). The ability of the Markov 
chain Monte Carlo approach to more thoroughly explore the model space provides a means to 
improve the reliability of surface nuclear magnetic resonance aquifer characterisations by quantify-
ing parameter uncertainty and correlation.

(Legchenko et al. 2002; Braun and Yaramanci 2008; Costabel 
and Yaramanci 2013). The measurement involves the use of a 
coil of wire laid on the ground surface to perturb and measure the 
properties of a magnetisation present at a depth that originates 
from hydrogen nuclei contained within the groundwater. To pro-
duce images of subsurface aquifer properties, an inversion proto-
col is required, where the data consist of NMR decays measured 

INTRODUCTION
Surface nuclear magnetic resonance (NMR) is a non-invasive 
geophysical technique for groundwater investigations providing 
direct sensitivity to water content and detailed insight into aqui-
fer properties such as pore size, water content, and permeability 
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uncertainty quantification. Approaches involving bootstrapping 
of surface NMR data have also been used to quantify uncertainty 
in the predicted water content and relaxation time profiles 
(Hertrich 2008; Parsekian and Grombacher 2015). Each of the 
previous approaches focuses primarily on the estimated model 
parameters’ uncertainties. Equally important for accurate inter-
pretation of the resulting profiles is an understanding of param-
eter correlation. The focus in this paper is to highlight the use of 
an MCMC approach to investigate parameter correlations, in 
addition to uncertainties, for surface NMR studies.

An MCMC framework is developed for surface NMR to inves-
tigate parameter correlations. The algorithm is adapted from the 
work of Minsley (2011) in frequency-domain electromagnetics. 
However, we only investigate models with a fixed number of 
model parameters. The utility of such a framework is demonstrat-
ed through the investigation of three questions. (1) Does a water 
content–layer thickness equivalency exist in surface NMR (similar 
to the resistivity–thickness equivalency present in EM)? (2) Does 
the relaxation time, T

2*, play a role in controlling the resolution of 
the estimated profiles? (3) Do estimates of the parameter uncer-
tainty based on posterior covariance matrix reproduce MCMC 
uncertainties? Synthetic results are presented to investigate each 
question and to demonstrate the utility of MCMC for surface 
NMR parameter uncertainty/correlation studies.

Surface nuclear magnetic resonance
The surface NMR survey involves the perturbation and subse-
quent measurement of a magnetisation present in the subsurface 
that originates from the immersion of hydrogen nuclei within the 
Earth’s magnetic field. To perturb the magnetisation, a strong 
oscillatory current is pulsed in a coil of wire at the surface in 
order to generate a secondary magnetic field. This secondary 
field induces torque on the magnetisation, perturbing it out of its 
equilibrium orientation (Bloch 1946). The standard surface 
NMR experiment involves measuring the magnetisation’s return 
to equilibrium following a single current pulse (called a free-
induction decay). Only the component of the magnetisation 
transverse to the direction of the Earth’s field can be directly 
measured; this component precesses about the Earth’s field 
direction at the Larmor frequency, allowing its magnitude to be 
measured inductively by a coil at the surface. Typically, the coil 
used to pulse the oscillatory current is also used to measure the 
subsequent signal. The forward model for this type of experi-
ment, i.e., a free-induction decay using a coincident transmit/
receive loop, is given by (Weichman et al. 2000)

� (1)

where V(q,t) represents the loop voltage measured at time t follow-
ing a current pulse of pulse moment q; q is equal to the product of 
the pulse duration τ and the current amplitude I. M

0
 is the equilib-

rium magnetisation amplitude, and  is the magnitude of the 
transverse magnetisation of a unit magnetisation following the 

after a series of excitation pulses with varying pulsed current 
amplitudes. Many inversion approaches have been applied to 
surface NMR data to produce estimates of the spatial distribution 
of water content and relaxation times (i.e., a parameter governing 
the duration of the signal), most commonly to produce 1D depth 
profiles. Two- and three-dimensional surveys have also been 
performed (Girard et al. 2007; Dlugosch et al. 2013, 2014; 
Chevalier et al. 2014), but 1D profiles remain the standard output 
of a surface NMR survey. Initial value inversion uses only the 
initial amplitudes to produce the estimates of the subsurface 
water content distribution (Legchenko and Shushakov 1998; 
Weichman, Lavely and Ritzwoller 2000; Guillen and Legchenko 
2002). Alternatively, the full dataset consisting of all the NMR 
measured decays at all times can be inverted to produce both 
water content and relaxation time depth profiles (Mohnke and 
Yaramanci 2002; Müller-Petke and Yaramanci 2010). Joint inver-
sion of surface NMR and electrical/electromagnetic (EM) data 
has also been demonstrated (Hertrich and Yaramanci 2002; 
Legchenko et al. 2009; Behroozmand et al. 2012).

