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Inversion of large-scale time-domain electromagnetic surveys are computationally expensive and time consum-
ing. Deterministic or probabilistic inversion schemes usually require calculations of forward responses, and often
thousands tomillions of forward responses are computed.Wepropose amachine learning based forwardmodel-
ling approach as a computationally feasible alternative to approximate numerical forward modelling where a
neural network is employed tomodel the relationship between the resistivitymodels and corresponding forward
responses. For training of the neural network, we generated forward responses using conventional numerical al-
gorithm for 93,500 resistivity models derived from different surveys conducted in Denmark representing typical
resistivities of sedimentary geological layers. The input resistivitymodels and the network target outputs, i.e. for-
ward responses, are scaled using a novel normalization strategy to ensure each gate is equally prioritized. The
performance of the network is evaluated on two test datasets consisting of 8942 resistivity models by comparing
the forward responses generated by the neural network and the conventional algorithm. We also measure the
performance for the time derivatives of forward responses, i.e. dB/dt, by incorporating a system response. The re-
sults show that the proposed strategy is at least 13 times faster than commonly used accuratemodellingmethods
and achieves an accuracy of 98%within 3% relative error, which is comparable to data uncertainty. Additional ex-
periments on surveys from two other continents show that the results generalize in similar geological settings.
Thus, under certain geological constraints, the proposed methodology may be incorporated into the pre-
existing inversion structures, allowing for significantly faster inversion of large datasets.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In exploration geophysics, the goal is to extract information about
the subsurface from geophysical data. Translating geophysical data
into useful information usually requires geophysical inverse model-
ling, the end result being a model of the target physical properties in
the Earth's subsurface. The transient electromagnetic (TEM) method
is a non-invasive geophysical method used to image the spatial vari-
ability of the electrical resistivity, or equivalently the conductivity, in
the subsurface which reflects the geological structures. Hence, it is
an effective non-invasive approach for mapping near surface geology,
0, Department of Geoscience,
ark.
and it has found applications in groundwater mapping (Fitterman and
Stewart, 1986), mineral exploration (Daniels and Dyck, 1984), saltwa-
ter intrusion mapping (Pedersen et al., 2017), permafrost mapping
(Foley et al., 2019), etc.

The basic principles of TEM are well understood. A strong current is
generated in a transmitter coil and is then rapidly turned off. During
turn-off, a time varying magnetic field is produced, which in turn in-
duces eddy currents at depth, which generate their own secondary
magnetic field. The strength of this secondary magnetic field is mea-
sured as a function of time at the surface by a receiver coil. The magni-
tude and time-dependence of the secondary magnetic field holds
information about the subsurface from which they originate. In order
to generate images of subsurface properties from TEM data, inverse
modelling is employed. Here, the end product is an estimate of the elec-
trical resistivities of layers in the subsurface, consistent with the ob-
served magnitude and time dependence of the secondary magnetic
field (Auken et al., 2015).
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Fig. 1. Network architecture of an ANN with two hidden fully-connected layers.
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TEM data inversion provides an estimate of the subsurface proper-
ties by iteratively updating and refining an initial subsurface model
until an optimalmodel is obtained. Using the initialmodel, a forward re-
sponse is numerically calculated using a set of equations that represent
the influence of the coil geometries, subsurface properties, and instru-
ment related factors, such as transmitter waveforms and filters. The
model is considered to be optimal if the observed data and the calcu-
lated forward data agreewithin someuncertainty bounds. If not, the ini-
tial model is adjusted to minimize the error between the calculated and
measured response. Model updates are typically performed iteratively
using a Gauss-Newton methodology, and continue until either an ac-
ceptable data fit criterion is satisfied or the data fit fails to improve
(Tarantola, 2005).

TEM inverse modelling based on numerical forward responses, re-
quires several computational steps including inverse Fourier or Laplace
transforms and Hankel transforms of kernel functions in the frequency,
or Laplace/wavenumber domain (Auken et al., 2015) and can be a com-
putationally expensive task. Especially in the computation of the Jaco-
bian matrix used in the iterative model update, a significant number
of forward responses are required. As such, forward response computa-
tion speeds are often the bottleneck in TEM inversions. Additionally,
TEM surveys often produce massive amounts of data. Hence, inverse
modelling based on fast forward responses using machine learning
could have significant potential for improving the computational effi-
ciency of geophysical inversion schemes.

