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In recent years, probabilistic solution to the inversion of electromagnetic induction (EMI) data has been progres-
sively developed for non-invasive subsurface characterization. However, Bayesian inversion of EMI data using
forward solvers based on full solution of Maxwell's equation is associated with computationally expensivemod-
elings, particularly for large-scale surveys. Here, we incorporated artificial neural network (ANN) with Bayesian
inference to obtain subsurface electromagnetic conductivity image (EMCI) fromEMI data down to 10mdepth. In
this respect, a complex EMI forwardmodel was replaced by a trained neural network (ANN proxy forward func-
tion) that can be evaluated comparably rapidly. The accuracy of the ANN-based forward solver was examined
using different synthetic subsurface models. The proposed methodology was applied on EMI data measured
with a DUALEM-421 s sensor from 10 ha study site in the Alken Enge area of Denmark. We compared the in-
versely estimated EMCI with the counterpart obtained from a quasi-three-dimensional (quasi-3D) spatially-
constrained deterministic algorithm as a standard code. The network training procedure was performed within
fewminutes, and once it was trained, the ANN-based forward solver returned roughly 150,000 model responses
per second. This value for the EMI forward solverwas around 400, demonstrating the computational efficiency of
the ANN proxy forward function. The theoretical simulations demonstrated that the ANN-based forward solver
accurately mimics the EMI response within the training range. Moreover, the proposed inversion strategy suc-
cessfully delineated the subsurface EMCI from Alken Enge area. This approach thus facilitates rapid and accurate
subsurface conductivity imaging using Bayesian inversion of multi-configuration EMI data, which is particularly
pertinent for large-scale measurements.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Low frequency electromagnetic induction (EMI)methods have been
increasingly used for non-invasive monitoring and characterization of
subsurface structures. The rapid measurement capability of this tech-
nique facilitates real-time measurements over extended areas (Huang
et al., 2015; Martinez et al., 2018). EMI returns apparent electrical con-
ductivity (σa or ECa-mS/m) which is the weighted average of the verti-
cal subsurface electrical conductivity (σ-mS/m) distributions,
considering a one-dimensional (1D) earth model. The penetration
depth of the system is a function of offset (ρ-m) and loop antenna orien-
tation (antenna mode) (Mester et al., 2011; Moghadas et al., 2012). The
EMI-obtained information is of great value to solvemany different envi-
ronmental and geotechnical problems (Andre et al., 2012; Triantafilis
et al., 2012; Huang et al., 2016; Rejiba et al., 2018; von Hebel et al.,
2018). This motivates to develop robust and advanced conductivity im-
aging techniques for accurate subsurface characterizations using EMI.

In the last decades, numerous approaches have been developed for
inversion of ECa data including deterministic (Santos, 2004;
Guillemoteau et al., 2012, 2016; Huang et al., 2016; Christiansen et al.,
2016) and probabilistic (Minsley, 2011; Shanahan et al., 2015; Jadoon
et al., 2017; Moghadas et al., 2017) techniques. Deterministic approach
employs optimization algorithms to find a so-called single-best solution
and facilitates fast inversion of the data. Probabilistic inversion (e.g.
Bayesian inference) returns posterior distribution of the model
parameters derived by conditioning the behavior of the model on mea-
surements. In comparison with the deterministic approach, probabilis-
tic inversion provides a richer source of information, since the
posterior distribution of themodel parameters allows for more efficient
uncertainty estimations. The main drawback of the probabilistic inver-
sions is the difficulty to effectively sample the entire parameter space,
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in particular for high dimensional problems. This, combined with the
numerous evaluations of the rigorous forwardmodelmake the stochas-
tic sampling algorithms computationally very expensive. The high com-
putational cost of the probabilistic algorithms hampers extensive use of
the Bayesian inversions to estimate subsurface geophysical properties,
in particular for large-scale surveys. When the number of data is less
than that of the unknowns, geophysical inverse problem is under-
determined. Unfortunately,multi-layer inversion of EMI datamay result
in an under-determined problem wherein the sensitivity of the return
signal depends in large part on offsets and antenna modes.

Incorporation of dimensionality reduction techniques with the
Bayesian inversion facilitates faster convergence of the algorithm and
increases the accuracy of the parameter estimations (Jafarpour et al.,
2010; Linde and Vrugt, 2013; Laloy et al., 2015). One technique for trun-
cation of the model parameters is discrete cosine transform (DCT). This
approach offers a great potential for inversion of many geophysical data
types (Linde and Vrugt, 2013; Lochbuhler et al., 2015; Qin et al., 2019a).
Recently, Moghadas (2019) proposed to incorporate model compres-
sion via DCT with a quasi-two-dimensional (quasi-2D) Bayesian
inversion of EMI data. This DCT-based inversion proved to be promising
to obtain the subsurface electromagnetic conductivity images (EMCIs)
(Moghadas and Vrugt, 2019). Model reduction via DCT can also be
coupledwith 1D inversion strategies to simplify considerably parameter
estimations (Wright et al., 2017).

Along with model compression techniques, machine learning ap-
proaches have been increasingly flourished to facilitate the inversion
process (Hansen and Cordua, 2017; Giannakis et al., 2019; Conway
et al., 2019). In this respect, Hansen and Cordua (2017) proposed a gen-
eral framework to replace the rigorous geophysical forward evaluation
with a trained artificial neural network (ANN) in the probabilistic inver-
sion procedure. The ANN-based forwardmodel equates to the geophys-
ical forward solver but withmuch lower evaluation time. The algorithm
is trained using a large number of randomly generated synthetic subsur-
face models to construct a trained network that can accurately mimic
the functionalities of the forward solver (ANN proxy forward function).
Incorporation of the Bayesian inference with the ANN-based forward
model is appealing, since it considerably reduces the total computa-
tional time required for the convergence of the algorithm. For instance,
Hansen and Cordua (2017) demonstrated that a sampling algorithm via
ANN-based forward model is three orders of magnitude faster than
using 2D ground penetrating radar (GPR) forward solver. Giannakis
et al. (2019) also successfully applied ANN proxy modeling for full-
waveform inversion of 3D GPR data. Other work by Qin et al. (2019b)
examined the feasibility of this approach for transient electromagnetic
(TEM) soundings. Most recently, Conway et al. (2019) applied the
ANN proxy forward function to the problem of 3D magnetotelluric
(MT) inversion.