Each inversion protocol has been demonstrated to routinely 
produce robust estimates of the subsurface water content’s spa-
tial distribution that fit observed data (as well as supplementary 
geologic information). However, these inversions typically 
neglect the question of parameter uncertainty and correlation. In 
many geophysical inversion problems, obtaining the parameter 
uncertainty and correlation is often as important as getting the 
parameter values themselves (Tarantola and Valette 1982b). 
Behroozmand et al. (2013) described a strategy to determine 
parameter uncertainty in a joint magnetic resonance spectrosco-
py and transmission electron microscopy (TEM) data analysis 
scheme based on the posterior covariance matrix. An alternative 
approach to estimate parameter uncertainty and correlation is the 
Markov chain Monte Carlo (MCMC) method, which has been 
employed to study uncertainty for frequency-domain EM sur-
veys (Minsley 2011) and study uncertainty for T

2 estimates 
(Prange and Song 2010). An MCMC-based inversion scheme 
probes the parameter space searching for models consistent with 
the data, returning a suite of models consistent with the data 
instead of returning a single best-fit model (Malinverno 2002; 
Sambridge and Mosegaard 2002). Examination of parameter 
variation within the suite of returned models provides insight 
into parameter uncertainty and correlation. From this perspec-
tive, the MCMC method offers great potential for parameter 
uncertainty and correlation analysis for surface NMR. Guillen 
and Legchenko (2002) implemented an MCMC inversion for 
surface NMR providing the ability to characterise uncertainty in 
the estimated water content and relaxation time profile. Chevalier 
et al. (2014) extended the surface NMR MCMC inversion 
scheme to three dimensions providing estimates of water content 
uncertainty. Similarly, the simulated annealing approach of 
Mohnke and Yaramanci (2002) provides a non-deterministic 
inversion scheme where a suite of water content and decay time 
models fitting the data equally well are produced, providing 
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but for a more general introduction to MCMC, readers are referred 
to Brooks et al. (2011). Consider a single walker at a specific loca-
tion in the model space defined by the model vector m. A new 
model m’ is proposed solely on the basis of m and some predefined 
distribution. For this new model, we evaluate the probability, and 
based on some specific criteria (described later), we determine 
whether or not to keep it. This process continues until a number of 
iterations have been performed or convergence has been reached. 
There are several important aspects to consider when doing 
MCMC inversions. One common challenge is that walkers may 
get stuck in a local minimum and need many iterations to reach 
other local minima or the global minimum. It is difficult to ensure 
that such local minima have not been encountered, but the safest 
thing to do is to continue the exploration for millions of iterations. 
A method that can be used to find the global minimum among 
different local minima is to start with a range of walkers at differ-
ent positions (i.e., different starting models). If these walkers begin 
far from any minima, they will initially walk around in areas of 
low probability until they find a probability island and begin to 
“map” this area. This process is called burn-in; iterations in the 
burn-in phase are not saved.

To propose an updated model m’, we use a symmetric pro-
poser (a Metropolis update), which means that the probability of 
jumping from m to m’ is the same as the probability of the 
reverse. This means that we do not have to include the ratio of 
the probability of m’ given m, q(m’|m), divided by q(m|m’) in the 
acceptance criteria. Since we are working with parameters in 
logarithmic space, these updates correspond to multiplicative 
factors and the proposer is therefore only symmetric in the log 
space and not in the linear space. We will exclusively work in the 
log model space. Our proposer is based on the posterior covari-
ance matrix obtained from a gradient-based inversion. This has 
the advantage that it probes the model space faster when it is 
close to the linear estimate than, for example, a uniform pro-
poser. However, if this is not the case, such a proposer will be 
inefficient. To ensure that the model parameters stay within rea-
sonable bounds where the forward routine is known to have good 
accuracy, we also use hard constraints on the parameters. This 
means that all proposals with a parameter value outside the hard 
limits are discarded. The limits are as follows: 1 m < thickness < 
200 m, 0.01 < WC < 1 and 5 ms < T

2* <1.5 seconds, where WC 
is the layer’s water content.

Once a model has been proposed, we determine whether to 
keep it on the basis of the objective function J, which is given by

� (2)

where the first part is the data misfit

�  (3)

We loop over data points i and sum the squared normalised dif-
ferences. FWR

i
(m) is the forward response for model m, d

i
 is the 

excitation pulse at location r. For a typical surface NMR survey 
employing an on-resonance excitation pulse , 
where  is the amplitude of the co-rotating component of the 
secondary magnetic field perpendicular to the direction of Earth’s 
field (Weichman et al. 2000), only the co-rotating component of 
the field contributes to the perturbation of the magnetisation. The 
γ term is the gyromagnetic ratio of the hydrogen nuclei. The  
term represents the sensitivity of the receive coil and is the coun-
ter-rotating component of the secondary magnetic field perpen-
dicular to the direction of Earth’s field given a unit current. The 
exponential term containing ξ describes the phase shift of the 
measured signal due to the conductivity structure of the subsurface 
(Trushkin, Shushakov and Legchenko 1995). The spatial distribu-
tion of water content is given by w(r), where 0 ≤ w(r) ≤ 1. The 
exponential term containing T2*(r) describes the decaying enve-
lope of the measured signal, where T2*(r) is a time constant called 
the effective transverse relaxation time.

The goal of the surface NMR experiment is to convert the 
measured V(q,t) into estimates of w(r) and T2*(r). This requires 
an inversion as the spatial origin of the measured signals cannot 
be directly determined given that many of the signals contain 
overlapping spatial origins. Surface NMR inversions can also 
estimate the conductivity structure of the subsurface using only 
surface NMR data (Braun and Yaramanci 2008) or through joint 
inversion with electrical or EM data (Behroozmand et al. 2012). 
However, a common approach is to treat the conductivity struc-
ture as fixed during the inversion (where it is estimated using a 
complementary electrical or EM survey). In this case, the kernel 
function is independent of the inverted parameters (w(r) and 
T2*(r)) and is fixed during the inversion. This greatly accelerates 
the forward modelling and increases the inversion speed; if the 
conductivity structure is allowed to vary, the kernel must be 
recalculated each iteration.