Several studies using machine learning for forward modelling have
been presented in literature: Artificial Neural Networks (ANNs) for for-
ward modelling of electro-kinetic responses (Ardjmandpour et al.,
2011), scatterometer forward responses for weather prediction
(Cornford et al., 2001) and forward modelling for seismic waveform in-
version (Fu et al., 2019), Modular Neural Network (MNN) formodelling
borehole electrical resistivity in a layered formation (Zhang et al., 2002)
and deep neural network based forwardmodelling of borehole resistiv-
ity measurements for geo-steering (Shahriaria et al., 2019).

Machine learningbasedapproacheshavealsobeenused for inversion:
ANNs for seismic amplitude-variation-with-offset (AVO) (Mogensen,
2001) and surfacewave inversion (Hou et al., 2019),MNNs formodelling
Cole-Cole parameters of TEM data (El-Kaliouby et al., 2001), pruning
Bayesian neural networks for the inversion of electrical resistivity
imaging (Jiang et al., 2016), deep learning based inversion, coined
InversionNet (Wu et al., 2018) for full waveform inversion, 1-D
Convolutional Neural Networks (CNNs) (Das et al., 2019) for seismic and
formarine controlled-source EMdata (Puzyrev et al., 2019).

While it may be possible to use a neural network directly for inver-
sion, we elect to create a network for computing faster forward re-
sponses instead. The forward response is a one-to-one mapping, while
inversion must deal with the non-uniqueness of the TEM inversion,
where noise is also an important factor. Furthermore, such an approach
would require training on individual systems as the data are system
specific. However, alternate strategies for forward modelling would
allow us to keep an inversion structure that is already well established
(Auken et al., 2015), and may be incorporated into any inversion
algorithm.

In this paper, we present an approach for modelling the forward re-
sponses of a ground-based TEM system using a standard 40 m × 40 m
central loop configuration by deploying a fully connected feed-
forward neural network, coined Fast Forward Modelling (FFM). FFM
aims to replace the computationally expensive numerical forward
modelling by simple matrix operations in order to provide a computa-
tionally efficient alternative. The input of the FFM is the subsurface re-
sistivity model while the output is the magnitude of the system
independent secondary magnetic field, i.e. the B-field, produced for a
step-response TEM calculation. It should be noted here that the target
output is the magnitude of the B-field itself and not the time derivative
of the B-field. In order to verify the complete performance of the for-
ward responses, a system impulse response is incorporated after the
2

system independent forward responses are generated. We show that
by considering this alternative approach, a significant speed-up factor
is realized while achieving satisfactory performance accuracy, ensuring
the suitability for use in inversion schemes.

2. Methods and methodology

As previously mentioned, inverse modelling is the key to extract
meaningful information from TEMmeasurements, and any inversion
scheme requires a forward modelling procedure. The traditional ap-
proach for forwardmodelling is either an analytical expression or, in the
case of TEM, a numerical procedure (Auken et al., 2015; Christensen,
2002;Ward andHohmann, 1988).

The idea behind FFM is that these hefty computations are replaced
by a machine learning algorithm, which maps the inputs (resistivity
model parameters) to the outputs (B-field), resulting in a significant
speed-up to calculate time-domain forward responses that are suffi-
ciently accurate to be used in geophysical inversion algorithms. Addi-
tionally, to make our approach more generalized, we use the neural
network to generate forward responses that are independent of the sys-
tem response, as it may vary depending on the instrument configura-
tion. In the end, to incorporate the system response, the waveform is
applied according to the convention used in (Fitterman and Anderson,
1987):

V tð Þ ¼ ∑
n−1

i¼1

Aiþ1−Ai

tiþ1−ti
B½ �t−tiþ1

t−ti ð1Þ

where A is the amplitude of waveform, B is the secondarymagnetic field
produced for a step-response TEM, n is the total number of waveform
data points and t represent the gate times of B.

2.1. Artificial neural networks

Inspired from biological neural networks, ANNs “learn” to perform
specific tasks by considering a set of examples without being explicitly
programmed (Chen et al., 2019). ANNs are composed of connected
units generally referred to as artificial neurons, which aim to loosely
model the biological brain. Generally, neurons are organized in layers,
and all neurons of one layer are connected to all the neurons of
neighbouring layers. ANNs use a supervised learning technique called
backpropagation for training (Rumelhart et al., 1985). A typical struc-
ture of an ANN is shown in Fig. 1.

