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S U M M A R Y
Processing of geophysical data is a time consuming task involving many different steps. One
approach for accelerating and automating processing of geophysical data is to look towards
machine learning (ML). ML encompasses a wide range of tools, which can be used to automate
complicated and/or tedious tasks. We present strategies for automating the processing of time-
domain induced polarization (IP) data using ML. An IP data set from Grindsted in Denmark
is used to investigate the applicability of neural networks for processing such data. The
Grindsted data set consists of eight profiles, with approximately 2000 data curves per profile,
on average. Each curve needs to be processed, which, using the manual approach, can take
1–2 hr per profile. Around 20 per cent of the curves were manually processed and used to
train and validate an artificial neural network. Once trained, the network could process all
curves, in 6–15 s for each profile. The accuracy of the neural network, when considering the
manual processing as a reference, is 90.8 per cent. At first, the network could not detect outlier
curves, that is where entire chargeability curves were significantly different from their spatial
neighbours. Therefore, an outlier curve detection algorithm was developed and implemented
to work in tandem with the network. The automatic processing approach developed here,
involving the neural network and the outlier curve detection, leads to similar inversion results
as the manual processing, with the two significant advantages of reduced processing times and
enhanced processing consistency.

Key words: Hydrogeophysics; Electrical resistivity tomography (ER6); Neural networks,
fuzzy logic.

1 I N T RO D U C T I O N

The field of geophysics can benefit from machine learning (ML)
by increasing the computational efficiency of inversion algorithms,
automating data-flows and discovering new patterns, structures or
relationships (Bergen et al. 2019). In this paper, we focus on au-
tomating data-flows. In short, ML deals with teaching a computer to
autonomously complete complicated time-consuming tasks, such as
cleaning and processing large geophysical data sets. ML algorithms
can be divided into two classes: unsupervised and supervised learn-
ing algorithms (Bergen et al. 2019). Supervised learning focuses
on teaching a computer to identify patterns with human supervi-
sion, that is labelled data, while unsupervised learning focuses on
teaching the computer without human supervision. We focus on su-
pervised learning algorithms. An example of a supervised learning
algorithm could be binary classification of data sets with or without
noise. Here, the computer is shown a set of data values, input, and
corresponding labels, for example ‘good’ (0) or ‘bad’ (1). Based

on these labels, the computer is trained to identify each set of input
values as either ‘good’ or ‘bad’. Provided labelled data exist, the su-
pervised learning approach can be used to automate data processing
of various types of geophysical data. The computer learns which
data values to remove, based on the patterns inherent in the training
data.

The focus of this paper is the direct current (DC) time-domain in-
duced polarization (IP) method, which is an extension of the electri-
cal resistivity tomography (ERT) method, where the time-dependent
voltage signal, resulting from the injection of a square wave elec-
trical current, is analysed. Compared to ERT, the IP method can
provide additional information about the mineral composition and
pore space structure of rocks and soils (e.g. Vacquier et al. 1957;
Marshall & Madden 1959; Bodmer et al. 1968; Maurya et al. 2018;
Lévy et al. 2019). The IP method can be applied to a wide variety of
subsurface imaging problems, such as estimating permeability and
water conductivity (e.g. Börner et al. 1996; Slater 2007; Robinson
et al. 2018), imaging subsurface contamination (e.g. Gazoty et al.
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2012a; Orozco et al. 2012; Wainwright et al. 2016; Maurya et al.
2018) and time-lapse imaging of aquifer remediation and other sub-
surface processes (Versteeg & Johnson 2008; Orozco et al. 2013).

Manual processing of IP data is common before inversion (e.g.
Chongo et al. 2015). The IP data consists of apparent chargeability
curves, which are affected by different types of noise. By applying a
signal processing scheme, such as proposed by Olsson et al. (2016),
most systematic noise sources can be identified and subtracted from
the signal. For example, background drift and 50 Hz harmonics can
be modelled and removed, thus increasing the signal to noise ratio.
However, in order to perform spectral inversion of time-domain IP
data, and more generally to ensure that the observed data can be
fitted within a satisfying misfit, further processing is usually nec-
essary before inversion. This often involves removing gates from
the chargeability curves, that are influenced by noise, and in some
cases the entire curves. For example, with the inversion scheme of
the software AarhusInv (AarhusGeoSoftware 2020), used in this
study, chargeability curves that cannot be represented by a Cole–
Cole model (e.g. Pelton et al. 1978) will not be fitted in a satisfactory
manner at the end of the inversion. Generally, the early gates show
steep slopes, which we attribute to undesired electromagnetic cou-
pling. Early gates are therefore removed (Dahlin & Leroux 2012).
Currently, this processing step is carried out manually for IP field-
data. A standard workflow consists of inspecting the chargeability
curves one-by-one, to remove gates and curves that prevent the
inversion from converging.