Several inversion schemes are commonly employed in sur-
face NMR involving either a sequential inversion where water 
contents and relaxation times are estimated separately or an 
inversion where the water contents and relaxation times are 
simultaneously estimated. Generally, these parameters are treat-
ed as independent during the inversion and subsequent interpre-
tation. Essential to reliable interpretation of the resulting water 
content and relaxation time profiles is that the uncertainty in each 
profile is characterised. Several approaches that quantify uncer-
tainty have been demonstrated previously (Guillen and 
Legchenko 2002; Mohnke and Yaramanci 2002; Hertrich 2008; 
Behroozmand et al. 2013; Chevalier et al. 2014; Parsekian and 
Grombacher 2015). However, in addition to the uncertainty of 
each parameter, it is also important to investigate parameter cor-
relations. One approach providing both parameter uncertainty 
and correlations is the MCMC approach.

The Markov chain Monte Carlo method
The MCMC method investigates the distribution of parameters 
that fit some data. We will describe our setup and implementation, 



K.R. Andersen et al.209

© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 2018, 16, 206-217

of high probability, they begin “mapping” the probability distribu-
tion. For a clear representation of the MCMC principle, we only 
show a few iterations. In an actual MCMC run with millions of 
iterations, a walker that is initially trapped in one of the probabil-
ity islands would eventually jump to the other island. The inver-
sion will be stopped when good convergence is reached, and the 
full parameter space has been mapped.

data value (FID), and σ
i
 is the data standard deviation. The sec-

ond term in the objective function is the prior model constraints

,� (4)

where we loop over model parameters j and sum the normalised 
squared model differences in logarithmic space. m

j,0
 is the prior 

model, and σ
j
 is the model parameter standard deviation. We 

generally use a loose prior constraint of σ
j
 =10. The combined 

probability distribution for the data and the prior is given by

�  (5)

and we accept a new model m’ if J(m’) < J(m) or if a random 
number α between 0 and 1 obeys

�  (6)

Figure 1 illustrates a schematic MCMC run with four walkers with 
different starting models. The model space in this simple illustra-
tion contains only two parameters and can be visualised as a plane 
containing all possible models. Each model is described by two 
coordinates in this plane (x,y). The example probability distribu-
tions, which are sampled by the walkers, consist of two normal 
distributions centred at (0,2) and (6,4). The walkers begin by walk-
ing towards a region with high probability, i.e., not in a straight 
line but with a clear direction. This traverse towards the high prob-
ability region is the burn-in phase. Once the walkers are in a region 

Figure 1 Four independent MCMC random walkers starting at different 

positions that take uniformly distributed steps. The target distribution is 

shown in grey scale and consists of two peaks. By using the 4 walkers we 

end up having two walkers finding each distribution.

Figure 2       Layer Resistivity (Ωm) Thickness (m)

TEM equivalence 1 100 20

2 10 10

3 1000 -

Figure 3 Layer Water content (%) T2* (ms) Thickness (m)

Constant
Water content –
Thickness product

1 3 50 C-1/ 2/WC2

2 WC2 200 1/ WC2

3 3 50 -

Figure 4 Layer Water content (%) T2* (ms) Thickness (m)

Constant
Water content –
Thickness product

1 30 150 C-1/ 2/WC2

2 WC2 50 1/ WC2

3 30 150 -

Figure 5 Layer Water content (%) T2* (ms) Thickness (m)

T2* dependence on  
resolution of thick-
ness

1 30 100 10

2 20 20, 50, 80, 150 3, 4.5, 9, 30

3 30 100 -

Figure 6 Layer Water content (%) T2* (ms) Thickness (m)

T2* dependence on  
resolution of water 
content 

1 30 100 10

2 3, 10 ,20, 30 20, 50, 80, 150 9

3 30 100 -

Table 1 True model parameters 

for all figures. For Figures 3-6 the 

resistivity is 100 Ωm for all lay-

ers. C and WC2 for Figures 3 and 

4 correspond to the depth to the 

center of layer 2 (eg. 21 m or 

51  m) and the water content in 

laywer 2.
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present at great depths. Legchenko and Shushakov (1998) also 
demonstrate that a 1-m-thick water layer exhibits correlations 
with water layers of greater thickness placed at the same depth, 
where the correlation extends to larger thicknesses if the water 
layers occur at depth. Together, these results highlight the chal-
lenges uniquely resolving the depth and thickness of thin layers 
at depth. Furthermore, Legchenko et al. (2004) performed a 
study where the depth to a 10-m-thick 20% water content layer 
was varied from 0 to ~100 m, where it was shown that the abil-
ity to resolve the layer’s water content and thickness decreased 
with depth. However, the water content–thickness product of the 
layer was better resolved at depth than either the water content or 
thickness independently. An improved ability to resolve the 
water content–thickness product suggests the presence of an 
equivalence problem similar to Figure 2. To expand upon these 
studies, we present a suite of synthetic surveys where the inver-
sion results are presented for scenarios where the water content–
thickness product is preserved but the water content and layer 
thicknesses are varied. This study differs from that performed by 
Legchenko and Shushakov (1998) and Legchenko et al. (2004) 
in that we consider a scenario where we fix both the water con-
tent–thickness product and the depth to the centre of this layer. 
This scenario is well suited to an investigation of potential water 
content–thickness equivalences given that it holds the total water 
content and depth of the layer constant. Our focus is to investi-
gate the ability of the inversion to independently resolve the 
water content and layer thicknesses for these potentially equiva-
lent models.