The ANN-based forward modeling is general and has capacity to
considerably change the complexity of non-linear sampling-based in-
versions for wide variety of geophysical problems. However, the ANN
structure for the problem should satisfy the requirements of simplicity
and approximation accuracy. For instance, Giannakis et al. (2019)
showed that this approach requires to be refined for 3D GPR inversion
towell capture the complex antenna-subsurface interactions, combined
with ringing noise and losses. For 3D MT surveys, Conway et al. (2019)
also reported that classical neural network presents high uncertainties
in estimation of regional details compared with the standard MT for-
ward model. They suggested to improve the proxy modeling using
more advanced techniques such as convolutional neural networks. Con-
sequently, the relevancy and applicability of the ANN-based forward
modeling requires to be examined for each problem considering dimen-
sionality, penetration depth, physics of the problem, etc. To the best of
our knowledge, no study exists to examine the feasibility and potential
of the ANN proxy modeling for EMI probabilistic inverse problems.

In this paper, we applied a 1D DCT-based inversion to obtain the
quasi-three-dimensional (quasi-3D) subsurface EMCI from EMI data
measured with a DUALEM-421 s sensor. Drawing inspiration from the
work of Hansen and Cordua (2017), we formulated the inverse problem
in a Bayesian framework using an ANN-based forward solver for rapid
convergence of the routine. The proposed methodology was applied
on the EMI data reported by Christiansen et al. (2016) where the mea-
surements were performed in the Alken Enge area of Denmark. We ex-
amined the accuracy of the ANN-based forward model via several
synthetic scenarios. We juxtaposed the inversely estimated EMCI with
the subsurface model obtained by a quasi-3D spatially-constrained de-
terministic inversion.

2. Materials and methods

2.1. Measurements

This study focuses on 10 ha study site in Alken Enge area of Denmark
(Christiansen et al., 2016). The field campaign was launched during a
dry period in May 2014. The ECa measurements were performed with
a detailed line spacing of around 3 m (varying between 1 and 4 m de-
pending on the accessibility) using a DUALEM-421 s sensor (DualEM,
Milton, Ontario, Canada). The sensor was mounted on two non-
metallic sledges, enabling real timemeasurements in thefield to charac-
terize the paleo lake shores and related coastal features. Interested
readers are referred to Christiansen et al. (2016) for further details re-
garding the test site, measurement campaign, and data processing.

The DUALEM-421 s sensor allows for ECa measurements using
ρ1=1 m, ρ2=2 m, and ρ3=4 m offsets with two coil orientations,
namely, horizontal coplanar loops (HCP), and perpendicular loops
(PERP). The system operates at 9.0 kHz frequency (diffusive regime).
The depth of exploration (DOE) of an EMI system is the depth at
which the EMI response is 70% of its sensitivity (Callegary et al.,
2007). Based on that, the DOEs of the DUALEM-421 s sensor for
PERP configuration are around 0.5-, 1-, and 2-m corresponding to 1-,
2-, and 4-m offsets, respectively. These values are increased to 1.5-,
3-, and 6-m for the corresponding offsets using HCP mode. Data
processing resulted to a total number of 13,043 data sets each with
6 ECa values. The data sets for each offset-coil configurations were in-
terpolated to a grid with 100 and 160 cells in horizontal X and Y direc-
tions, respectively using variogram modeling and ordinary kriging.
Fig. 1 shows the location of the selected EMI measurement points
(blue dots). The gray cells represent the areas considered for the inter-
polation of the ECa data.

It is important to note that EMI data can be gridded before (Saey
et al., 2011; Altdorff et al., 2018) and after (Christiansen et al., 2016) in-
version. The original data set used here contained a lot of redundant in-
formation which resulted to increase the computation time for the
subsequent inversion. As a result, the ECadatawere grided before inver-
sion, leading to reduce the total number of data sets from 13,043 to
6682 grid nodes for each of the six coil configurations used in the inver-
sion. The choice of grid size was a trade-off between computational
speed and redundant information. Indeed, the electrical conductivity
data are often known to have a log-normal distribution (Guillemoteau
et al., 2016). To satisfy the normality for variogram analysis, the loga-
rithmic transformation can be applied on the data. Alternatively, one
can also formulate the inverse problem in a logarithmic parameter
space to better handle the log-normal distribution of electrical conduc-
tivity (Guillemoteau et al., 2016). Consequently, here we used a loga-
rithmic parameter space for the electrical conductivity values during
the Bayesian inversion.

2.2. 1D DCT-based probabilistic inversion

In this study, we used a so-called full electromagnetic (EM) forward
model and mimicked the EMI measurement process at our experimen-
tal field site using numerical solutions of the Maxwell equations. Given
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Fig. 1. Location of the EMImeasurement points (blue dots) in the study site. Themeasured
ECa values were interpolated to a grid with 100 × 160 cells using ordinary kriging. The
gray cells represent the areas considered for the interpolation of the ECa data. The green
dots show the selected transect for comparison with the previously inverted data.
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1D multi-layered earth, the full EM forward model is formulated as
(Wait, 1954; Ward and Hohmann, 1987):

σHCP
a ρð Þ ¼ −4ρ

ωμ0

� �
Im

Z ∞

0
RTE exp −2λh0ð Þ J0 ρλð Þλ2dλ

� �

σPERP
a ρð Þ ¼ −4ρ

ωμ0

� �
Im

Z ∞

0
RTE exp −2λh0ð Þ J1 ρλð Þλ2dλ

� �
;

ð1Þ

In these expressions, σa
HCP and σa

PERP represent measured ECa values
in HCP and PERPmodes, respectively,ω (rad/s) signifies the angular fre-
quency, μ0 (m−2) is the free-space permeability, J0 and J1 represent ze-
roth and first-order Bessel functions, respectively, λ (m) is the radial
wave number, and h0 is the height of the instrument above the ground.
The transverse electric reflection coefficient, RTE (−) depends on the
electrical conductivity and thickness of the layers. To solve eq. (1), we
assumed a subsurface model with N=12 layers down to 10 m depth
with logarithmically increasing thicknesses (cartesian grid). The last
layer was assumed to be a homogeneous half-space. The EMI operating
frequency exerts control on the properties of the cartesian grid. With
the 9.0 kHz frequency of the DUALEM-421 s sensor, the vertical resolu-
tion of the ECa data is rather limited. As a consequence, we used a rather
coarse structure of N=12 layers due to the diffusive regime of the EMI
field.