In order to improve and accelerate the processing step, Orozco
et al. (2018) have presented a workflow for automating the pro-
cessing of IP data, applying a rule-based approach. We explore ML
methods as an alternative tool for automating the processing of IP
data. Generally, ML models can be trained using different types of
labelled data, for example manual or rule-based processed IP data.
They will simply mimic the processing scheme embedded in the
training data. We propose using supervised multilabel binary clas-
sification (Tsoumakas & Katakis 2007) for semi-automating the
processing of IP data. We show how a supervised artificial neural
network (ANN) can be trained, and used for automated processing
of IP data. In particular, a field example is presented from Grindsted,
Denmark, to show how large IP surveys can be processed by only
manually processing a small portion of the total data.

2 M E T H O D S

2.1 IP data acquisition and classical processing

2.1.1 IP acquisition

In surface IP acquisition, the measurements are carried out between
four grounded electrodes, forming a quadrupole: A and B for cur-
rent injection, and M and N for voltage measurements. For each
quadrupole, the apparent resistivity ρa is calculated:

ρa = K
VM − VN

IAB
, (1)

where IAB is the current injected between electrodes AB, VM and VN

are the potentials measured at electrodes M and N, respectively and
K is the so-called geometrical factor (e.g. Bertin & Loeb 1976).

The IP signal can either be measured as the transient voltage
builds-up upon injection of the current, during the ‘charge’ Ton, or
as the transient voltage decays when the current is turned off, during
the ‘discharge’ Toff. These measurements are usually referred to as

100 per cent duty cycle and 50 per cent duty cycle, respectively
(Olsson et al. 2015).

The integral apparent chargeability, M, in milliseconds, repre-
sents the area enclosed by the discharge curve, V(t), and its zero
asymptote, during a given time-window [t1, t2], divided by the pri-
mary voltage, Vp (Bertin & Loeb 1976; Sumner 1976):

M = 1000 mV V−1

∫ t2

t1

V (t)

Vp(t2 − t1)
dt, (2)

where t1 and t2 delimits the integration window.
The total chargeability corresponds to the integral chargeability

described by eq. (2), when the time-window is the entire time-range
recorded or, most often, the remaining time-range after manual pro-
cessing. The gated chargeability corresponds to the integral charge-
ability defined by eq. (2), when the time-window is the time-range
included in one gate, which is typically 1–100 ms wide.

Apparent resistivity is given by:

ρa = K · Vp

I
, (3)

where K is the geometrical factor and I is injected current.
The investigation depth of the apparent resistivity, ρa, depends on

the intensity of the current injected, the electrode configuration, but
also the conductivity of the medium and the period of the electrical
current injected (e.g. Telford et al. 1990). Each chargeability curve
is integrated over a set number of gates, or time windows, that is
36 gates in the Grindsted survey, with exponentially increasing gate
widths, according to the scheme presented by Gazoty et al. (2012b).
The data processing is carried out on these gated chargeability
curves.

A convenient means to display results of IP acquisitions at a
profile is a 2-D ‘pseudo-section’, which is obtained by placing
each apparent resistivity and total chargeability data at a horizontal
mid-point and a pseudo-depth (Loke & Barker 1996). The pseudo-
depth is defined as the median ‘effective’ depth of investigation of
the array and is calculated based on the Frechet derivatives for a
homogeneous half-space (Edwards 1977; Loke 2004; Menke 2012).

2.1.2 The Grindsted survey

The data originates from the Grindsted landfill site, located in the
southwestern part of Jutland in Denmark (Fig. 1). Over the last
years, multiple IP campaigns have been carried out in the area
to investigate groundwater contamination (Maurya et al. 2017).
The IP survey used in this study was carried out in April 2019. It
contains eight profiles with a total of 16 511 chargeability curves.
The eight profiles are spread out between the landfill and nearby
stream situated to the northwest of the landfill (Fig. 1).

