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ABSTRACT
Over the past decade the typical size of airborne electromagnetic data sets has been
growing rapidly, along with an emerging need for highly accurate modelling. One-
dimensional approximate inversions or data transform techniques have previously
been employed for very large-scale studies of quasi-layered settings but these tech-
niques fail to provide the consistent accuracy needed by many modern applications
such as aquifer and geological mapping, uranium exploration, oil sands and inte-
grated modelling. In these cases the use of more time-consuming 1D forward and
inverse modelling provide the only acceptable solution that is also computationally
feasible.

When target structures are known to be quasi layered and spatially coherent it is
beneficial to incorporate this assumption directly into the inversion. This implies in-
verting multiple soundings at a time in larger constrained problems, which allows for
resolving geological layers that are undetectable using simple independent inversions.
Ideally, entire surveys should be inverted at a time in huge constrained problems but
poor scaling properties of the underlying algorithms typically make this challenging.

Here, we document how we optimized an inversion code for very large-scale con-
strained airborne electromagnetic problems. Most importantly, we describe how
we solve linear systems using an iterative method that scales linearly with the size
of the data set in terms of both solution time and memory consumption. We also
describe how we parallelized the core region of the code, in order to obtain almost
ideal strong parallel scaling on current 4-socket shared memory computers. We fur-
ther show how model parameter uncertainty estimates can be efficiently obtained in
linear time and we demonstrate the capabilities of the full implementation by invert-
ing a 3327 line km SkyTEM survey overnight. Performance and scaling properties
are discussed based on the timings of the field example and we describe the criteria
that must be fulfilled in order to adapt our methodology for similar type problems.

Key words: Modelling, Inversion code.

INTRODUCTION

In this paper we describe how we significantly optimized
our versatile and flexible inversion code AarhusInv (Auken
et al. 2014). The code is mostly based on 1D forward
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formulations and provides support for inversion of a large
array of data types, e.g., DC/IP, MRS and time-/frequency
domain electromagnetics. Here, we describe how the code
has undergone significant optimization to accommodate the
challenges of working with very large data sets collected
by airborne time- or frequency domain electromagnetic
instruments.
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Constrained inversion is a proven regularization concept
in the field of airborne electromagnetics (AEM), which utilizes
the assumption that earth structures are spatially coherent.
The approach allows for improved resolution of geological
features that can be poorly resolved by individual soundings
but revealed when coherence constraints are applied to an in-
version of a larger group of soundings (Auken et al. 2008).
Obviously, the methodology works best if there are no prac-
tical limits to the size of the data set that can be inverted for.
Under this condition, information can migrate freely from
model to model and over any distance spanned by the data
set, which also proves a benefit when utilizing prior informa-
tion. In fact, the ability to invert very large problems at a time
can even be regarded a prerequisite for many coupled/joint
type inversion problems. Often, data density and spatial dis-
tribution vary significantly between data types, requiring the
inversion of large problems in order to simultaneously cover
the different methods vastly different footprints. Ideally the
computation time and memory consumption of an inversion
code made for such large-scale problems should scale linearly
with the size of the data set, however, this is difficult to obtain
in practice.

During the last decade the typical size of AEM data sets
has been growing at a very rapid rate and surveys of today
are often in the order of tens of thousands of line kilometres
(SkyTEM, personal communication; Geotech, personal com-
munication; Costelloe et al. 2007; Kalvig 2008; Lawrie et al.
2010; Podgorski et al. 2010). These expensive data sets should
ideally be inverted using highly accurate forward modelling
(Christiansen, Auken and Viezzoli 2011) but this can repre-
sent a true computational challenge. Recently, 3D inversion
of airborne EM data has become an important topic in the
literature (Cox, Wilson and Zhdanov 2010; Yang and Old-
enburg 2012), however, the computational requirements are
still much too great for routine application to the very large-
scale problems considered here. Examples of 2D inversion
of AEM data sets can also be found in the literature, utiliz-
ing either approximate forward solutions (Wolfgram, Sattel
and Christensen 2003; Guillemoteau, Sailhac and Behaegel
2012) or full solutions (Wilson, Raiche and Sugeng 2006).
These approaches either approximate the 3D transmitter ge-
ometry in 2D or pay a significant computational penalty to
perform the modelling in 2.5D (2D model with 3D transmit-
ter). Recently, a promising low cost numerical strategy for
full 2.5D modelling was published with application to CSEM
systems (Streich, Becken and Ritter 2011). This type of ap-
proach could potentially provide the right balance of model