There are two measures of the maximum depth of investigation for
the EMI sensors on a given model: DOE (McNeill, 1980) which refers
to low induction number (LIN) assumption, and depth of investigation
(DOI) (Christiansen and Auken, 2012) which is based on the full EM so-
lution. The maximum DOE of a DUALEM-421 s sensor is around 6 m
when referring to the LIN approximation (Taylor, 2016). However,
Christiansen et al. (2016) demonstrated with synthetic simulations
that the estimated maximum depths based on linear assumption may
not be accurate. Depending on the subsurface electrical conductivity
range, this depth can be lower or higher than DOE, when full solution
model is considered. For the Alken Enge field case, Christiansen et al.
(2016) showed that the maximum DOI of the sensor can be around
7–9 m in some places which is larger than DOE estimations. As a conse-
quence, the cartesian grid with maximum depth of 10 m considered
here is relevant and ensures satisfying the full solution assumptions.
Bayesian inversion of 6682 × 6 measured ECa data using EMI forward
solver contributes to a CPU-demanding inverse problem. Consequently,
we incorporated the Bayesian inversion with model compression via
DCT using ANN-based forward solver to increase the accuracy and com-
putational speed of the algorithm, which are discussed in the following
sections.

Assuming a subsurface model with n equally spaced layers (regular
grid), the DCT is given by (Ahmed et al., 1974):

G ið Þ ¼ αi

Xn
z¼1

S zð Þ cos i−1ð Þπ 2z−1ð Þ
2n

� �
; αi ¼

1ffiffiffi
n

p if i ¼ 1ffiffiffi
2
n

r
if 2≤ i ≤n

8>><
>>: ð2Þ

where z is vertical axis, i N 0 signifies the column number of the n DCT
coefficients of matrix G (in frequency domain), and matrix S (in space
domain) stores values of the electrical conductivity of eachDCT grid cell.
The matrix G contains both low and high frequency components. We
considered n=12 cells for the DCT grid. The main information of the
DCT stores in the low frequency coefficients (dominant DCT compo-
nents on the top part of the matrix G), i.e., one can recover the original
matrix S by setting the high frequency components of the matrix G to
zero and by applying the inverse of the DCT. Linde and Vrugt (2013)
showed that an unbiased estimate of the properties of a given inverse
problem can be accomplished using appropriate number of dominant
DCT coefficients. They suggested to choose this number of DCT coeffi-
cient as large as computationally feasible. Wright et al. (2017) showed
that around 20% of the total coefficients can be sufficient to establish
an accurate 1D DCT-based inversion. Consequently, we defined 5 cells
on the top of the matrix G for model parametrization. This resulted to
have θ= {G(1),…,G(5)} as an unknownmodel parameter vector, since
the remaining high frequency DCT coefficients in the bottom part of
matrix G were set to zero. Such a model parametrization thus allows
for unbiased parameter estimation. Note that the DCT-based model re-
duction presented in eq. 2 is valid over a regular grid. The 12 estimated
conductivity values (matrix S) were then interpolated to the cartesian
grid (irregular grid) to compute the forward response.

Incorporation of the Bayesian inference withmodel compression via
DCT offers several advantages. Instead of performing the stochastic
sampling in the full parameter space (a 12 layeredmodel), we assumed
that the model properties can be sufficiency described with a much
lower dimensionality. Estimation of the 12 subsurface electrical conduc-
tivity values contributes to an under-determined problem, since the
DUALEM-421 s sensor returns 6 multi-configuration ECa values. While
DCT reduces the number of model parameters to 5, providing an over-
determined inverse problem. Moreover, the low frequency coefficients
of the DCT store the main transform information in such a way that
the first component contains the maximum information content. Such
a capability provides an effective way for assigning the lower and
upper parameter ranges to better guide the search algorithm for conver-
gence (Linde and Vrugt, 2013;Moghadas and Vrugt, 2019). This consid-
erably simplifies posterior exploration in comparison with classical
parameter estimations in space domain (Linde and Vrugt, 2013). Note
that here we are not dealing with a high dimensional inverse problem,
since estimation of 12 conductivity values does not lead to a high com-
putational burden for the algorithm. Nevertheless, integration of the
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DCT with the Bayesian inference not only helps to cast the Bayesian
framework as an over-determined problem, but also better assists the
selection of prior information compared with inversion of the original
12 parameters. We will revisit this topic at a later stage.

To inversely estimate unknown parameters, θ, we employed a sam-
pling routine via Differential Evolution Adaptive Metropolis algorithm
(DREAM) developed by Vrugt et al. (2009). We used DREAM(zs) (Laloy
and Vrugt, 2012) which is based on original DREAM algorithm, but re-
quires only 3 chains for convergence. This algorithm rapidly explores
target distributions by running several Markov chains simultaneously
in parallel for T generations. Convergence of the sampled chains ismon-

itored using the R̂statistic of Gelman and Rubin (1992), which compares
the within-chain and between-chain variance of each parameter.

Convergence can be declared if R̂≤1:2 for each parameter, otherwise a
larger number of generations, T, is required. Interested readers are re-
ferred to Laloy and Vrugt (2012) for detailed description of the
DREAM(zs) algorithm. The DREAM software package in MATLAB
(Vrugt, 2016) was used for our experiment using T=5000 and default
values of the algorithmic variables.