IP data were collected using the ABEM Terrameter LS instrument
with a 100 per cent duty-cycle. Full waveform data were recorded
at a sampling rate of 3750 Hz. A 5-m spacing set-up between
neighboring electrodes was used. The measurements were carried
out using a roll-along protocol (Dahlin & Bernstone 1997). The full
waveform data were signal processed, using the scheme presented
by Olsson et al. (2016). This includes:

(i)Integrating the DC resistivity (ρ) during the last 100 ms of the
on-time.
(ii)Gating chargeability curves, starting at 1 ms.
(iii)Correcting for background drift related to spontaneous polar-
ization and electrode polarization, using a drift model based on the
time-domain expression of Cole–Cole model by Pelton et al. (1978).
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Figure 1. An overview of the Grindsted Survey. Time domain induced polarization (IP) profiles marked in red have been manually processed and used for
training and validation data (profiles 2 and 8). Profile 3, purple, was used for testing. Profile 1, cyan, was manually processed, but was inconsistent in comparison
to the processing of the other profiles. The remaining profiles, marked in blue, were not manually processed and did not have labels and were not used for
training, validation or testing.

(iv)Removal of spikes at early recording times.
(v)Removal of 50 Hz harmonic noise from surrounding infrastruc-
ture.

After signal processing, the chargeability data consist of 30–40
gated chargeability values, all of them associated to a central gate
time, a gate width and a standard deviation. These gated chargeabil-
ity data need to be further processed manually.

2.1.3 Manual processing

The signal processed data are manually processed using the soft-
ware Aarhus Workbench (AarhusGeoSoftware 2020). First, profiles
1, 2, 3 and 8 undergo Direct Current (DC) processing, where only
the apparent resistivity sections are considered. Resistivity outliers
are identified and removed. Afterwards, each gated chargeability
curve of the aforementioned profiles, are manually inspected. Parts
of the curves, or entire curves, are removed when they contain non-
decaying or the decay is either too slow or too steep. The goal is to
prepare the data set for inversion so that it can be reasonably fitted
with a Cole–Cole model. Of course, the classification of chargeabil-
ity curves and gates as noise or signal is user-dependent. Therefore,
a single experienced user carried out the manual processing for
the results presented in this study, to make them as consistent as
possible.

Chargeability curves before and after manual processing, pre-
sented in Fig. 2, illustrate the manual processing workflow. It can be
observed that the early time-gates are systematically removed. The
signal at early times is usually considered to be affected by elec-
tromagnetic coupling effects (Fiandaca 2018). Furthermore, entire

chargeability curves, considered outlier curves, are removed such as
seen in Fig. 2(b), where an entire chargeability curve is removed due
to it being significantly different from neighbouring data curves.

2.2 ANNs, set-up and training

Since some readers might not be familiar with Artificial Neural
Networks (ANNs), this section is dedicated to briefly introducing
ANNs, and how to setup and train them. The goal here is not
to provide all the details, but simply give enough information to
understand the basics.

2.3 A brief introduction to ML

The field of ML concerns itself with programming computers so
they can learn from data (Géron 2019). A good example is an e-
mail spam filter. Here, the computer is shown a feature vector, X,
which contains the contents of a given e-mail. Furthermore, it is
also shown a label vector, y, which in this example is a one-by-
one vector containing a single Boolean value stating whether the
given e-mail is considered spam or not. Such a vector pair (X, y), is
called an instance. After showing the computer multiple instances, it
starts to identify patterns in e-mails that are considered spam (Clark
et al. 2003). A common problem in ML is how to collect reliable
labels. Again, the e-mail spam filter is a good example, since every
time a user marks an e-mail as spam, he/she is essentially manually
labeling the e-mail, which creates an instance pair (X, y). However,
if the user incorrectly classifies a bunch of work e-mails as spam,
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Figure 2. The manual processing workflow of time domain induced polarization (IP) data, where (a) shows the signal processed data prior to manual processing
(b) shows data after manual processing, where grey circles are the removed gates and (c) shows the final result, that is the non-flagged gates only. Blue and red
circles correspond to positive and negative data, respectively. The presented chargeability curves are a selection of curves portraying the typical types of noise
dealt with during processing.

the algorithm will start to get confused and identify some work e-
mails as spam. Alternatively, if the people behind the spam e-mails
become smarter and start composing spam e-mails that resembles
work e-mails, then the computer will have a difficult time correctly
identifying the spam e-mails, even though the labels are actually
correct. In both cases, there is a weak link between the instance
pairs. The trained ML algorithm is only as good as the training data.