accuracy and computational cost for inverting very large AEM
surveys. However, we are unaware of any AEM implemen-
tations or applications in the literature. As such, large-scale
airborne TEM data sets pose a challenge to an industry where
code development is mostly driven by public research and
limited by tight funding. Many innovative inversion codes
are being developed but focus is typically on implementing
novel methodologies rather than to reach mature and sta-
ble large-scale production quality. Since optimizing for scal-
ability can be a lengthy process in itself, the inherent data
volume issue is often solved by considering each sounding in-
dependently. This includes relatively simple data transform
techniques (Macnae et al. 1998; Reid and Fullagar 1998;
Sattel 2005), inversions utilizing approximate forward mod-
els (Farquharson, Oldenburg and Li 1999; Christensen 2002;
Christensen, Reid and Halkjaer 2009) and also full forward
models (Chen and Raiche 1998; Farquharson, Oldenburg and
Routh 2003). Constrained codes capable of utilizing the spa-
tial coherence of a layered earth also exist (Santos 2004;
Tartaras and Beamish 2005; Vallée and Smith 2009) but scal-
ability issues severely limit the size of the problem that can be
inverted at a time.

To our knowledge, the only code capable of handling
problems on a scale that even start to resemble modern full
size AEM surveys is the holistic inversion by Brodie and Sam-
bridge (2006). This code utilizes sparse data structures and
distributed parallel algorithms to invert several thousand line
kilometres of frequency domain data at a time on a 64 node
cluster (Brodie 2010). These authors further showed how in-
verting very large data sets at a time allows for the inversion
of additional model parameters such as system drift, param-
eters that can only be resolved if a full survey is inverted as
one large problem. Despite being able to handle very large
problems their code still faces a fundamental scaling issue, as
their parallel linear solver implementation does not scale lin-
early with the size of the data set. The lack of linear scaling
slows down calculations for large problems, puts an upper
limit on the size of the problem that can effectively be solved
and makes for an iterative algorithm that becomes more prone
to numerical instability as the problem size increases. We ad-
dress these shortcomings by utilizing more specialized linear
algebra algorithms, in order to obtain linear scaling in terms
of both computation time and memory consumption. We also
chose to parallelize our code using OpenMP for stand-alone
shared memory computers, rather than the distributed MPI
approach of Brodie and Sambridge (2006). This is done to
avoid unnecessary complexity, with an end result capable of
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inverting even very large airborne time domain surveys for
constrained quasi-3D models on commodity computer hard-
ware overnight.

METHODOLO GY

Data set geometry and spatial constraints

One of the most characteristic features of the AarhusInv ap-
proach to inversion is the flexible use of regularizing coherence
constraints to couple local 1D models in a larger problem. This
is a strategy very well suited for modelling of settings with a
laterally coherent geology and can be implemented in numer-
ous ways. In our case the constraints are typically given in the
form of lateral constraints (LCI, Auken et al. 2005) or spatial
constraints (SCI, Viezzoli et al. 2008). Here, we focus on the
SCI scheme since LCI is just a special case of this more gen-
eral approach. The fundamental concept of SCI is illustrated
in Figure 1, where a survey of profile oriented data is De-
launay triangulated to obtain connections from each sound-
ing/model datum to its nearest neighbours. Spatial smoothness
constraints are then applied along these connections to the
models of the nearest neighbours. If the size of the entire data
set exceeds the practical capability of the inversion code a sur-
vey is divided into smaller areas called zones. These zones are
of a size that can be efficiently inverted independently and in
parallel. An example of such a division is seen in the bottom of
Figure 1, where the individual zones are marked by different
background colours. Having divided a problem into a number
of zones, all zones can be inverted independently followed by a
second inversion run for continuity across zone borders. This
methodology works well but introduces intrinsic inefficiency.
Models lying on zone boundaries are included and inverted in
multiple zones and a complete second run of inversions of all
zones is needed for continuity. For full details of the former
implementation we refer to Viezzoli et al. (2008). The most
important thing to note for later is how coherence constraints
are obtained from triangulation and how the problem has the
same characteristic geometry regardless of size. We consider
surveys of densely sampled soundings collected along almost
parallel lines, interconnected in an almost regular pattern and
we want to be able to handle this type of geometry on a very
large scale.