Given ν the total number of offsets, the ECa values of HCP and
PERP modes for each measurement point were grouped together to
construct a 2ν vector of ECa values. The log-likelihood function, l(θ),
is formulated as:

l θð Þ ¼ −
2νð Þ
2

ln
X2ν
k¼1

e2k θð Þ
 !

ð3Þ

In this expression, ek(θ) = σa
meas(k)− σa

mod(k,θ) is the ECa residuals
inwhichσa

meas andσa
mod aremeasured andmodeledmulti-configuration

ECa vectors, respectively. Eq. 3 presents a Gaussian likelihood that as-
sumes residual errors, e(θ), are to be independent and to be described
by a normal probability distribution with a mean of zero and a constant
variance. The root mean square error (RMSE) between the measured
and modeled data is formulated by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ν

X2ν
k¼1

σmeas
a kð Þ−σmod

a kð Þ
h i2vuut ð4Þ

To define the prior information, we first adjusted the minimum
(σmin) and maximum (σmax) conductivity ranges between 2 mS/m
and 100 mS/m, respectively. Afterwards, we determined the upper
and lower bounds of each elements of θ as follows. First,G(1)was scaled
in such a way that the inverse DCT of G(1) was between log(σmin) and
log(σmax) (the values of G(1) contains the maximum information
about the transform). The remaining elements were scaled in a similar
way so that after the inverse transform each component had a corre-
sponding value of log((σmax − σmin)/2) (Linde and Vrugt, 2013).

As mentioned, we formulated the inverse problem in a logarithmic
parameter space to better handle the log-normal distribution of electri-
cal conductivity. It is worth noting that geostatistical prior modeling
also assists to improve the scaling of the low frequency components in
particular, for a multi-dimensional DCT-based Bayesian inference
(Lochbuhler et al., 2015; Moghadas and Vrugt, 2019). We assumed uni-
form prior distributions for the unknown model parameters. Since the
parameter space was defined in the frequency domain, the search algo-
rithm may produce some subsurface models with conductivity values
outside the specified range of 2 − 100 mS/m during the inversion. For
such proposals, a very low likelihood value was assigned to automati-
cally discard them. The DCT-based inversion of the Alken Enge data
sets resulted to 6682 depth-profile electrical conductivity models (1D
models) which were stitched together to build a quasi-3D EMCI.
It is important to reiterate that a probabilistic solution to an in-
verse problem is presented as a posterior distribution. Here, we sum-
marized the results of our Bayesian inference as maximum a posteriori
probability (MAP), mean of the posterior (MEAN), and 95% confidence
interval of the posterior distribution. The confidence interval assists to
investigate the uncertainty estimation and is defined as the difference
between 2.5 and 97.5 percentiles of the posterior distribution. The
Bayesian inference appropriately treats the nonlinearity of the model
and adequately characterize parameter uncertainties. However, with
increasing the number of unknown parameters, the probability of
the prior in the vicinity of the posterior will typically decrease
(Rosas-Carbajal et al., 2014). Moreover, the use of an inadequate
prior distribution can produce unrealistic models and increases the
ill-posedness of the Bayesian inverse problem (Rosas-Carbajal et al.,
2014; Moghadas and Vrugt, 2019). Comparison between MAP and
MEAN solutions facilitates to explore the well-posedness of the prob-
abilistic inversion, as well as appropriate selection of the prior infor-
mation (Moghadas and Vrugt, 2019).

Christiansen et al. (2016) applied a deterministic routine to invert
themeasured ECa values using EMI forward solver based on full solution
of the Maxwell's equation. The maximum depth of the domain was
fixed to 10 m considering a subsurface model similar to the cartesian
grid used here. This non-linear inversion approachwas originally devel-
oped by Auken et al. (2015) and employs a quasi-3D spatially-
constrained algorithm (Viezzoli et al., 2008). Here, we denote the inver-
sion results of the Christiansen et al. (2016) as “Deterministic”.
2.3. ANN-based forward modeling

Nowwe have defined the different building blocks of the DCT-based
Bayesian framework,we are leftwith theANN-based forwardmodeling.
ANN is a supervised machine learning technique applied to extract the
patterns and relationships in data using a conceptual model of the
human brain. The learning and adaptive capacity of the ANN algorithm
makes it appealing for solving many different geophysical problems
(van der Baan and Jutten, 2000; Hansen and Cordua, 2017; Moghadas
and Badorreck, 2019). The ANN architecture is constructed based on
three different neurons including input (), hidden layer, and output ().
The input signals are assembled as numerically expressed information.
They are weighted based on their degree of importance (activation
numbers). After summation of these signals, they are transferred
among different nodes based on their activation number. The activation
continues through the entire neural network, until it reaches the output
layer. We considered a feed-forward ANN using a single hidden layer.
The Bayesian regularization back-propagation algorithm was also
employed to robustly capture the non-linear features of the EMI
model. A sigmoid and linear activation functionwas used for the hidden
and output layers, respectively.

To create anANN-based forward solver,firstwe randomly generated
ND=20,000 subsurface models down to 10 m depth with
discretizations (N=12 layers) similar to the cartesian grid (an N × ND
matrix of conductivity values). We assumed a conductivity range of
2 − 100 mS/m, corresponding to the lower and upper bounds of the
search space in our Bayesian inversion. Latin hypercube sampling
(LHS) method (McKay et al., 2000) was used to generate the training
models considering uniform distribution. The LHS approach applies
stratification of the parameter probability distributions by dividing the
cumulative curve into equal intervals on the cumulative probability
scale. A sample is then randomly taken from each interval of the distri-
bution. This preserves randomness and independence of the samples
and avoids unwanted correlation between parameters. We calculated
the forward responses (eq. 1) for all ND random models considering
both HCP and PERP modes, resulted to generate a 6 × ND matrix of
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multi-configuration ECa values. Then, the input and output layers for
the ANN were constructed as:

Ψ ¼
σ1;1 ⋯ σ1;ND

⋮ ⋮ ⋮
σN;1 ⋯ σN;ND

2
64

3
75;Φ ¼

σHCP
a;1 ρ1ð Þ ⋯ σHCP

a;ND ρ1ð Þ
σHCP

a;1 ρ2ð Þ ⋯ σHCP
a;ND ρ2ð Þ

σHCP
a;1 ρ3ð Þ ⋯ σHCP

a;ND ρ3ð Þ
σPERP

a;1 ρ1ð Þ ⋯ σPERP
a;ND ρ1ð Þ

σPERP
a;1 ρ2ð Þ ⋯ σPERP

a;ND ρ2ð Þ
σPERP

a;1 ρ3ð Þ ⋯ σPERP
a;ND ρ3ð Þ

2
666666666664

3
777777777775

ð5Þ

Fig. 2 presents the schematic of the ANN structure used to simulate
the EMI forward response. We considered the first 60% of the data as a
training, the second 20% as a validation, and the last 20% as a test set.
The training datawas utilized to calculate theweights and biases during
the learning procedure. The errors on the validation data set were regu-
larly monitored to ensure optimal performance of the ANN algorithm.
The test subset was employed to provide an unbiased control over the
network to avoid over- and under-fitting.

Optimal selection of the number of neurons (j) in the hidden layer
plays an important role in ANN architecture. To find the appropriate
number of neurons, we used a trial method based on optimal perfor-
mance. In this regard, the training networkswith j=1, 2,…, 10 number
of neurons in the hidden layer were developed with the same inputs
and outputs. We found that the network with 7 neurons have the best
performance to fully capture the complexity of the system. The whole
network training procedure required a total computational time of
around 3 min, presenting the computational efficiency of the training
stage for ANN proxy forward modeling. During the Bayesian inversion,
the search algorithm generates different realistic and unrealistic pro-
posals to be accepted or rejected by the algorithm. As a result, it is im-
portant that the ANN to be provided with a sufficient set of training
models to perform generalization and to accuratelymimic the function-
ality of the EMI forward solver during the inversion.

Here, we randomly generated the trainingmodels from latin hyper-
cube sampling, considering a uniform distribution with flexible spatial
variability for 12 subsurface conductivity values. The proposed Bayesian
inversion strategy solved the problemwith 5 low frequency coefficients
considering uniform prior for the DCT components. However, generat-
ing the DCT coefficients from a uniform prior does not necessarily lead
to the spatial components with the same probability distributions.
This may be a source of modeling errors during the Bayesian inference.
Indeed, the use of ANN proxy forward solver results in a modeling error
bias. Hansen and Cordua (2017) demonstrated that by increasing the
size of the training set, the modeling error related to using ANN-based
Fig. 2. Schematic of the ANN structure used to simulate the EMI forward response. The
subsurface electrical conductivity (σ1, σ2, …, σN) values were considered as inputs. The
output targets were the simulated multi-configuration ECa values from DUALEM-421 s
sensor.
forward function decreases. For simplicity, we selected a large sample
size for network training and assumed that errors in the ANN-based for-
ward solver were randomly distributed as suggested by Conway et al.
(2019). Alternatively, one can further improve the inversion results by
quantifying themodeling errors such that it can be accounted for during
the Bayesian inference based on the methodology proposed by Hansen
et al. (2014). It is important to note that the ANN training can be per-
formed on the prior of the low frequency DCT components. Such a
proxy modeling requires to generate a large DCT components in fre-
quency domain. However, transforming the coefficients to the spatial
domain generates a large number of out of range subsurface models.
This complicates appropriate definition of the training models within
the stipulated conductivity range. As a result, the network training
was performed on the 12 layered subsurface electrical conductivity
models.

We examined the robustness and accuracy of the trained network
using four different synthetic subsurface multi-layered conductivity
models. The models were randomly generated considering 12 layers
with logarithmically increasing thicknesses down to 10 m depth.
These depth-profile structures, hereafter referred to as Model 1–4, are
presented in Fig. 3. Model 1mimics a subsurface structure with conduc-
tivity range of 2–100 mS/m. This range corresponds to the lower and
upper bounds used for training the network. Model 2 and Model 3 rep-
resent a relatively low (2–30mS/m) and relatively high (70–100mS/m)
conductivity range. These two scenarios were designed to examine if
the ANN-based forward solver is able to accurately simulate the subsur-
face responses for relatively extreme resistive/conductive structures
within the training range. Model 4 with conductivity range of 50–350
mS/m considers a scenario in which the conductivity range is broken
such that the neural network does not have training knowledge for
some parts of the conductivity space.

To further examine the accuracy of the ANN-based proxy modeling
usingDCT parametrization,we inversely estimated electrical conductiv-
ity values from Models 1–3. Two inversion scenarios were considered.
The first approach (Inversion 1) corresponded to the coupled DCT-
based Bayesian inference with ANN-based forward solver using 5 dom-
inantDCT coefficients as unknownparameters. The second scenario (In-
version 2) considered the inversion of 12 electrical conductivity values
using EMI forward solver. Note that we applied no truncation for the
second inversion and considered the lower and upper parameter ranges
between 2 mS/m and 100 mS/m, respectively for all 12 parameters.
These two synthetic inversion scenarios were designed to demonstrate
the interest of model compression for a low dimensional 1D EMI inver-
sion, and to explore the accuracy of the ANN-based forward model for
the Bayseian inference.

3. Results

3.1. ANN results

The ANN algorithm was trained using the synthetic multi-
configuration ECa data generated from 20,000 random subsurface
models. Fig. 4 presents the calculated forward responses from four dif-
ferent subsurface synthetic models with increasing offset on the x-
axis. The theoretical simulations were carried out using HCP
(blue lines) and PERP (red lines)modes. The solid and dashed lines rep-
resent the calculated ECa values using Maxwell-based EMI forward
model (eq. 1) and ANN-based forward solver, respectively.