The underlying principle of an ANN is fairly simple and is briefly de-
scribed here. Consider an input vector xwithm elements and n neurons
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in the hidden layer. Then, the output of ith neuron in the hidden layer is
given by:

yi ¼ f i ∑
m

j¼1
wijxj þ bi

 !
ð2Þ

wherewij are weight factors, bi is a bias, and fi is the activation function
that adds non-linearity to the system and should be chosen to resemble
the characteristics of the underlying problem.

Neural networks are widely used for a range of applications across
science and engineering in computer vision (LeCun et al., 2010),
healthcare (Alloghani et al., 2019), time-series forecasting (Sezer et al.,
2019), etc. They are also applied in many geoscience applications and
have great potential in forward and inverse modelling for the approxi-
mation of numerical simulations and automated geoscientific process-
ing schemes (Bergen et al., 2019; Reichstein et al., 2019).

ANNs provide the means to model the relationship between inputs
and outputs without the need of knowing the physical model of the un-
derlying problem. The relationship, which represents the physical
model, is inherent in the input and output pairs that are fed to the
ANN for training. Once trained, the ANN can predict the output for any
input, and are, depending on the network size, computationally effi-
cient. This characteristic prompts us to consider the use of neural net-
works in forward modelling of ground-based TEM data, where input
and output pairs of the forwardmapping are fed to the network for pre-
diction. It should be noted here that proper data normalization is a key
criterion for improved network convergence (Yan and Au, 2019).
Hence, the input and output pairs are normalized before being given
to the neural network for training.

2.2. Data normalization

The network input consists of a 30-layer resistivity model with log-
increasing thicknesses with top layer thickness of 2.1 m and a depth to
last layer boundary at 250 m. The layer thicknesses are fixed and are
therefore not considered as an input parameter. A generalized approach
would consider thickness as an input, since it can vary depending on the
application, but inversions with predefined layer thicknesses, often
called multi-layer or smooth, inversions are common in TEM. Addition-
ally, we consider TEM responses from 10−7 s to 10−2 s, with 14 gates
per decade in time.

It is practical to consider logarithmic variations in resistivity, as the
sensitivity of the forward response does not vary linearly with changes
in resistivity. For example, a change in resistivity from 5 Ωm to 10 Ωm
would lead to much larger variation in data space than a change from
Fig. 2. Three examples of resistivity models and associated B
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500 Ωm to 1000 Ωm. Therefore, we apply the logarithmic transform
on the resistivity model before scaling it between [a, b] using eq. (3)
for better optimization. In our case, [a, b] corresponds to [−1,1].

Rn ¼ aþ b−að Þ log 10 Rð Þ− log 10 Rminð Þð Þ
log 10 Rmaxð Þ− log 10 Rminð Þ ð3Þ

where Rn is the normalized resistivity model of R, Rmin is the minimum
resistivity value and Rmax denotes the maximum resistivity value, both
obtained from the training dataset.

Theneuralnetwork targetoutput, i.e. theB-field,hasadynamic range
spanning several orders of magnitude, and gate values at late times are
relatively close to zero in comparisonwith the early times (see Fig. 2b).
Therefore,thestandardscalingnormalizationontheB-fieldisnotoptimal
asthe late timeswouldhave little tonoimpactwhenthenetwork isbeing
trained.We also do not consider the typical logarithmic transform of the
data, as this effectively stretches the dynamic range of the small values
while shrinking the dynamic range of large values (see Fig. 2c).

The logarithmic transform is also not well-suited to data containing
sign changes, which may be encountered in offset geometries or in the
presence of induced polarization effects. Instead, we propose to normal-
ize each gate of the B-field using eq. (4) resulting in each gate value
being weighted equally.

BN tð Þ ¼ aþ b−að Þ B tð Þ−Bmin tð Þð Þ
Bmax tð Þ−Bmin tð Þ ð4Þ

where BN(t) are the normalized gate values of B(t) while Bmin(t) and
Bmax(t) is the minimum and maximum dynamic value for each gate at
time t respectively.