2.4 A brief introduction to ANNs

ANNs are a subclass of ML methods that are inspired by biological
neural networks (BNNs), that is the brain’s architecture. Similar
to the brain, the building blocks that constitute an ANN are called
neurons. In BNNs, the neurons are often connected in complicated
networks. Similarly, the neurons of ANNs are also connected, but
are arranged in layers, which gives them a simpler structure (Fig. 3).
Each neuron mimics the behaviour of a biological neuron, which
fires electrical signals when activated. This is simulated in the ANN
by connection weights, wji, such as seen in Fig. 3. The activation
of a neuron in the first hidden layer is a linear combination of the
connection weights, wji, bias term, wj0 and the input variable, xi:

a j =
N∑

i=1

w
(1)
j i xi + w j0, (4)

where j = 1, . . . , M, and superscript (1) refers to parameters from
the first hidden layer of the ANN.

The k’th output of the ANN can be computed by combining all of
the activations for all layers, so considering the ANN from Fig. 3,
and using eq. (4):

yk(x, w) = f

⎛
⎝ K∑

j=1

w
(2)
k j h

(
N∑

i=1

w
(1)
j i xi + w

(1)
j0

)
+ w

(2)
k0

⎞
⎠ , (5)

where k = 1, . . . , N, superscript (2) refers to parameters from the
seconds hidden layer, x is a vector containing all inputs, x1, . . . ,
xM, and w is the a matrix containing the weights of all layers in the
ANN, f( · ) and h( · ) are the non-linear activation functions of the
hidden layer and output layer, respectively.

The presented ANN has one hidden layer, which is the simplest
ANN possible (Fig. 3). ANNs come in different shapes and sizes.

Figure 3. An overview of a artificial neural network (ANN). A subset of
the connection weights are shown as arrows pointing from the first node of
the input layer, x1, to all subsequent nodes it is connected to. The same is
shown for the first node of the hidden layer, z1. Each node in each layer is
connected to all nodes in the next subsequent layer.

The number of neurons in each layer can be increased or decreased,
and hidden layers can be added as needed, to create quite complex
neural networks. In this paper, we use a simple ANN structure with
just one hidden layer, to show how well even the simplest form
of ANN performs. The ANN performance is affected by so-called
hyperparameters, which affect how the network is trained. However,
it is beyond the scope of this paper to describe each of these hyper-
parameters. Readers who are interested in diving deeper into ML
are referred to one of the many textbooks on ML. We recommend
Géron (2019) or Bishop (2006)

2.4.1 ANN setup

We used a supervised multilabel binary classification ANN for
processing time-domain IP data. Each instance, (X, y), consisted of
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a Ngates-dimensional feature vector, X and a Ngates-dimensional label
vector, y. In a multilabel classification problem, multiple labels exist
for each instance, that is in the IP processing problem there are as
many labels as gates. After systematically testing different ANN
architectures, we chose a one-layer ANN with 40 neurons. Using
multiple hidden layers did not improve the results, nor did increasing
the number of neurons in the hidden layer(-s) beyond 40. Common
activation functions were tested, such as the tangent hyperbolic
function, sigmoid function, piecewise linear unit (PLU) and rectified
linear unit (ReLU). The best performance was, however, achieved
by using the ReLu activation function for the hidden layer, and the
sigmoid activation function for the output layer, with a bias term
added to both the hidden and output layers, but not the input layer. A
full overview of the final ANN architecture can be found in Table 1.

We used the Python native Pytorch library for ML (Paszke et al.
2019). The Pytorch library provides a robust ML platform, enables
training on GPUs using CUDA, was easy to debug, and was consis-
tent with other popular scientific computing libraries, for example
the Numpy library used for large matrix operations and high-level
mathematics. The ANN was trained on a computer system with an
NVIDIA GeForce RTX 2080 Titanium, and a Intel Xeon Gold 6132
CPU @2.6GHz.