Regrading Model 1 (Fig. 4 (a)), the ANN-based results agree with
their counterparts calculated using eq. 1. The total RMSE is around
0.07 mS/m, indicating excellent performance of the neural network in
the presence of subsurface conductivity ranges where the training pro-
cedure was implemented. For both models 2 and 3 (Fig. 4 (b-c)), the
trained network successfully simulated the subsurface responses with
total RMSEs less than around 0.3 mS/m. This confirms the robustness
of the ANN-based forward solver to accurately mimic the EMI forward
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response considering different complex subsurface features. Regarding
Model 4 (Fig. 4 (c)), the ANN-based responses present some discrepan-
cies with those calculated by EMI forwardmodel (RMSE= 7.07mS/m).
The last scenario shows that the ANN-based forward model should be
retrained for delineation of subsurface conductivity features that lie out-
side the stipulated training ranges, which consequently need to match
the expected electrical conductivity distribution of the investigated
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test site. The synthetic simulations presented here demonstrated that
the ANN proxy function equates to the Maxwell-based EMI forward
solver. This ensures an accurate estimate of the properties of a given
EMI Bayesian inverse problem within the ANN training range.

To compare the evaluation time of the forward modeling routines,
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synthetic model presented in Fig. 3(a) for the simulations. Note that our
EMI forward solver is a built-in CMEX filewhich is called fromMATLAB.
The trained network is also a MATLAB function whichwas converted to
a C MEX file to further accelerate the evaluation process and to have
consistency of comparisonwith the EMI forward solver. The simulations
were carried out on one core of an office PC (system: Intel(R) Core(TM)
i7–6700 CPU, 3.40 GHz, 16,0 GB RAM). The EMI forward solver com-
putes roughly 400 model responses per second. This value is increased
to around 150,000 using ANN-based forward solver, demonstrating
the superior computational efficiency of the neural network for 1D
modeling, once the network is trained.

To further illustrate the computational efficiency of the neural net-
work, we repeated the simulations considering 50 subsurface models
together. These simulations are of strong practical relevance and can
mimic quasi-2D EMImodeling frameworks using ECa transectmeasure-
ments. Given a 1D earth model, a quasi-2D EMI inversion requires to
discretize the subsurface domain of the transect in a large number of
grid cells. The conductivity of each grid cell is then determined byfitting
the data to the modeled ECa values calculated by incorporating all 1D
subsurface models along the transect together (Moghadas and Vrugt,
Model 1
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Fig. 5. Inversely estimated subsurface electrical conductivity profiles using a-c) DCT-based Bay
conductivity valueswith EMI forwardmodel. The first, second, and third columns present the re
the synthetic subsurface model, MAP, and MEAN solutions, respectively. The gray areas repr
synthetic and modeled ECa data obtained from MAP solution is shown by RMSE (MAP). The co
2019). The second set of simulations benefited as well from parallel
computing (on four separate threads) for EMI forward calculations.
The EMI forward solver computed roughly 10model responses per sec-
ond for 50 subsurface profiles together using parallel computing. For
such a scenario, the ANN-based forward solver returned around
70,000models per secondwithout parallelization. The synthetic simula-
tions presented here thus manifest the computational efficiency of the
neural network in comparison with the EMI forward model and ensure
rapid multi-configuration ECa calculations.

3.2. Inversion results: synthetic data

Fig. 5 shows the inversely estimated subsurface electrical conductiv-
ity profiles using a-c) DCT-based Bayesian inference with ANN proxy
forward function; d-f) Bayesian inversion of 12 electrical conductivity
values with EMI forward model. The first, second, and third columns
present the results from synthetic Model 1, 2, and 3, respectively. The
black, red, and blue lines represent the synthetic subsurface model,
MAP, and MEAN solutions, respectively. The gray areas show the 95%
confidence interval of the posterior distributions. The RMSE between
odel 2
AP): 0.20 mS/m
AN): 0.41 mS/m
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esian inference with ANN proxy forward function; d-f) Bayesian inversion of 12 electrical
sults from syntheticModel 1, 2, and 3, respectively. The black, red, and blue lines represent
esent the 95% confidence interval of the posterior distributions. The RMSE between the
rresponding value fromMEAN solution is presented by RMSE (MEAN).
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the synthetic and modeled ECa data obtained from MAP solution is
shown by RMSE (MAP). The corresponding value from MEAN solution
is presented by RMSE (MEAN).

In the first place, notice the superiority of the first inversion results
compared with those obtained from the second scenario. The RMSE
values of Inversion 1 are less than their counterparts from Inversion 2.
Regarding theDCT-based inversionofModel 1 (Fig. 5(a)), somediscrep-
ancies between the syntectic, MAP and MEAN solutions can be seen.
This is because Model 1 considers larger conductivity contrasts in com-
parison with the two other models. The disagreement between the in-
versely estimated and the synthetic models are more pronounced for
deeper layers, where the EMI field presents lower sensitivity. The esti-
mated conductivities for the second and third models (Fig. 5(b-c)) are
in agreement with the synthetic values (the RMSEs are less than 0.5
mS/m).

The second inversion scenario resulted to irrelevant subsurface
models with large RMSEs up to around 8mS/m. A large discrepancy be-
tween the synthetic models, MAP and MEAN solutions is observed. The
reasons for superiority of thefirst inversion than the second scenario are
two folds. First, Inversion 1 and 2 considered 5, and 12 unknownmodel
parameters, respectively, incorporating 6 ECa values. As a result, thefirst
inversion was formulated in an over-determined framework, while the
second scenario was under-determined. Second, the first inversion
benefited from scaling of DCT elements, providing better guide for the
search algorithm to converge in comparison with the Inversion 2 that
considered the same prior ranges for all parameters. Comparison be-
tween the 95% confidence intervals of the two Bayesian inversion sce-
narios clearly confirm this claim. This study further demonstrated the
accuracy of the ANN-based forward modeling for inversion of multi-
configuration ECa data.
Fig. 6. a) Subsurface EMCI abstained from the deterministic approach (Christiansen et al.,
2016); DCT-based Bayesian inversion results: b) maximum a posteriori probability
(MAP); c) mean of the posterior distribution (MEAN); d) 95% confidence interval of the
posterior solution.
3.3. Inversion results: experimental data