The output of the neural network is de-normalized using the same
parameters by manipulating eq. (4). However, due to the low dynamic
range of the target outputs, rounding/truncation errors lead to kinks
in the B-curve. These subtle kinks amplify the errorwhen the system re-
sponse is added to the output signal using eq. (1). Hence, it is necessary
to post-process the de-normalized output by a smoothing method.

2.3. Neural network output post-processing

The de-normalized neural network output is processed with a lo-
cally estimated scatterplot smoothing (LOESS) algorithm that uses a
weighted linear least squares fit and a 2nd degree polynomial model
(Cleveland and Devlin, 1988). LOESS is developed based on classical
methods, such as linear and nonlinear least squares regression. For
each data point, a second order polynomial is fit in a local window of
the data. Weighted least squares is used to fit the polynomial, where
-fields (a) Resistivity models, (b) B-field B (c) log10|B|.
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higher weights are assigned to data points in the vicinity of the estima-
tion point, and lower weights are allotted to distant data points. The
local polynomial is then evaluated by using the dependent variable for
each data point to obtain the values of the regression function. Typically,
a tri-cubic function is used to compute the regression weights for each
data point within a local window.

wi xð Þ ¼ 1−
x−xi
d xð Þ
���� ����3

 !3

ð5Þ

where x is the point to be estimated that is associatedwith the response
value, d(x) is the distance between data points xi and x. Heuristic analy-
sis shows that, in our case, the local window size of 15 gate times results
in the best smoothing results.

2.4. Proposed neural network architecture

Weuse a four-layered fully-connected feed-forward network archi-
tecture, where the neurons in the first layer correspond to the number
of inputs (the resistivity value in each of the 30 depth layers), yields 30
input neurons. The second and third layers are the hidden processing
layers, and have 260 and 180 neurons respectively. The number of neu-
rons in the hidden layers are chosen empirically. The fourth layer,
representing the output layer, has 71 neurons which correspond to the
number of gates of theB-field. Obviously, one can arguewhy this specific
architecture is chosen. In our experience, not much improvement is
gainedwhendeepernetworkarchitecture isused.Additionally, heuristic
analysis shows that the selected number of neurons in the hidden layers
gives the best performance.

A hyperbolic tangent function, i.e. tanh-function, is used as the acti-
vation function for eq. (2) in the hidden layers to add non-linearity to
the system (Cybenko, 1989). This activation function is well suited for
the data ranging between −1 and + 1 as it smoothly approaches −1
as x goes to −∞ and 1 when x goes to +∞. The tanh-function is also
zero centred, which improves the modelling of strongly negative/posi-
tive and neutral values. Lastly, at the output layer, a linear activation
function is selected for regression.

Once the network architecture is defined, the next phase is to
determine the weights and biases that correspond to the features
that relate input with the target outputs. The weights and biases of
the network are updated iteratively until a good relationship be-
tween the target outputs and inputs is found. For this purpose, we
use the scaled conjugate gradient (SCG) algorithm to update the net-
work weights by backpropagation. The SCG method generally per-
forms well for the networks with a large number of parameters
(Chel et al., 2011). We consider using the full-batch algorithm to
avoid the tuning of the additional parameter, i.e. the mini-batch
size, as its performance in comparison to the mini-batch algorithm
with different batch sizes is similar (Zheng et al., 2016). This trade-
off is achieved at the cost of more training time.

Rather than assigning the initial weights randomly, we use the
Nguyen-Widrow initialization algorithm (Nguyen andWidrow, 1990)
that approximately distributes the active region of each neuron in the
layer evenly across the input space (Andayani et al., 2017). Small num-
bers of random values are assigned in Nguyen-Widrow initialization
prior to backpropagation, which helps reduce the time it takes to train a
network. If theinitialweightsare toolarge, theneuronswill fall intoasat-
uration region,where thederivative values of theactivation functionare
small. If theweights are too small, the valueof the givenneuronswill ap-
proach to zero, resulting in diminishing gradients, causing little to no
learning (Mishra et al., 2014).

Lastly, the goal of the proposed forward modelling approach is to
minimize the error between the actual measurements and the predic-
tions made by the network. Hence, we define the loss function as the
sum of the squares error (SSE) as in eq. (6).
4

E ¼ ∑
N

i¼1
xi−bxi� �2 ð6Þ

where xi is the target output,bxi is the predicted output andN is thenum-
ber of samples.