Mathematical solution

From a mathematical point of view our methodology follows
the established practice presented by Menke (1989) to solve

Figure 1 Characteristic SCI geometry. In the top of the figure the flight
lines and 1D model positions of a sample airborne survey are shown
(line spacing is 300 m). The bottom of the figure illustrates spatial
constraints between models and how an SCI inversion is partitioned
into smaller zones. The connecting lines indicate spatial smoothness
constraints between neighbouring models and each independent zone
is marked by a separate background colour. Models marked by large
bullets indicate the models used for an approximate local analysis for
the point marked in white.
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a non-linear inverse problem in a linearized iterative manner.
The approach is briefly outlined in the following and we refer
to Viezzoli et al. (2008) and Auken et al. (2005) for a detailed
description of the SCI/LCI inversion methodology.

We want to minimize the misfit between observed data
dobs, having associated errors given by eobs and the forward
response function g. In order to solve this problem we em-
ploy a first-order approximation for the non-linear function g
mapping from model space vectors m into data space:

dobs + eobs
∼= G(mtrue − mref ) + g(mref ). (1)

Here, mtrue is the true model vector, mref is some reference
vector and G is the Jacobian matrix. The equation can be
further rewritten in terms of successive iterative model updates
δmtrue:

Gδmtrue = δdobs + eobs . (2)

The full-inversion scheme obviously also includes the reg-
ularizing SCI constraints and support for a priori information,
which is easily included by adding more equations of the type
seen in equation (2) to the linear system. This full system of
equations can be solved in a least squares sense by minimizing
the L2 misfit using the iterative Gauss-Newton minimization
scheme with a Marquardt modification. Using this approach
we obtain a system of linear equations (Ax = b) to solve for
iterative model updates:

(GTC−1
obsG+RTC−1

c R+C−1
prior+λI)δm=

GTC−1
obs (dobs−g(mn))+RTC−1

c (−Rmn)+C−1
prior

(
mprior−mn

)
. (3)

Here, mn is the model vector for the n-th iterative step, δm
the model update for the next iteration, mprior a vector holding
the prior model and Cobs, Cprior and Cc are diagonal covari-
ance matrices describing the uncertainty on the observed data,
prior model and constraints, respectively. The matrix R is a
roughness matrix specifying the geometry of the constraints
and λ is a Marquart damping parameter (Marquart 1963).
During each iteration of the inversion a line search is per-
formed, solving the system for different values of λ until a
model update of suitable magnitude is found. To conclude
the mathematical details we note that the linearized covari-
ance matrix Cest, providing an estimate of the uncertainty of
the model result, can be calculated from the following expres-
sion (Tarantola and Valette 1982):

Cest = (GTC−1
obsG + RTC−1

c R + C−1
prior)

−1. (4)

One can conveniently view the standard deviation derived
from this formula as a relative measure of uncertainty, since

Table 1 Pseudo code for the inversion scheme. In the right-hand
side of the table is the time complexity of the main steps prior to
optimization. N is the number of models/data sets.

1. Read input and initialize data structures
2. for n = 0,1, . . . , until Convergence do
3. Calculate forward response g(mn) O(N)
4. Calculate derivatives for Jacobian G O(N)
5. Solve for model update δm O(N2)
6. Set mn+1 = mn+δm
7. Test convergence criteria
8. end do
9. Solve for model analysis O(N3)
10. Write output

the inversion is performed in logarithmic model space. This
implies that absolute analysis values from logarithmic space
translate into a standard deviation factor in linear space, such
that 1.0 is equal to perfect resolution and 1.1 is equal to a
standard deviation of approximately 10%. Since these values
are further obtained from error estimates in a linear approxi-
mation they should be regarded as guidelines.

Solution algorithm

Given the mathematical formulation and problem geometry
we can now write the pseudo code for the process to optimize,
as seen in Table 1. From the lines in this table, practically all
the time is spent in lines 3, 4, 5 and 9. Lines 3 and 4 are
forward- and forward-based derivative calculations that pose
an embarrassingly parallel problem in a 1D formulation. In
line 5 the linear system of equation (3) is successively solved
for the next iterative model update δm. Here, linear algebra
operations are needed to form the left-hand matrix A and
right-hand vector b but the most crucial step is the actual so-
lution of the linear system of equations. Standard dense solver
algorithms, such as the ones we were replacing, are slow with
complexity O(N2) (Press et al. 2007), so in order to make the
code scalable we employ sparse matrix data structures and
efficient sparse solvers. The final critical step in line 9 of the
inversion algorithm is the calculation of a model parameter
analysis by the expression given in equation (4). Note how
this equation involves taking the full inverse of a matrix that
is of O(N3) time complexity using dense methods (Press et al.
2007). In order to make this step scalable serious algorithmic
changes are needed, which will be obtained by an approxi-
mation in the formulation. In the following we describe the
methodology behind each optimization in detail.
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OPTIMIZATIONS