Consider first a set of models described by three-layer sys-
tems, where a single-water-rich layer is present in a low-water-
content background. The true subsurface parameters are given in 
Table 1; layers 1 and 3 represent a low-water-content (3%) fast 

RESULTS AND DISCUSSION
To demonstrate the utility of an MCMC framework for surface 
NMR, three questions are investigated. (1) Does a water content–
layer thickness equivalency exist in surface NMR (like the resistiv-
ity–thickness equivalency present in EM)? (2) Does T

2* play a role 
in controlling the resolution of the estimated profiles? (3) Are 
uncertainties predicted by the posterior covariance matrix consist-
ent with those predicted using an MCMC approach? For all syn-
thetic surface NMR surveys, we employ a 100-m coincident 
square transmit/receive loop and a 30-ms on-resonance pulse, and 
we measure for a 400-ms duration with a 40-ms dead time and use 
16 pulse moments that range from 0.74 Ams to 8.53 Ams in log 
steps. Subsurface conductivity is equal to 100 Ωm at all depths. 
For all of the presented surface NMR MCMC inversions, the 
inverted model is a three-layer system; inversion parameters 
include the water content, T2*, and thickness of layers 1 and 2, as 
well as the water content and T2* of layer 3. The thickness of the 
bottom third layer is effectively treated as infinite (it is not an 
inversion parameter). We therefore have eight model parameters, 
and the MCMC walker traverses an eighth-dimensional model 
space. To illustrate potential parameter correlations, the marginal 
distributions for the different parameters are plotted to form 2D 
probability distributions. The MCMC inversion runs until conver-
gence has been reached and smooth distributions found. We gener-
ally sample at least 100,000 iterations.

Investigation of water content–layer thickness correlation
Direct sensitivity to water content is one of the most attractive 
features of the surface NMR measurement, i.e., the ability to 
quantify total water content and to map its spatial distribution. 
One factor that may influence the interpretation of surface NMR 
water content profiles is if a water content–thickness correlation 
exists in surface NMR similar to the resistivity–thickness corre-
lation in TEM. To illustrate the equivalence problem in TEM, 
consider a simple three-layer model where the first and third 
layers are resistive and the second layer is conductive. The true 
subsurface parameters are given in Table 1. The setup is a 
ground-based 50 m × 50 m square transmitter with a central 
receiver that records the impulse response in 22 gates from 5 µs 
to 1.5 ms. The uncertainty is 5% for all gates. We perform an 
MCMC inversion and plot the conductivity of the second layers 
versus the thickness of the second layer in Figure 2. The result-
ing distribution is very elongated and has a negative slope of -1 
in log space. Notice that the product of the two is almost constant 
and equal to 1; thus, this is a very pronounced equivalence.

The existence of a similar water content–thickness correlation 
has been previously investigated in several studies. Legchenko 
and Shushakov (1998) demonstrate that two datasets, i.e., one 
dataset produced by a 1-m-thick water layer held at a fixed depth 
and a second dataset produced by a 1-m-thick water layer whose 
depth is varied, exhibit strong correlations when the water layer 
in each model is placed at similar depths. The correlation is 
shown to extend over larger depth ranges when both layers are 

Figure 2 TEM conductivity-thickness equivalence for a three layer sys-

tem. σ is the conductivity of the second layer and z is the thickness. The 

other model parameters are in Table 1.



K.R. Andersen et al.211

© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 2018, 16, 206-217

Comparison of the signal differences in the noise-free limit pro-
vides insight into the noise level at which the data from different 
models cannot be distinguished. Consider first the “shallow” 
scenario (left column). For the low-water-content cases (magenta 
to green), the water content and layer thickness are each well 
resolved and do not exhibit strong correlations (observed by not-
ing that the probability distributions are not elongated along the 
black line (which corresponds to a constant water content–thick-
ness product of 1). For the thinner layers (yellow to red), the 
probability distributions are now elongated along the black line 
indicating that the water content–layer thickness correlation is 
stronger. Figure  3C illustrates the difference in the sounding 
curves produced in each case. As the layer thickness decreases 
(yellow to red), the data differences become very small. 
Therefore, the inversion (which treats all data with a 5% uncer-
tainty) struggles to independently resolve the water content and 
layer thickness resulting in a probability distribution that smears 
along the black line. To quantify noise levels where the ability to 
differentiate between these models will be lost, the magnitude of 
the signal differences can be examined. For example, if the noise 
level exceeds 20 nV, we will lose the ability to distinguish 
between the green and red models. Consider next the “deep” 
scenario (right column). In this case, the joint probability distri-

T
2* (50 ms) background, whereas layer 2 is given a fixed water 

content–thickness product equal to 1. Colours in Figure 3 cor-
respond to a particular water content–thickness pair; the investi-
gated layer 2 water contents (WC2) are 0.1 (magenta), 0.125, 
0.15, 0.2, 0.3, 0.4, and 0.6 (red), whereas the layer 2 thickness in 
each case is 1/WC2. Note that the thickness of layer 1 is also 
dependent on WC2 and is adjusted to ensure that layer 2 is cen-
tred at the same depth in each case. If a strong water content–
layer thickness correlation exists, it should be difficult to differ-
entiate between these models. The left and right columns illus-
trate scenarios where layer 2 is centred at a depth of 21 and 51 m, 
respectively, each intended to represent a “shallow” and “deep” 
case. Parameter C in Table 1 corresponds to the depth to the 
centre of layer 2 (e.g., 21 or 51 m). The top row illustrates the 
joint water content–thickness probability distribution. The mid-
dle row illustrates the variation of the resulting sounding curve 
(with respect to the WC2 = 0.1 case (magenta)). The bottom row 
illustrates the true water content profiles and corresponding col-
ours. Note that the top and bottom rows correspond to inverted 
water contents and the true targeted water contents, respectively. 
Inverted data in this case are noise-free, but are treated with a 5% 
uncertainty during the inversion. Noise-free data are selected to 
provide insight into potential correlations under ideal scenarios. 