A value closer to 0 indicates that the model has a smaller random
error, and the fit will be more useful for prediction, similar to the pro-
cess of geophysical inversion.

3. Results and discussion

We have used MATLAB 2019b on a systemwith an Intel Xeon Gold
6132 CPUwith 2.6GHz, and three NVIDIA GeForce RTX 2080Ti GPUs for
training the neural network. As we have used a supervised learning
model,werequireadatabaseof inputs, i.e. theresistivitymodels, andcor-
responding targets, i.e. the B-fields. The database comprises of 112,964
resistivitymodels acquired from various tTEM (Auken et al., 2018) sur-
veys spread across Denmark, collected by the HydroGeophysics Group
(HGG)atAarhusUniversity,Denmark.ThetTEMsystemisspecificallyde-
signedfordetailedgeophysicalmappingoftheshallowsubsurface. Ituses
a 2m×4m transmitter coil and a z-component receiver coil in an offset
configuration fromthetransmitter, andis towedbyanall-terrainvehicle.

The datasets represent different Quaternary sedimentary environ-
mentsandspanawiderangeofpossibleDanishgeologicalenvironments.
Note that the tTEM system can image to depths of approximately 100m,
which is shallower than the40m×40mcoincident TEMsystemconsid-
ered in thiswork. To translate thesemodels to a depth interval relevant
for the 40 m × 40 m case, we scale the depths of each model to reach
250m. This procedure is done to provide a larger trainingdataset of geo-
logically plausible resistivitymodels for the 40m×40m case. Although
each individual model has been manipulated from those observed in
thefield, avertical stretchingis still able toproduceageologically realistic
scenario.

The database is shuffled prior to dividing it into a training, a valida-
tion, and a test set. A total of 93,500 models are used for training,
while 16,500 and 2964 models are used for validation and testing pur-
poses, respectively. We also include an entirely different tTEM survey
conducted in Gedved, an area in central Denmark, consisting of 5978 re-
sistivity models stretched in the same way. The target outputs, i.e. the
forward responses, for the corresponding resistivity models were com-
puted using AarhusInv (Auken et al., 2015). Fig. 3 shows the prevalence
of resistivity values for the data used in this study.

The data is normalized by acquiring Rmin, Rmax, Bmin(t) and Bmax(t)
from the training dataset and applying eq. (3) and eq. (4). To ensure
that our FFM covers the entire dynamic range of all possible B-fields,
the values of Bmin(t) and Bmax(t) are extended by 30%. Training the net-
work on the 93,500 samples took ~3 h, with an early stopping criterion
to avoid overfitting. The early stopping criteria refers to the pointwhere
the validation error starts to increase, while the training error is still de-
creasing. The training and validation loss of the networkwith regards to
time, while training is shown in Fig. 4, which shows no indication of
overfitting.

The output of the neural network is de-normalized using the same
parameters by manipulating eq. (4). To evaluate the performance of
our FFM, we use the resistivity models from the test set and the Gedved
survey. The Gedved survey, which is completely unseen to the network,
would give a good indication about the generalization capabilities of the
trained network. Fig. 5a shows that the 99.86% of all the output gates lie
within a ± 3% relative error, i.e. a typical assumed uncertainty level for
many TEM inversions, for the test set comparing to 99.32% for the
Gedved survey. In order to evaluate each gate individually, the percent-
age of gates within ±3% range of relative error is calculated and pre-
sented in Fig. 5b. Since the new survey is completely unknown to the
network, higher errorwas expected for the Gedved survey, as compared
to the test set. The test set is a subset of the same surveys used for



Fig. 3. Density plots of resistivity models for training, validation and test sets (a) Training set (b) Validation set (c) Test set (d) Gedved survey models.

Fig. 4. Performance plot for training and validation data during training.
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training, and therefore, was expected to perform better. Nevertheless,
for a general ground-based TEM system, the usable gate times typically
begin from 5 μs to 100 μs, and end around 1 ms to 3 ms for which the
performance of the network is found to be satisfactory.
5

3.1. Incorporating system response

To include the system response of the instrument, we also compute
the time derivatives, dBdt , of the forward responses generated by FFM and
AarhusInv, and convolvewith the transmitterwaveform using eq. (1). A
simple input waveform, 3 ms ramp up, 0.2 ms on-time and 3 μs ramp
down, is considered.We do not consider gate times before the transmit-
ter turn-off, which means that the first gate is at 3 μs. Also, as the
smoothing is performed within a localized portion of the data, late
gates do not get a complete window for smoothing and the last gate is
at 3 ms that lies within the typical usable data window.