The Grindsted survey data were divided into a training, validation
and test set. The training and validation data was constructed by
combining all chargeability curves from profiles 2 and 8, amounting
to 15.2 per cent of the Grindsted data set. From this subset of data,
the training data was selected by randomly drawing 85 per cent of
the data and the remaining 15 per cent made up the validation data.
The randomized data selection ensured consistency in the training
and validation data. Finally, profile 3 was used for testing, that is
the test set, since the ANN should always be tested on data that
it has never seen before. An overview of the training, validation
and test data can be found in Table 2. It is important to mention
that the final training data set is a refined version of the raw data
set. It was composed by removing all outlier curves, where entire
curves are significantly different from its immediate neighbours,
from the profiles used for training and validation, that is profile 2
and 8. Including the outlier curves in the training added bias to
the ANN, and removing them increased the overall performance of
the ANN.

2.4.2 Normalizing the training data

Prior to feeding the IP data to a ANN for training, it is common
practice to normalize the data as this increases the performance
of ANNs (e.g. Jayalakshmi & Santhakumaran 2011). The data is
normalized using a combination of MinMax-normalization (Al Sha-
labi & Shaaban 2006) and the log10-transform. All data, including
potential outliers, are included in the normalization step. MinMax-
normalization is used since it has the advantage of largely preserving
all relationships in the data, and the log10-transform is used to re-
duce the dynamic range of chargeability curves. The first step of the
normalization is the log10-transform, which due to negative values,
is carried out as follows:

q̂i, j = log10(|qi, j |), (6)

where |qi, j| is the absolute value of the gate chargeability for the
i’th gate of the j’th sounding, and q̂i, j is the corresponding log10-
transformed value.

After transforming the gate values, the MinMax-normalization
is computed, for each log10-transformed gate-value, q̂i, j , using the

following formula:

zi, j = q̂i, j − min(Q)

max(Q) − min(Q)
, (7)

where zi, j is the i’th normalized value of the j’th sounding, q̂i, j

is defined above in eq. (6), Q is a (Nc, Ngates)-dimensional matrix
containing all log10-transformed gate values and Nc is the number
of chargeability curves.

The gates are rescaled according to a particular data range, cor-
responding to the range of possible values that can be measured
by the IP instrument, that is the MinMax-values are set manu-
ally. Based on the Grindsted data, we used a minimum value of
log10(10−6) and a maximum value of log10(250 000), correspond-
ing to a data range of: 10−6 to 250 000 mV/V. The reason the
data range is so large is due to the previously mentioned elec-
tromagnetic coupling effects, which increases the overall range of
measured values. The result of the normalization strategy is pre-
sented in Fig. 4. It is seen that the overall relationships have been
altered, as the negative values are mapped to positive values and the
dynamic data range is significantly reduced. The transitions from
negative to positive, and vice versa, are clearly seen in the normal-
ized data as sharp inflection points in the chargeability curves. It is
important to note that the stretched exponential decaying behaviour
of the chargeability curves is accentuated in the normalized data
(Fig. 4).

2.4.3 Training the ANN

The network is trained using the AMSGrad variant of the Adam op-
timizer (Kingma & Ba 2014) and the back-propagation algorithm
(Rumelhart et al. 1986) with the parameters shown in Table 3. The
batch size determines how many chargeability curves are shown to
the ANN at each training step. The learning rate hyperparameter
determines how quickly the weights and biases are adjusted during
training, and affects how fast, or slow, the network converges. The
weight decay term penalizes large weights to ensure that the network
does not over fit. Finally, the random seed is used for drawing the ini-
tial weights before the network is trained. The loss, which is similar
to the objective function in geophysical inversion, and accuracy are
tracked during training. The cross-entropy loss function was used to
track the loss. To avoid over-fitting we use early-stopping (Prechelt
1998) to check that the training and validation loss decrease syn-
chronously. The training results are seen in Fig. 5, and it is seen
that the network starts overfitting after about 35 000 epochs, as in-
dicated by the red line. Therefore, the weights after 30 000 epochs
were used (Table 3). In Fig. 5 the accuracy is also being tracked.
The accuracy describes the overall performance of the ANN, and is
computed as:

accuracy = TP + TN

TP + TN + FP + FN
, (8)

where TP are the true positives, TN are the true negatives, FP are the
false positives and the FN are false negatives. The accuracy itself
is not a sufficient summary statistic. The precision and recall are
considered for supplementing the accuracy. The precision, which
represents the percentage of positive predictions that were correctly
classified, is computed by:

precision = TP

TP + FP
× 100. (9)
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Table 1. The artificial neural network architecture used for processing TDIP data. FC is short for fully connected layer.