Figure 3 Comparison of the abil-

ity to independently resolve the 

water content and thickness of a 

water rich layer present in a low 

water content background. In 

each case, the water content – 

thickness product is equal to 1. 

Profile colors correspond to a 

particular water content – thick-

ness pair. The top row illustrates 

the joint probability distribution 

for the estimated water content 

and layer thickness of layer 2. 

The middle row illustrates the dif-

ference between the sounding 

curves produced by each model 

compared to the sounding curve 

produced by the 10% water con-

tent case. Note that a 40 nV signal 

difference corresponds to ~20% 

variation in the signal amplitude. 

The bottom row illustrates the 

true water content profiles in each 

case. The left and right columns 

correspond to “shallow” and 

“deep” scenarios, where layer 2 is 

centered at 21 m and 51  m, 

respectively.
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the signal differences are greater than the noise level), surface 
NMR is capable of accurately resolving the water content and 
layer thicknesses independently, which is necessary to produce 
reliable estimates of layer boundaries. A workflow similar to that 
in Figure 3 is a useful tool to identify if the signal differences for 
two models with the same water content–layer thickness product 
but different water contents are greater than observed noise lev-
els. If the signal differences are below the noise level, it is 
unlikely that the inversion can differentiate between the two 
cases.

Consider next an example of a three-layer system where a 
variable water content layer (layer 2) is present within a high-
water-content background. The true subsurface parameters are 
listed in Table 1; layers 1 and 3 represent a high-water-content 
(30%) slow T2* (150 ms) background, whereas layer 2 is given a 
fixed water content–thickness product equal to 1 and T2*=50 ms. 
Colours in Figure 4 correspond to a particular water content–thick-
ness pair; the investigated layer 2 water contents and thicknesses 
are the same as in Figure 3. Note that the thickness of layer 1 is 
also adjusted based on the layer 2 water content to ensure layer 2 
remains centred at the same depth. The left and right columns cor-
respond to scenarios where layer 2 is centred at a depth of 21 and 

butions exhibit much stronger elongation, where in all cases the 
distributions span large ranges along the black line. The water 
content and layer thickness now exhibit a strong correlation. The 
source of the increased correlation is observed in Figure  3D, 
where the signal differences produced by each model are now 
much smaller; the data differences are less than the 5% data 
uncertainty assumed by the inversion. Furthermore, the signal 
differences are only significant for the strongest pulse moments.

The right column of Figure  3 exhibits behaviour consistent 
with the observations of Legchenko et al. (2004), where the 
water content–thickness ratio was well resolved at depth despite 
an inability to independently resolve the water content and thick-
ness of the water-bearing layer. It also highlights that, for sce-
narios where a high-water-content layer is present in a low-
water-content background, surface NMR estimates of the total 
water (i.e., water content multiplied by layer thickness) remain 
accurate even at depth. The shallow results indicate that the 
water content–thickness correlation is not always present, par-
ticularly when the water-bearing layer is present at shallower 
depths with thicknesses greater than a few metres. This has 
important implications for interpretations of water content pro-
files as it suggests that, in low-noise conditions (low enough that 

Figure 4 Comparison of the abil-

ity to independently resolve the 

water content and thickness of a 

variable water layer present in a 

high water content background. 

In each case, the water content – 

thickness product is equal to 1. 

Profile colors correspond to a 

particular water content – thick-

ness pair. The top row illustrates 

the joint probability distribution 

for the estimated water content 

and layer thickness of layer 2. 

The middle row illustrates the dif-

ference between the sounding 

curves produced by each model 

compared to the sounding curve 

produced by the 10% water con-

tent case. The bottom row illus-

trates the true water content pro-

files in each case. The left and 

right columns correspond to 

“shallow” and “deep” scenarios, 

where layer 2 is centered at 21 m 

and 51 m, respectively.
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cases. The probability distributions are smeared over wide water 
content and thickness ranges in each case, clustering in the bottom 
left corner with the black line loosely describing the shape of dis-
tributions at higher water contents/thicknesses. Figure  4D indi-
cates that the data differences are reduced in this case, where the 
differences at large currents correspond to ~10%–15% of the peak 
signal amplitude. At lower currents, the signal differences are 
much smaller.

Overall, Figures 3 and 4 suggest that, while water content–
thickness equivalence is observed in certain conditions, it is not 
present in all cases. For example, Figure  3A illustrates a case 
where water content and thickness can be independently resolved, 
Figure  4A illustrates a case where only thickness can be 
resolved, and Figure 4B shows a case where neither parameter is 
well resolved. The presence of the equivalence will depend on 
site-specific parameters such as the local water content profile 
and noise conditions.