Fig. 6 shows the results when the system response is incorporated
for the test set. Fig. 6a illustrates that 97.8% of all the gates lie within
the 3% error range for the smoothened output for the test set as com-
pared to the unprocessed output which only has an accuracy of 86.2%.
Additionally, Fig. 6b shows the results of individual gates in the±3% rel-
ative error range, where the post-processed output performs better. As
mentioned earlier, the error propagateswhen the system response is in-
corporated to the un-processed output signal due to kinks in the B-field
curve. Therefore, the post-processing of the output using LOESS helps
supress the errors and improve the performance of FFM.

Similarly, we show the performance of FFM on the Gedved survey in
Fig. 7. Fig. 7a shows that 98.02% of the gate times are within a 3% error
range for the post-processed output achieving similar performance as
the test set. Moreover, it is evident from Fig. 7b that the performance



Fig. 5. Performance of FFM for the test set and the unseen Gedved survey (a) Relative error performance (b) Individual gate performance.
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of FFM for individual gates for both test sets is almost identical, which
means that the network has achieved good generalization capabilities.
Furthermore, as expected, the post-processing output dominates the
un-processed output.

3.2. Generalizability test

To examine the generalizability of the proposed methodology, we
consider two surveys conducted in two different continents, North
America and Africa. These surveys are conducted in California, USA
and Ladysmith, South Africa, and consist of 3923 and 9360 models, re-
spectively. As the resistivity models from these surveys are also ob-
tained from the tTEM system, the depth of the models are to reach
250 m as explained earlier. The training of the neural network is based
on data collected from Denmark, hence an evaluation of the network
on the data from significantly different regions would be a good mea-
sure to assess the generalization of the network.

Fig. 8a and Fig. 8b illustrate the suite of resistivity models present
within the California and Ladysmith surveys, respectively. The California
resistivity models are observed to cluster around resistivity values from
5Ωm to 100Ωmover the investigated depth interval. Some higher re-
sistivity values are observed at shallow depths, but not in significant
abundances. This is consistent with the background geological informa-
tion of the area suggesting the presence of alluvial sand and clay
Fig. 6. Performance of FFM for the test set with system response (a) Relative error perf
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deposits. Groundwater in the region is not expected to have elevated
salinity.

In contrast, the Ladysmith survey exhibits a much wider range of
resistivity values, with a significant proportion of the models
displaying elevated resistivities exceeding several hundred ohm m.
Some low resistivity (<10Ωm) values are present at shallow depths,
but much of the investigated depth interval displays elevated resis-
tivities (> ~ 30 Ω m). The Ladysmith data were collected in the rela-
tively flat terrain surrounding a river. There is an expectation that
alluvial deposits are present throughout the area, as well as the pres-
ence of Ecca Group shale and sandstone units intermittently intruded
by Jurassic dolerite sills and dykes. The dolerites are the likely source
of the very high resistivity values in the area.

Fig.9ashowsthat the99.71%ofall theoutputgates liewithina±3%rel-
ativeerror for theCalifornia survey,while theaccuracyperformance for the
Ladysmith survey is found to be 54.03%. In order to evaluate the gate-wise
performance, the percentage of gates within the ±3% range of relative
erroriscalculatedandpresentedinFig.9b.Thepoorperformanceoftheneu-
ral network on the Ladysmith survey is not surprising as resistivitymodels
contain an abundance of elevated resistivities at deep layers. Suchmodels
where high resistivity is observed at depth are not present in themodel
range used for training,which is noted by comparing Fig. 3a and Fig. 8b.

We also show the performance of the network for these surveys
with the system response on the post-processed output in Fig. 9c and
ormance, the inset shows the data in stretched y-axis (b) Gate-wise performance.



Fig. 7. Performance of FFM for the Gedved survey with system response (a) Relative error performance, the inset shows the data in stretched y-axis (b) Individual gate performance.
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Fig. 9d. It can be seen in Fig. 9c that 98.55% of the gates for California sur-
vey are within a 3% error range for the post-processed output achieving
similar performance as the test set and theGedved survey. However, the
performance achieved on the Ladysmith survey is further reduced to
38.45%.