The measured multi-configuration ECa values were inverted for all
6682 data sets using coupled DCT-based Bayesian inversion and ANN-
based forward solver. The total evaluation time was around 12 h using
one core of the office PC. Fig. 6 shows the quasi-3D subsurface EMCIs ob-
tained from a) deterministic approach, b) MAP solution, and c) MEAN
solution. Fig. 6(d) also presents the 95% confidence interval of the pos-
terior distribution. These results highlight several important findings.
First, a close agrement between the MAP and MEAN solutions can be
seen. This manifests the well-possedness of the inverse problem with
the posterior conductivity image that remains in close vicinity of the
MAP solution. Second, despite consistency between the Bayesian and
deterministic solutions, there are some discrepancies between them.
Moreover, the deterministic approach provided a more smoothed sub-
surface EMCI in comparison with the Bayesian inversion results. This
is not unexpected since the deterministic algorithm employs spatially-
constrained technique. Despite that, both methodologies resolved al-
most similar subsurface features. Third, the 95% confidence interval of
the posterior distribution appears rather small close to the surface and
tends to increase deeper in the domain. This is due to the fact that the
sensitivity of the EMI decreases by increasing the depth. Consequently,
using the irregular parametrization for calculating the forward response
(cartesian grid) appears more desirable over a regular one, since it in-
troduces higher resolution cells on the top of the domain (Moghadas,
2019).

Fig. 7 presents the inversion results in terms of probability distribu-
tion (Pd [%]) plots for a) deterministic, b) MAP, c) MEAN, and d) 95%
confidence interval. The probability distribution diagrams assist to eval-
uate the overall variations of subsurface conductivity as a function of
depth and facilitate a more elaborative comparison between different
inversion scenarios (Behroozmand et al., 2019). These probability distri-
butions were calculated by aggregating the inversely estimated electri-
cal conductivity values of all soundings for each depth.
Regarding the deterministic approach (Fig. 7(a)), two conductivity
zones with conductivity ranges of 2–10 mS/m (Pd N 70%) and 20–50
mS/m (Pd≃ 40%) within the 0–1.6 m depth can be observed. As we
will see later, these zones are representative of a sandy structure for
the shallow layers. The depth interval of 1.6–2.4 m reveals two zones
with conductivity ranges of around 2–20 mS/m and 20–50 mS/m,
representing sand and organic silt, respectively. The conductivity distri-
bution diagram presents a conductivity between 10 and 30 mS/m for
2.4–3.5m depth. For layers deeper than 3.5m, theminimumof the con-
ductivity is around 20 mS/m. The maximum conductivity starts from
around 35 mS/m and increases downwards up to around 50 mS/m.
The deterministic solution, MAP (Fig. 7(b)) and MEAN (Fig. 7(c)) of
the posterior distributions demonstrate almost similar Pd patterns for
the corresponding layers despite some small discrepancies. These dif-
ferences are more pronounced for the layers deeper than 5 m since
the sensitivity of the EMI signal is considerably impaired in deeper



Fig. 7. Probability distribution (Pd [%]) plots obtained from a) deterministic solution (Christiansen et al., 2016); b) MAP; c) MEAN; and d) 95% confidence intervals.
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parts of the domain. The 95% confidence interval (Fig. 7(d)) is relatively
small close to the surface and tends to increase downwards since the
EMI depth sensitivity is a function of depth.

Fig. 8 shows the map of RMSE values between the measured and
modeled data calculated using a) deterministic results, b) MAP, and
c) MEAN, respectively. All scenarios show acceptable overall perfor-
mances of the inversions by total RMSEs less than 2 mS/m. However,
some points suffer from over-fitting which is due to the fact that the
Gaussian log-likelihood function (eq. 3) does not include any regulari-
zation term.

3.4. Geological interpretations

Fig. 9 compares the inversion results as a cross-section correspond-
ing to the selected transect in Fig. 1. This transect was located in the vi-
cinity of the borehole surveys (Christiansen et al., 2016). Fig. 9
(a) presents the RMSE between themeasured and modeled ECa values.
Fig. 9(b-e) show the deterministic solution, MAP, MEAN, and confi-
dence interval, respectively. The DOI obtained from the deterministic
Fig. 8. The map of RMSE values between the measured and modeled data calculated using a
inversion is denoted by a dashed line. Note that DOI provides amore ac-
curate estimation of the depth sensitivity than DOE (Christiansen et al.,
2016).

The RMSE values (Fig. 9 (a)) demonstrate the rather well perfor-
mances of all scenarios. These results reconfirm our previous inference
regarding the well-posedness of the Bayesian approach since the MAP
and MEAN images show almost similar subsurface patterns. The confi-
dence interval is also small close to the surface and tends to increase
downwards. Although the deterministic and Bayesian results are in
close agreement, some discrepancies can be observed between them.
For X N 30 m, the MAP solution (Fig. 9 (c)) shows some conductivity
bounds (15–20 mS/m) around 6 m depth. However, the deterministic
routine provides a smooth conductivity model due to the lateral and
vertical constraints. The conductivity bounds were not appeared in the
subsurface model based on the mean of the posterior distribution. This
area is located bellow the DOI values where the EMI does not have
enough sensitivity. These cross-sections highlight several small-scale
geological features of the archeological importance. Near the beginning
of the transect (X b 30 m), a low conductive region (σ b 10 mS/m) is
) deterministic results (Christiansen et al., 2016); b) MAP; and c) MEAN, respectively.
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found on the top of the domain down to around 2 m depth. Previous
borehole excavations reported by Christiansen et al. (2016) suggests
the sandy structure for this unit.Moreover, after X=100m, a conductive
zone with σ around 10 mS/m (the small red spot) is observed which is
attributed to the Paleo stream channel. The rest of the sections reveal a
dry peat sediments with electrical conductivity range of 10–25 mS/m
close to the surface with around 30 cm thickness. Below the shallow
sand/peat layer, the lake sediments and organic rich silts are found as
high conductive regions (25–100 mS/m).