Parallelization

Several different frameworks for parallelizing scientific codes
are available, the most popular being OpenMP (Chapman,
Gabriele and van der Pas 2007) and MPI (Gropp, Lusk
and Skjellum 1999). MPI is utilized in the implementation
of Brodie and Sambridge (2006) for distributing data and
computations over a cluster of multiple computers, whereas
OpenMP is for parallel computation on a single multi CPU
computer with a common local memory space for all threads.
The ability to distribute a workload over a whole cluster of
compute nodes is a definite advantage of MPI, however, it also
requires the code to be written with distributed data structures
in mind. This is not easily obtained for a large existing sequen-
tial codebase, so an actual need for more cores than provided
by a single machine should be present in order to justify a
significant rewrite. Given the amount of parallelism found in
modern inexpensive computer hardware we argue and demon-
strate in the results, that even in the case of very large data sets
distributed computing is no longer needed for 1D AEM inver-
sion. We thus chose our target platform as shared memory
machines of large core count and OpenMP parallelized the
loops iterating over forward-/derivative calculations of each
1D model.

Sparse matrices and solvers

Conventional methods for operating on general matrices in
a 2D array structure provide poor scaling, having a memory
and time complexity of O(N2) for the example of solving a
linear system. This problem can be overcome, however, when
the matrices involved consist mostly of 0 (zero) entries, i.e.,
the matrices are sparse. Several popular large libraries pro-
viding this type of functionality are available (PetSc, Balay
et al. 1997; TAUCS, Toledo, Chen and Rothkin 2001), of-
ten providing MPI parallelized routines. For the optimization
presented here we implemented a custom Fortran 90 sparse
linear algebra library, using core routines from SPARSKIT
(Saad 1990). In the following we outline the concepts behind
the sparse iterative solver scheme and note that the time re-
quired for all other sparse linear algebra operations is safely
negligible.

Choosing an optimal method for solving large sparse lin-
ear systems of the type Ax = b can be challenging. A wealth
of different algorithms is available and often there are options
available that exploit specific properties of the system but
with no guarantee that it will be the optimal solution. Even

though matrices can be categorized in subclasses, these classes
are very broad and the performance and stability of even a
specialized solver will depend heavily on the actual sparsity
pattern of the matrix. In fact, it has been shown that no sin-
gle solver algorithm is consistently the best (Nachtigal, Reddy
and Trefethen 1992; Ern et al. 1994). When choosing a sparse
solver the standard approach is to look for performance re-
sults for comparable matrices and perform an actual test of the
most promising algorithms. Review papers do exist (Gould,
Scott and Hu 2007), however, these are basically just bench-
marks of different solvers tested on a wide range of different
matrices. Recently, suggestions for accurate automated solver
recommendation systems were proposed by Bhowmick, Toth
and Raghavan (2009) and George, Gupta and Sarin (2008)
but for the time being the decision process is still manual.

Sparse linear solvers can be divided into two distinct cat-
egories: direct and iterative. Direct solvers use factorization
and back-substitution to solve the system, whereas iterative
solvers rely on an iterative improvement of an initial start-
ing guess until convergence to the solution is reached. Mod-
ern parallel direct sparse solvers such as Pardiso (Schenk and
Gärtner 2004), SuperLU (Li and Demmel 2003) and MUMPS
(Amestoy et al. 2002) are sophisticated research projects on
their own and provide robust ‘black box’ solvers, where little
to no customization is necessary. Their robustness and ease of
use comes at the price of storing a full factorization of the orig-
inal matrix, resulting in unpredictable memory consumption
that can easily exceed 10–20 times the memory requirements
of the matrix A (Rücker, Günther and Spitzer 2006). Itera-
tive solvers, on the other hand, are often simple algorithms
that need to be customized for a specific problem in terms of
preconditioning with the reward of low and potentially pre-
dictable memory consumption. Such an algorithm was chosen
for the optimization of AarhusInv, since this is the option that
is able to handle the largest possible problems.

The iterative conjugate gradient algorithm (CG, Hestenes
and Stiefel 1952) is widely used within the geophysical com-
munity (Wu 2003; Brodie and Sambridge 2006; Rücker
et al. 2006; Mueller-Petke and Yaramanci 2010), however,
we employ the preconditioned bi-conjugate gradient stabilized
algorithm (BICGSTAB, Van der Vorst 1992). Theoretically,
CG should be the most suitable algorithm as our linear system
is symmetric positive definite but we chose BICGSTAB due to
its empirically proven stability in solving our particular prob-
lem. Convergence cannot always be guaranteed for iterative
solvers, so algorithm stability was an important parameter
in the decision process. Apart from CG and BICGSTAB, we
included several other popular iterative solver algorithms in
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our tests, including the bi-conjugate gradient (BICG, Fletcher
1976) and the generalized minimum residual (GMRES, Saad
and Schultz 1986).