Control of T2* on the ability to resolve water contents and 
layer thicknesses
In surface NMR, a kernel matrix is used to invert the observed data 
to produce estimates of the subsurface properties. This kernel 
generally predicts the initial amplitude of the signal and is often 
used to estimate the spatial resolution of the resulting profiles 
using the singular value decomposition approach of Müller-Petke 
and Yaramanci (2008). However, an approach based exclusively 

51 m, respectively, each intended to represent a “shallow” and 
“deep” case. This scenario differs from Figure 3, in which we now 
focus on an example where the layer of interest (layer 2) does not 
dominate the behaviour of the signal, i.e., layers 1 and 3 contribute 
significantly to the signal because of their high water contents. 
This scenario can be considered to be representative of a fast 
relaxation aquitard that separates two high-water-content layers. 
Inverted data are noise-free but are treated with a 5% uncertainty 
during the inversion. The true water content profiles in each case 
are shown in Figures 4E and 4F. Consider first the “shallow” sce-
nario (left column of Figure 4), where the probability distributions 
show a much different behaviour than in Figure 3. The thickness 
of layer 2 is well resolved in each case, but the layer 2 water con-
tent is poorly resolved. For thinner layers, the water content 
becomes even more poorly resolved (e.g., the red distribution 
smears from low water contents up to 100%). The sounding curves 
in Figure 4C show larger variations than in Figure 3C (the ~400- to 
500-nV variation corresponds to ~20%–25% variation in the total 
signal amplitude). The reason for the stronger variation is that the 
high-water-content background leads to a much larger signal 
amplitude. In this case, treating all data with 5% uncertainty cor-
responds to a higher noise level than that considered in Figure 3. 
Figure 4C suggests that noise levels of ~100 nV will make it dif-
ficult to differentiate between certain cases (e.g., between the red 
and green cases). For the deep case (right column), the water 
content and layer thickness of layer 2 are poorly resolved in all 

Figure 5 Thickness and T2*cross-

plots along with the true values 

(red markers) for the second layer 

probing the T2*influence on the 

thickness resolution.
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persistence of the signal from a given depth and thereby controls 
the local signal-to-noise ratio. Using a simple three-layer model 
similar to the previous cases, we investigate the effect of T2* on the 
ability to resolve the other layer properties in the same layer, i.e., 
water content and thickness. This is done by investigating whether 
the T2* estimate in the second layer exhibits a correlation with the 
water content and thickness in the same layer.

In the first example, we fix the water content of the second 
layer and vary T2* and thickness of the second layer to examine if 
a correlation exists between these parameters. All remaining 
model parameters are listed in Table 1. Figure  5 illustrates the 
cross plots of T2* and layer thickness estimates for layer two in all 
16 combinations. For low T2* (left column), the layer thickness is 
well determined due to the large contrast with neighbouring layers, 
which helps constrain the layer boundaries despite that the T2* 
value is poorly determined in this case. As the T2* value approach-
es the background T2* value (e.g., columns 3 and 4), the layer 
thickness uncertainty increases, whereas the T2* uncertainty 
depends strongly on the thickness of the layer (i.e., the widths of 
the T2* distributions are much narrower in the top right versus bot-
tom right panels). For example, for a 9-m-thick layer (second row), 
the uncertainty seems to transfer from T2* to thickness when 
increasing T2* (moving from left to right). A correlation between 
T2* and layer thickness is also observed for intermediate T2* val-
ues. This suggests that T2* influences the ability to resolve the 
layer thickness.

on the kernel matrix (which describes the expected signal ampli-
tudes at time 0) inherently neglects the influence of T2* on model 
parameter resolution. To investigate whether T2* plays a role in 
controlling the ability to resolve the subsurface parameters, an 
MCMC approach is used to investigate whether T2* displays any 
correlation with the other estimated parameters. If T2* plays no 
role in the expected resolution, we should not see any correlation 
between T2* and the water contents and thicknesses. It is common 
during interpretation of results to assume higher uncertainty in the 
water content for layers containing very fast T2* and to assume a 
high uncertainty in the T2* when a very low water content is pre-
sent. This intuition suggests that T2* should play a role in our 
ability to resolve the layer parameters. These extreme cases are 
intuitive but the influence of intermediate T2* remains unclear. We 
now explore the correlation for intermediate T2* values.

Girard, Legchenko and Boucher (2005) demonstrate that a cor-
relation exists between the estimated T2* and resulting initial 
amplitude estimate. This correlation arises from the extrapolation 
process, where the estimated T2* is used to produce the initial 
amplitude estimate. Therefore, if T2* is underestimated, the extrap-
olation procedure will underestimate the initial amplitude. This 
suggests that T2* is likely to exhibit a correlation with the estimated 
water content. However, how this suspected correlation propagates 
through the inversion process and ultimately impacts our ability to 
resolve layer properties is unclear. We hypothesise that T2* controls 
the ability to resolve layer properties given that it determines the 

Figure  6 Water content and T2* 

cross-plots along with the true 

values (red markers) for the sec-

ond layer probing the T2* influ-

ence on the water content resolu-

tion.
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where G is the Jacobi matrix and C
obs

 is the data covariance 
matrix that consists of the data uncertainties. This expression can 
be generalised to include model regularisation and prior con-
straints on the model parameters. We are working with model 
parameters in log space and under the assumption that they are 
normally distributed. One can obtain the standard deviations 
STD from the diagonal elements of C

est
. In this case

� (8)

For parameters in linear space, the standard deviation in log 
space converts to a standard deviation factor given by

� (9)

where the ±STD limits are given by

� (10)