We calculated the mean electrical conductivity (σ) maps for two
depth-intervals of 0–1 m, and 1–2 m which are presented in Fig. 10.
For simplicity, we considered 4 different regions on the maps denoted
by A1-A4. Mean conductivity/resistivity plan viewmaps are commonly
used to present the subsurface geophysical models at specific depth in-
tervals. Previous investigations based on borehole measurements
(Christiansen et al., 2016) suggest the presence of dry peat for the
0–1 m interval. Moreover, the Paleo stream channel appears as a
yellow-red bound on the top of the A1 area. Regarding the 1–2 m
depth interval, the estimated σ structures are attributed to organic silt
(A1), dry peat (A2, and A4), and sand (A3). Furthermore, the inversely
estimated maps with the Bayesian inference are in a close agreement
with their counterpart from the deterministic inversion. Regarding the
A3 region, the Bayesian inversion presents rather high uncertainties
for parameter estimations since the MAP and MEAN solutions provide
relatively different conductivity values.
4. Discussion

Before we move on to the conclusion section, we would like to dis-
cuss and reiterate a few key points that may be of practical concern
and/or importance. In this study, the lower and upper bounds used for
generating the random subsurface conductivity models for ANN train-
ing were selected in such a way to include a relatively large range
(2–100 mS/m). According to our theoretical simulations, for forward
and/or inverse modelings outside this range, the ANN algorithm with
a larger range should be retrained to mimic the functionality of the for-
ward solver for the new range. Hansen and Cordua (2017) showed that
the number of randomly selected models should be larger than 5000 to
build a trained network that can accurately mimic the geophysical for-
ward response. Indeed, assigning the appropriate number of training
models to accomplish an acceptable network performance depends on
a specific application. Nevertheless, a rough rule of thumb is to train a
neural network with a data set larger than 5000 samples for effective
generalization of the problem (Puzyrev, 2019). Consequently, the
20,000 generated random models is adequate and ensures an accurate
ANN-based forward modeling.

The ANN-based forward solver used here was trained based on a 12
layered subsurface model. Selection of the number of subsurface layers
is a trade-off between model complexity and resolution. A dense
discretized grid introduces more input parameters for the neural net-
work to be related to the forward response. Training a network to accu-
rately mimic the EMI response based on such a dense subsurface
layering structure requires a more complex ANN architecture. Never-
theless, the use of a dense grid for EMI inversion does not necessarily
improve the results, since the EMI operates in the diffusive regime and
vertical resolution of the ECa data is somewhat limited. Consequently,
the choice of a rather coarse grid is adequate for accurate subsurface im-
aging fromEMI data. This simplifies considerably the training procedure
to build an ANN-based forward solver.

We juxtaposed the result of our proposed inversion strategy with
the subsurfacemodel obtained by the quasi-3D spatially-constrained al-
gorithm used by Christiansen et al. (2016). The results demonstrated
that there are relatively small discrepancies between the two ap-
proaches for 1D electrical conductivity modeling, presenting a rather
quasi-linear problem. Yet, the use of Bayesian inversion for subsurface
imaging from multi-configuration EMI data can be a preferable choice.
The reasons are two folds. First, convergence of the deterministic
method is highly sensitive to the initial model. Second, Bayesian infer-
ence provides uncertainty of the posterior distribution which is more
informative than the single best estimation of the deterministic solu-
tion. Moghadas and Vrugt (2019) showed that appropriate selection
of the prior distribution for DCT-based probabilistic EMI inversion sig-
nificantly improve the results with posterior mean that remains in
close vicinity of the MAP solution. Here, appropriate choice of the
prior information (DCT coefficients in frequency domain) provided pos-
terior distributionwith reduced variance. It isworth noting that a signif-
icant effort has been made to develop full 3D EM forward solutions. For
instance, Guillemoteau and Tronicke (2016) developed a fast 3Dmodel-
ing algorithm formulated in the hybrid spectral-spatial domain for loop-
loop EMI systems. Guillemoteau et al. (2017) also successfully validated
this methodology using field data measured by a DUALEM21 sensor.
Here, the multi-configuration EMI measurements were carried out
with a line spacing varying between 1 and 4 m. Given the DUALEM421
inter-coil spacings, such a data acquisition strategymakes the relocation
of the anomalies between the adjacent lines rather complicated. As a
consequence,we assumed that 1D forwardmodelingwas appeared suf-
ficient tomodel spatial variations of the electrical conductivity, since the
measurement meshing was not sufficiently small to perform a full 3D
inversion.

The use of an ANNproxy forwardmodeling opens up awide-arsenal
of probabilistic inversions for large-scale subsurface characterizations.
This is particularly important in the present context as Bayesian



Fig. 10. Mean electrical conductivity (σ) maps in a depth of 0–1 m (first row) and 1–2 m (second row). The first, second, and third columns correspond to the deterministic solution
(Christiansen et al., 2016), MAP, and MEAN of the posterior distributions, respectively. The A1-A4 denote different regions on the maps.
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inversions are often associated with computationally expensive model-
ings. The applicability of this approach can be also extended to the other
existing geophysical methods such as airborne techniques for rapid and
accurate multi-dimensional subsurface modelings from large-scale
measurement.
5. Conclusion

In this paper,we coupledDCT-basedBayesian inversion of themulti-
configuration ECa data with the ANN approach for rapid and accurate
delineation of the subsurface structures. We applied this methodology
to invert the ECa data collected over the 10 ha study site in the Alken
Enge area of Denmark. This study demonstrated that the EMI forward
model based on full solution of Maxwell's equations can be successfully
replaced by a trained neural network. The ANN algorithm translates the
complex nonlinear relationships between different elements of the EMI
forwardmodel to the weights and biases in the trained network. Such a
proxy forward function is even faster than parallel computation of the
EMI forwardmodel. This is particularly desirable for the Bayesian inver-
sion of ECa data for large-scale surveys using full-solution forward
solver, since this approach requires rigorous evaluations of the model.
Moreover, the trained network demonstrated a well performance for
resistive/conductive features within the training range. However, in
the presence of the subsurface conductivity structures where the
ANN-based forward solver does not have training knowledge, the net-
work should be retrained with new conductivity ranges. Coupled DCT-
based Bayesian inference and neural network for large data set inver-
sion from Alken Enge area manifested the computational efficiency
and accuracy of the proposed approach. This methodology thus appears
promising for large-scale subsurface electrical conductivity imaging
using multi-configuration EMI measurements.
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