In configuring a robust iterative solver scheme, proper
preconditioning is of uttermost importance (Saad and Van
der Vorst 2000). The convergence rate of conjugate gradient
type methods depends on the spectral condition number of
the matrix, i.e., the ratio between the maximum and min-
imum eigenvalue. Preconditioning is essentially the process
of finding a linear transformation M that approximates A−1,
such that MA�I is fulfilled to a reasonable degree. Solving the
transformed system where M is multiplied on both sides of
the equality Ax = b greatly improves the stability and con-
vergence rate, since the left-hand side matrix is now close to
being the identity matrix for which all eigenvalues are unity.
One way of applying preconditioning to the BICGSTAB algo-
rithm, is by approximating a LU factorization of the A matrix
with the benefit that an approximation to the direct inverse
does not need to be computed (Van der Vorst 1992). We apply
this preconditioning methodology using an incomplete LU fac-
torization with a dual dropping strategy (ILUT, Saad 1994).
This is essentially a standard sparse LU factorization where
small non-zero elements are set to zero based on dropping
criteria. In a given row i, the maximum of the Mmax largest el-
ements are kept under the additional criteria that all elements
smaller than εAii are also dropped. Using these dropping rules
make the maximum memory consumption of the solver con-
trollable by Mmax, obviously requiring that the factorization
can be reasonably well approximated in this way. In order
for the strategy to work well, while also keeping Mmax low,
the number of elements needed per row of the factorization
should be relatively constant. In Figure 2(a,b) we show the
sparsity pattern of a characteristic SCI matrix and its full LU
factorization, respectively. From this figure it is clear how the
number of non-zero elements in each row of the factorization
can vary from very few, to filling in almost the entire width of
the matrix. In this case ILUT provides a very poor approxima-
tion to the sparsity pattern of the LU factorization as seen in
Figure 2(c). In order for the approximation to be good for low
values of Mmax the sparsity pattern of the factorization must
be made more evenly distributed across the rows. This can be
obtained using reordering algorithms. For our type of problem
we chose to reorder the numbering of the triangulated datums
of the data set, using the reverse Cuthill-Mckee algorithm
(RCM, Cuthill and Mckee 1969) to minimize the bandwidth
of the A matrix as seen in Figure 2(d). This type of reordering
applied to our particular geometry produces matrices whose
factorization is very evenly distributed across rows as seen in

Figure 2(e), hence making ILUT a good approximation as seen
in Figure 2(f). Also note how the RCM reordering produces
an LU factorization with much fewer non-zero elements, an
effect that becomes more pronounced with increasing matrix
size. Using the RCM reordering we find that Mmax = 25 and
ε = 10−5 works very well regardless of the size of matrix,
as will be shown later. For stopping criteria of the iterative
solver we find a relative residual of 10−6 to work well, which
is also the value used by Rücker et al. (2006) for their con-
jugate gradient solver. Using these settings we typically reach
convergence within 5–30 iterations regardless of the size of
the problem and with an accuracy on par with direct solvers.

Approximate sensitivity analysis

For the final optimization step we have to turn to an approxi-
mation. We want to calculate the model parameter sensitivity
analysis for the model result by equation (4) but this equation
involves calculating the full inverse of a matrix. Calculating
the inverse of an (NxN) matrix corresponds to solving the
linear system N times for each column vector of the identity
matrix, making the process O(N3) if the linear solver is of com-
plexity O(N2). Even if an O(N) scaling solver can be provided
the scaling of the matrix inversion will be O(N2), rendering
this calculation unfeasible even for moderately sized problems.
To overcome this issue we bring down the size of the matrix
to be inverted by solving an approximate local analysis prob-
lem around each model position. This idea is illustrated in
Figure 1 for the calculation of the parameter sensitivity anal-
ysis for the model marked in white. Starting at this point we
first expand the problem to include all neighbouring models
connected by constraints, e.g., the points marked by purple
bullets. Another expansion to tier 2 neighbours can then be
performed, including all models constrained to the members
of the initial tier 1 expansion (red bullets). A local analy-
sis can then be carried out using equation (4) but including
only the models contained in the local problem. In the case of
19 layer models including an altitude model parameter this
implies inverting a 38 × 38, 228 × 228 or 760 × 760 matrix
for the respective cases of single site analysis, tier 1 and tier
2 expansions. Using this type of local approximation we re-
formulated the problem from inverting one very large matrix
into inverting a significantly smaller matrix for each model po-
sition. The number of models in each local analysis problem
can vary over the positions of a survey but the characteristic
number of neighbours is independent of the size of the data
set. This implies that the average size of the matrix to be in-
verted in each local problem is independent of the size of the
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Figure 2 Characteristic matrix sparsity patterns. In the top row are results for unordered model nodes and in the bottom using RCM reordering.
(a) and (d) show the left-hand side matrix in equation (3) and (b) and (e) the sum of L and U from an LU factorization. (c) and (f) show L+U
for an ILUT preconditioner using the previously described settings mmax = 25 and ε = 10−5.