To compare the covariance matrix predicted uncertainties with 
those predicted by an MCMC approach, we look at a single 
three-layer model and compare the parameter uncertainties of the 
second layer. The resistivity is fixed to 100 Ωm for all layers. 
Figure  7 shows the marginal distributions obtained from an 
MCMC inversion. The real model has a 9-m-thick second layer 

In the second example, we fix the thickness of the second 
layer and vary the water content and T2* values in this layer to 
examine if a correlation exists between these parameters. All 
remaining model parameters are listed in Table 1. Figure 6 illus-
trates the cross plots of T2* and water content estimates for layer 
2 in all 16 combinations. For the low-water-content example 
(bottom row), both parameters are unresolved. For low T2* (left 
column), the water contents are unresolved, with T2* only being 
resolved for the highest water content case. This is consistent 
with previous intuition that suggests water content is highly 
uncertain for fast decays. In several of the remaining cases, T2* 
and water content exhibit a negative correlation, suggesting that 
it is difficult to differentiate between a small amount of slow 
decaying water versus a larger amount of fast decaying water. 
This is consistent with the idea that T2* is also controlling the 
local signal-to-noise ratio and that, even for intermediate T2* 
values, a correlation with water content persists.

In summary, T2* influences the ability to resolve the water 
content and layer thicknesses of the produced depth profiles and 
should be considered when determining model parameter resolu-
tion. Previous intuition suggesting that in the fast T2* limit water 
contents are highly uncertain and that in the low-water-content 
limit the T2* is highly uncertain is confirmed by the MCMC 
results. However, the MCMC results indicate that T2* exhibits a 
correlation with water content and layer thicknesses even for 
intermediate value of T2*.

Comparison of Markov chain Monte Carlo determined and 
posterior covariance-matrix-based uncertainty estimates
We now compare the parameter standard deviations obtained 
from the posterior covariance matrix after gradient-based inver-
sions to those estimated by the MCMC approach. If these gener-
ally do not agree, one has to treat uncertainties obtained using the 
gradient-based inversions with care. Gradient-based inversions 
do not probe the full parameter distributions and determine the 
uncertainties using derivatives calculated at the inversion mini-
mum. One should be careful using the gradient-based uncertain-
ties if they deviate too much from the MCMC results, which, on 
the other hand, probes the full distribution and can more readily 
handle distributions that are not well described by normal distri-
butions. The posterior covariance matrix is often much faster to 
compute than an MCMC result; therefore, if uncertainty esti-
mates from the posterior covariance matrix are reliable, it repre-
sents a convenient approach to estimate uncertainty. However, 
the covariance matrix approach may struggle to accurately 
describe parameter correlations and skewness of the probability 
distributions that can be more readily quantified by the MCMC 
approach.

For the gradient-based inversions, the parameter uncertainties 
are based on the posterior covariance matrix (Tarantola and 
Valette 1982a). This is given by

� (7)

Figure 7 Marginal distributions for water content, T2* and the thickness 

of the second layer for the MCMC results shown in Figure  5 where  

WC = 10 % ,T2* = 150ms and thickness = 9m, marked by the grey lines. 

The histograms are the MCMC results and the curved lines are the dis-

tributions determined from the posterior covariance matrix. The standard 

deviation factors (STDF) are shown for the linearized estimate and the 

MCMC distributions. The vertical black lines that extend to the top of 

each panel correspond to the true layer two values.
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Using this random model MCMC approach, we have tested 
100 unique models spanning a reasonable parameter space and 
thereby better test the hypothesis that the linear estimates agree 
with the MCMC. Our results show good agreement between the 
two methods, which all scatter around the “1-to-1” line. This 
means that we can safely use the estimates based on the poste-
rior covariance matrix for the parameter uncertainties. Note that 
the linear STDFs in these cases can be computed ~1000 faster 
than the MCMC STDF.

CONCLUSIONS
In order to ensure reliable interpretation of surface NMR estimated 
water content and T2* profiles, the uncertainties and correlation of 
the estimated parameters must be considered. An MCMC frame-
work is demonstrated to provide the ability to characterise both the 
uncertainty of each parameter and whether parameters demon-
strate correlation with one another. The utility of such a framework 
is demonstrated by investigating the following three questions: (1) 
whether the water content and layer thickness of a particular layer 
are correlated, as might be expected based on analogies with EM; 
(2) whether T2* exhibits any influence on the resolution of the 
produced profiles; and (3) whether uncertainty estimates based on 
the posterior covariance matrix from gradient-based inversions are 
consistent with MCMC estimated uncertainties. Regarding the 
first question, the existence of a strong water content–layer thick-
ness correlation is not observed in all scenarios. For deep-water-
bearing layers, water content and layer thickness are observed to 
be strongly correlated, allowing only their product to be accurately 
resolved. In contrast, for shallower-water-bearing layers, water 
content and layer thickness can be independently resolved pro-
vided that the noise level is less than the differences the data pro-
duced for “equivalent” models (i.e., models with the same water 
content–layer thickness product but different water contents). 
Alternatively, in some cases, only the layer thickness is well 
resolved whereas the water content is poorly resolved. For the 
second question, the MCMC results are consistent with common 

with 10% water content and 150-ms decay (true values indicated 
by the vertical black line). Layers 1 and 3 have 30% water con-
tent and 100-ms decay time; Figure 6 (third row, fourth column) 
shows the joint probability distribution between T

2* and water 
content for the same subsurface model. Although the distribu-
tions obtained from the MCMC are similar to the gradient-based 
results, there are several differences. The MCMC water content 
and thickness distributions exhibit longer tails (particularly in the 
water content and T2* distributions) compared with the gradient-
based results. The standard deviations obtained from the gradi-
ent-based inversions are also slightly smaller than the MCMC 
standard deviations in each case. This is because the gradient-
based distributions do not include the skewness observed in the 
MCMC results. However, just looking at the STD, the values are 
quite similar likely because the linear and the MCMC STDs are 
both small, which is the range where the linear calculation is 
known to work well. Note that both the MCMC and gradient-
based distributions are not centred exactly at the true values 
(vertical black lines); however, the true values do fall within the 
probability distributions in each case.