In order to improve the network's accuracy for such resistive
models, additional training data is required to cover the entire
model range. Fine-tuning the trained network by considering the
whole model space would result in improvement of accuracy for
high resistivity models. One way to cover the entire model range is
to augment the training models by shifting the existing resistivity
models by a factor. Another way is to generate random models to
cover the entire model range. However, in our experience, using ran-
dommodels for the training of the network does not result in optimal
performance. Therefore, it is desirable to train the neural network on
the resistivity models which are similar that are similar to those seen
by the TEM system.

Although our FFM is trained on the resistivity models obtained from
surveys in Denmark, the performance is found to be satisfactory when
the resistivity models are within the same range as that found in the
trainingmodel space, regardless of the geographical location. However,
in order tomake the proposed approach viable for amore diverse range
of geological settings, it is essential to train the neural network on the
resistivity models that cover the entire model range.
Fig. 8. Density plots of resistivity models of surveys from two differ
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3.3. FFM computation time

The main objective of this study is to speed-up the TEM forward
modelling. Therefore, we compare the processing time of the proposed
FFM approach with two established geophysical 1-D modelling
methods, namely AarhusInv (Auken et al., 2015) and AirBeo (Kwan
et al., 2015), which are widely used inversion codes for inverse model-
ling of electric and electromagnetic data. Both of thesemethods are im-
plemented in FORTRAN, therefore, we extract the weights and biases
from the trained network to apply eq. (2) in FORTRAN and get the
final output by post-processing with the LOESS algorithm. It should be
noted here that the FORTRAN code has not been optimized and the
computation time is evaluated on a single CPU core without any
parallelization.

Table 1 shows the computation time comparison of FFM with the
above-mentioned methods. Evident from Table 1, FFM gives a speed-
up of 13 times when compared to AarhusInv and over 17 times when
compared with AirBeo. However, optimization of the FORTRAN code
may result in improved FFM computational performance. It should
also be noted here that the FFM post-processing takes ~60% of the com-
putation time, which may be reduced by considering an alternative
post-processing strategy.

The immediate benefit of this speed-up is shorter inversion times,
which is a general improvement. The derived opportunities lie in
ent continents (a) California, USA (b) Ladysmith, South Africa.



Fig. 9. Performance of FFM for the California and Ladysmith survey (a) Relative error performance (b) Individual gate performance (c) Relative error performance including system
response (d) Gate-wise performance with system response.

Table 1
Computation time comparison for forward responses on a single CPU core.

Modelling method Speed

FFM 208.3 forward responses/s
AarhusInv 16.2 forward responses/s
AirBeo 11.8 forward responses/s
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different inversion schemes, such as a two-sided derivatives calculation
in the Jacobian matrix, running multiple inversions with different
starting models or different inversion settings, or by switching to prob-
abilistic methods.

In this work, we have considered a TEM systemwith a 40 m × 40 m
central loop configuration. However, in principle, any geometry can be
applied. Furthermore, based on the proposed scheme, FFM for various
TEM instruments, such as tTEM (Auken et al., 2018) and SkyTEM
(Sørensen and Auken, 2004) can be modelled by considering extra pa-
rameters at the input; such as distance between Tx and Rx for tTEM,
and altitude for SkyTEM.

4. Conclusion

The proposedmachine learning basedmethodology for fast forward
modelling of time-domain EM data, is shown to be more than an order
of magnitude faster than other commonly used numerical forward
8

models. We show that the network output for B-fields after de-
normalization is highly accurate without any post-processing required,
with 99.86% and 99.32% of all gates from the two test datasets being ac-
curate towithin 3% relative error. For dB/dt values to be satisfactorily ac-
curate, we apply a LOESS smoothing function on the B-fields before
convolving with a transmitter waveform. For our test datasets, 97.8%
and 98% of all gates in the typical time-range of TEM data are accurate
to within 3%. This shows that the accuracy of FFM is within typical
data uncertainties.

The network is trained and tested on resistivitymodels derived from
Danish surveys, and therefore it performs better in similar geological
environments, but other environments may also be incorporated in
the training for future applications.
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