data set, making the modified algorithm scale linearly. For so-
lution of the small linear systems in the local analysis we use
a simple sparse direct solver algorithm (sparse Gauss elimina-
tion, Akin 1982) and solve the local problems in parallel using
OpenMP.

SCALING A ND PER FOR MA N C E R ESULTS

In Figure 3 we show the performance and scaling results of
the presented optimizations for the case of SCI inversion of
SkyTEM data for models of 19 layers in a fixed vertical dis-
cretization. The benchmarks were run on a server purchased
in 2011 with 64 GB RAM and 4 physical AMD Opteron 6168
processors, for a total of 48 CPU cores running at 1.9 GHz.
As of early 2014 a newer version having 64 cores and a sig-
nificantly higher clock frequency can be purchased for well

below €10 000. Our benchmark computer is thus representa-
tive of the type of computational power that is easily obtain-
able within the budget of any large AEM survey.

For the benchmark system we find that the parallel scaling
of the important calculation of forward responses is virtually
ideal, as seen in Figure 3(a). A slight deviation from the ideal
scaling is introduced when the last few cores are put to use and
we therefore generally reserve a core for running the operating
system and background processes. The key to obtaining good
parallel scaling for this type of compute bound embarrassingly
parallel work load, is to obtain good load balancing across
all processors throughout almost all iterations of the parallel
loop. Using a dynamic load balancing strategy this is easily
obtained when the number of 1D models is much greater
than the number of processors, as in the case of large AEM
data sets.
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Figure 3 Performance results. (a) The parallel scaling of for-
ward/derivative calculations, (b) the total peak memory requirements
for storing and solving a linear system as a function of its size and (c)
average total time for solving a linear system as a function of size.

For the sparse matrices of the minimization algorithm in
combination with the preconditioned BICGSTAB solver, we
show the results for memory consumption and solve time in
Figure 3(b,c), respectively. Figure 3(b) shows the total memory
requirements for solving the system, i.e., storing both the left-
hand matrix itself and the preconditioner and in Figure 3(c)
we show the sum of the time used for generating the precondi-
tioner and actually solving the system iteratively. Both figures
include a linear fit clearly showing the linear scaling with the
size of the problem. As the number of required solver itera-
tions varies along with the utilization of memory allowance
of the ILUT algorithm, we show average numbers over full-
inversion jobs in Figure 3(c) and peak memory consumption
in Figure 3(b).

For the local approximate analysis we use a sparse direct
solver to solve small systems of linear equations in parallel
after the actual inversion is done. The algorithm is embar-
rassingly parallel and the calculation time too insignificant to
justify systematic benchmarking. In the case of a fully local
analysis and tier 1 expansion the sensitivity analysis consis-
tently adds no more than around 1% to the total inversion
time. For a tier 2 analysis the calculation adds time compa-
rable to performing an additional iteration in the inversion.
A complete inversion run typically consists in 10–15 Gauss-
newton type iterations, making the time required for a tier 2
analysis in the order of an additional 7–10%. We will consider
the accuracy of different degrees of approximation later and
merely note for now that the local algorithm is fast, parallel
and scales linearly with the size of the problem.