To generalise this investigation, we have created 100 random 
three-layer models where the resistivity is set with a value 
between 10 and 1000 Ωm with a log uniform probability distribu-
tion. The WC of the three layers have random values between 5% 
and 50%, the T

2* have values between 30 and 400 ms, and the 
thickness of the layers is between 1 and 70 m. For every model, 
we have the result based on the posterior covariance matrix and 
the standard deviation of the MCMC distribution run with 
100,000 iterations. We use a fixed data uncertainty of 10% for all 
data points. We have initially generated forward responses and 
added 10% relative noise. Afterwards, we start a gradient-based 
inversion of these data and save the result. The mean and stand-
ard deviation of the logarithm of the model parameters are stored 
and compared with the gradient-based results. The results are 
shown in Figure 8 for the water content of the first layer and T2* 
for the second layer.

Figure  8 Comparison of uncer-

tainty estimates based on posteri-

or covariance matrix and MCMC 

inversion for the WC of the first 

layer and T2* of the second layer.
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fer characterization. Groundwater 42, 363–373.
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K. 2009. Joint use of TEM and MRS methods in a complex geological 
setting. Comptes Rendus Geoscience 341, 908–917.

Legchenko A.V. and Shushakov O.A. 1998. Inversion of surface NMR 
data. Geophysics 63, 75–84.

Malinverno A. 2002. Parsimonious Bayesian Markov chain Monte Carlo 
inversion in a nonlinear geophysical problem. Geophysical Journal 
International 151, 675–688.

Minsley B.J. 2011. A trans-dimensional Bayesian Markov chain Monte 
Carlo algorithm for model assessment using frequency-domain elec-
tromagnetic data. Geophysical Journal International 187, 252–272.

Mohnke O. and Yaramanci U. 2002. Smooth and block inversion of sur-
face NMR amplitudes and decay times using simulated annealing. 
Journal of Applied Geophysics 50, 163–177.

Müller-Petke M. and Yaramanci U. 2008. Resolution studies for mag-
netic resonance sounding (MRS) using the singular value decomposi-
tion. Journal of Applied Geophysics 66, 165–175.

Müller-Petke M. and Yaramanci U. 2010. QT inversion—Comprehensive 
use of the complete surface NMR data set. Geophysics 75, WA199–
WA209.

Parsekian A.D. and Grombacher D. 2015. Uncertainty estimates for 
surface nuclear magnetic resonance water content and relaxation time 
profiles from bootstrap statistics. Journal of Applied Geophysics 119, 
61–70.

Prange M. and Song Y.Q. 2010. Understanding NMR T-2 spectral uncer-
tainty. Journal of Magnetic Resonance 204, 118–123.

Sambridge M. and Mosegaard K. 2002. Monte Carlo methods in geo-
physical inverse problems. Reviews of Geophysics 40.

Tarantola A. and Valette B. 1982a. Generalized nonlinear inverse prob-
lems solved using a least squares criterion. Reviews of Geophysics and 
Space Physics 20, 219–232.

Tarantola A. and Valette B. 1982b. Inverse problems = quest for informa-
tion. Journal of Geophysics 50, 159–170.

Trushkin D.V., Shushakov O.A. and Legchenko A.V. 1995. Surface 
NMR applied to an electroconductive medium. Geophysical 
Prospecting 43, 623–633.

Weichman P.B., Lavely E.M. and Ritzwoller M.H. 2000. Theory of sur-
face nuclear magnetic resonance with applications to geophysical 
imaging problems. Physical Review E - Statistical Physics, Plasmas, 
Fluids, and Related Interdisciplinary Topics 62, 1290–1312.

intuition that the water content estimate is highly uncertain in the 
small T2* limit, whereas T2* is very uncertain in the low-water-
content limit. However, T2* is also observed to exhibit correlations 
with layer thickness and water content for intermediate T2* values, 
suggesting that T2* must be considered when determining the 
resolution of estimated water content profiles. For the final ques-
tion, uncertainty estimates based upon the posterior covariance 
matrix for the linearised inversion fit well to the MCMC results. 
However, the uncertainty estimates based on the posterior covari-
ance matrix are not able show the advanced features of some of the 
correlations observed in this paper and therefore cannot give a 
complete picture of the parameter uncertainties and correlations.

The proposed framework presents a means to more thoroughly 
explore the model space and produce a suite of models that fit the 
data equally well. A shortcoming of the MCMC approach is that it 
is limited to working with relatively simple models due to practical 
limitations related to computation times. Improvements to the 
speed of the surface NMR forward calculation, specifically the 
calculation of the kernel matrix, could extend the utility of the 
MCMC approach to more complex models. Overall, the MCMC 
approach to surface NMR inversion improves the reliability of the 
surface NMR results by allowing a more straightforward consid-
eration of parameter uncertainty and correlation.
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