INVERS ION OF A LARGE A IRBORNE
E L E C T R O M A G N E T I C S D A T A S E T

Having shown benchmarks for individual optimizations we
now demonstrate the codes full capabilities in terms of con-
ducting a single entity spatially constrained inversion of a
large data set. The results shown in Figure 4 are extracted
from a 19 layer SCI inversion of a 3327 line km groundwa-
ter mapping survey conducted over a 730 km2 area by the
Danish/German border. The survey was flown during 2008–
2009 using the SkyTEM system (Sørensen and Auken 2004)
and consists of around 100 000 model positions of corre-
sponding dual moment soundings. Full details of the survey
are given by Jørgensen et al. 2012, who interpreted an inver-
sion of the data set obtained with the previous version of our
code. The flight lines of the survey are outlined in Figure 4(a),
whereas Figure 4(b-c) shows the resistivity and corresponding
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Figure 4 Result of 19 layer SCI inversion of a large SkyTEM data set.
(a) Outline of the 3327 km of flight lines, (b) resistivity of the layer
at 74–88 m depth and (c) STD factor of the resistivity in (b) obtained
from a tier 1 local sensitivity analysis. The black dotted line in (b) and
(c) mark the sub-area used for Figure 5 and the blue/grey lines in (b)
mark an area of salt water intrusion and position of buried valleys,
respectively.

tier 1 approximated STD factor for the model layer situated
at 74–88 m depth.

The results in Figure 4 reveal a wealth of features of the
subsurface, most notably how salt water from the North Sea
intrudes very far inland and how several buried valleys incise
the area. A detailed interpretation of these features is outside
the scope of this paper and we merely note that our full sur-
vey inversion provides a virtual reproduction of the original
results of Jørgensen et al. 2012. The important thing to note
is that we now arrive at the same result in a fraction of the
time, while using an approach that is significantly easier to
implement, easier to integrate with other modelling types of
a large footprint and without conceptual problems in integra-
tion of prior information on partition borders. The specifics of
the timing and its relation to parallel scaling are discussed in
the next section but first we show results comparing different
degrees of approximation in the sensitivity analysis as seen in
Figure 5. For these results we consider only a small sub-area,
marked by a black dotted line in Figure 4, since calculating
the full sensitivity analysis for the entire survey area is not
computationally feasible. The selected area contains a modest
3660 model positions but it still took a sparse direct solver
more than 24 hours to calculate the full sensitivity analysis of
Figure 5(d). By comparing this result with the local approx-
imations in Figure 5(b,c), it is clear that results of adequate
precision can be produced in a scalable manner that are or-
ders of magnitude faster. On the other hand, Figure 5(a) also
clearly shows that a very significant deviation from the full
analysis is introduced when too much approximation is intro-
duced. The compromise solutions thus become tier 1 and tier
2 approximations, where we find the tier 1 approximation
generally to be accurate enough for most large-scale airborne
EM purposes.

TIMING AND D ISCUSS ION

Utilizing 47 cores of our reference system, the full SCI exam-
ple problem of the previous section was solved overnight in
14.5 hours, peaking at a memory consumption of 16 GB. Out
of this time 90% was spent on parallel forward/derivative cal-
culations, 5.8% on an iterative sequential solution of linear
systems, 3.0% on sequential file I/O, sparse matrix algebra
and other minor operations, while 1.2% was used for parallel
calculation of a tier 1 approximate sensitivity analysis. Assum-
ing ideal parallel scaling of the parallel regions, as justified by
Figure 3(a), we calculate the parallel speed-up as 43x for the
47 threads. Using the same assumptions we calculate the par-
allel speed-up as 142x for a hypothetical machine of 200 cores.
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(a) Local, no expansion

(d) Full 

(b) Local, tier 1 expansion

(c) Local, tier 2 expansion

Figure 5 Comparison of sensitivity analysis approximations for a
sub-area of the resistivity map shown in Figure 4(b). The area is
marked by a black dotted line in Figure 4. (a) Result of local single
site sensitivity analysis, (b) local analysis including tier 1 neighbours,
(c) local analysis including tier 2 neighbours and (d) full sensitivity
analysis. Calculating (a)–(c) is orders of magnitude faster than (d).

At this elevated level of parallelism Amdahls law reduces the
parallel efficiency to 71%, as compared to the 91% of the
benchmark computer. It is thus clear that the use of a sequen-
tial solver does not pose a bottleneck for current generation
computer architectures but for significantly higher core counts
or a less time-consuming forward response it is bound to

become a bottleneck. Typically, 85–90% of the time used in
the solver is spent calculating the ILUT preconditioner, with
the remainder of the time divided between back-substitution
and sparse matrix-vector products. Out of these operations
the only readily parallelizable algorithm is in the matrix-vector
product. However, given the relatively small amount of time
spent on this operation the effect of parallelization is close
to negligible. A certain degree of parallelism can be extracted
from the process of generating ILU type preconditioners (Saad
2003) but the algorithms are complicated and there are other
types of preconditioners that naturally offer a much higher de-
gree of parallelism. We were unable to find a suitable parallel
implementation of ILUT and have started to look towards
massively parallel preconditioners for future implementation
(e.g., approximate inverses and polynomial preconditioners
(Saad and Van der Vorst 2000)). However, the need for a
parallel solver is far from pressing and the details of these
investigations are beyond the scope of this paper.

The presented combination of reordering, preconditioner
and solver algorithm was found to provide excellent scaling
properties for the specific problem of spatially constrained
inversion. However, it should also be applicable to other
comparable types of problems. The most crucial aspect in
obtaining stability and linear scalability from our approach
is for the problem to have proper geometry. When the data
set consists of almost parallel flight lines and an occasional
tie line, having their datums connected by a Delaunay trian-
gulation, the RCM algorithm is able to reorder the nodes for
a very evenly distributed non-zero matrix pattern with a nar-
row envelope as seen in Figure 2(d). This pattern is extremely
well suited for preconditioning with an ILUT preconditioner
with low threshold parameters, which is the key to obtain-
ing the scaling. For a similar type of iterative solver, Rücker
et al. (2006) used approximate minimum degree reordering
(AMD, Amestoy, Davis and Duff 1996), since it produces a
full factorization of much fewer elements than RCM. This
reordering also produces a full factorization of much fewer
elements in the case of SCI but the obtained factorization is
very unevenly distributed and not well approximated by an
ILUT preconditioner. It is therefore worth noting that part of
the key to obtaining linear scaling is the use of a reordering
algorithm that seems inferior at first glance. For other prob-
lems where the nodes can be reordered for a similar pattern
the methodology should be equally successful. An example
of this could be grid-like geometries, whereas points lying on
a circle connected by a Delaunay triangulation would work
very poorly. Given a problem of the right geometry it is also
important to take relative timing into account. Obviously, the
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parallelizable parts of the problem should be adequately time-
consuming, not to make the sequential solver a bottleneck at
low core counts. In the case of e.g., frequency domain data our
forward implementation is more than an order of magnitude
faster than the time-domain response, making the sequential
solver a bottleneck at a significantly lower core count. We are
also about to publish results on an approximate time-domain
response for an order of magnitude faster evaluation of partial
derivatives (Kirkegaard et al. 2013), which adds to the relative
importance of the solver also in the case of time-domain data.

CONCLUSIONS

We showed how an existing inversion code was optimized for
scalable constrained inversion of very large AEM or similar
type data sets. The algorithms underlying our implementa-
tion scale linearly with the size of the data set in terms of
both memory consumption and computation time, provid-
ing the capabilities for spatially constrained inversion of even
the largest AEM problems on inexpensive commodity server
hardware. To the best of our knowledge, no other large-scale
AEM inversion code provides similar scalability. The ability
to efficiently solve very large problems further eliminates the
need for problem partitioning, which served as an intrinsic
inefficiency in our original algorithm. In the new implementa-
tion we not only avoid the significant complexity involved in
performing the partitioning itself, we also avoid difficulty in
employing prior information on border models and speed-up
the total inversion time by at least an order of magnitude.

In terms of parallelism we demonstrated how the core
regions of the code were parallelized for shared memory
multi processor computers using OpenMP. The implementa-
tion provides virtually ideal parallel scaling within the parallel
regions and good parallel scaling of the application as a whole.
Our current 48 core reference system delivers 91% parallel ef-
ficiency for full inversion of a 3327 line km SkyTEM field data
example and we project that this value will remain at a rea-
sonably efficient 71% for 200 hypothetical cores. From the
performance results of our field example we obtained a total
inversion time of 4.5 hours and a peak memory consumption
of 5 GB pr. 1000 line km of data. These numbers are directly
translatable to other survey sizes and we further note that we
will soon publish separate results on the use of approximate
partial derivatives in SCI inversion, which can be used for very
significant speed-up of these numbers.

The most important part of our results is the iterative
solver methodology, since this facilitates the linear scaling of
the full algorithm. While the solver algorithm is not readily

parallelizable its sequential form is so efficient that it allows
for excellent parallel scaling of the full code, well beyond
the core count of current 4-socket shared memory architec-
tures. Our specific combination of a reordering algorithm,
preconditioner and iterative solver is found to be optimal for
a sparsity pattern stemming from Delaunay triangulation of
1D point measurements sampled along a flight line pattern.
Other problems of comparable geometry and sparsity should
be able to benefit from the same solver methodology, pro-
vided that parallel parts of the code are numerically expensive
enough to make the sequential solver a bottleneck only at very
high core counts.
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