Layer Name Layer type Neurons Activations Bias

1 Input Linear (FC) 36 N/A False
2 Hidden Linear (FC) 40 ReLU True
3 Output Linear (FC) 36 Sigmoid True

Table 2. An overview table of the training, validation and test data. Each
number represents the number of chargeability curves present for the given
category. The percentages show how large a portion of the total survey the
given category makes up.

Curves per
profile (avg)

2000 (12.1 per
cent)

Training data 2507 (15.2 per
cent)

Validation data 439 (2.7 per cent)
Profile 1 (test) 5357 (32.4 per

cent)
Profile 3 (test) 1512 (9.2 per

cent)
Survey total 16 511

Figure 4. An example of the data normalization using the log10-transform
and MinMax-normalization. (a) the chargeability curves before normaliza-
tion (b) the normalized chargeability curves. Taking the absolute value prior
to the log10-transform forces the negative values to become positive, so to
visually keep track, positive gate values are marked in green and negative
values, which are mapped to positive values, are marked in red.

Table 3. The final parameters used for training the artificial neural network.

Name Value

Num. epochs 30 000
Batch size 100
Learning rate 1.00E-03
Weight decay 1.00E-06
Random seed 40
AMSgrad True
Loss function Cross entropy

The recall represents the percentage of actual positive cases that
were correctly identified:

recall = TP

TP + FN
× 100. (10)

2.4.4 Outlier curve detection

ANN processing is carried out on a curve-by-curve basis and to
detect outlier curves several chargeability curves need to be con-
sidered. Since the ANN only sees one curve at a time, it cannot
recognize outlier chargeability curves. The ANN processed IP data
contains such outlier curves, and a strategy for outlier curve detec-
tion was developed. A given chargeability curve is grouped together
with its immediate neighbouring curves, that were measured using
the same quadrupole configuration, but shifted along the profile by
one electrode. Since we use an electrode spacing of 5 m, we shift
the quadrupole by 5 m. Such curves, which have been measured us-
ing the same electrode configuration, should yield relatively similar
chargeability curves since the current and potential distributions
are assumed to be homogeneous in the calculations of the appar-
ent resistivity values. Chargeability curves are sorted into groups of
three, the curve itself and its two immediate neighbours. If the curve
is too dissimilar from both its neighbours, then the entire curve is
considered an outlier and is removed.

The outlier analysis used, uses the following distance metric for
comparing the j’th and k’th chargeability curves:

d j,k =

√√√√∑Ngates
i=Nem

(qi, j − qi,k)2

Ngates − NEM
, (11)

where NEM is the number of gates that are affected by the EM-effect
and is chosen manually, we used a NEM value of 5 for the entirety
of the Grindsted survey, Ngates is the number of gates, qi, j is the i’th
gate of the j’th chargeability curve, and qi, k is the i’th gate of the
k’th curve, and where j �= k. The reason we remove the EM affected
gates from the distance computations is to avoid them dominating
the resulting distance values. Finally, note that the distances are
computed for the data before normalization.

The distance metric described in eq. (11) describes the simi-
larity between two chargeability curves, if they are similar then
the distance is small, and vice versa. A given chargeability curve
is compared to its two neighbours, yielding two distance values,
di, k − 1 and di, k + 1. A chargeability curve is considered an outlier
and is removed, if both its similarity distances are above a threshold
value. The threshold value is set manually based on the distribution
of all similarity distances between all chargeability curves and their
immediate neighbours.

2.5 Inversion

Inversion of IP data is carried out using the software AarhusInv
(Auken et al. 2015) and the re-parametrized ‘maximum phase angle’
(MPA) Cole–Cole model suggested by Fiandaca (2018). The phase
angle represents polarization as a momentarily ‘frozen’ impedance
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Figure 5. The artificial neural network (ANN) training statistics (a) shows the accuracy for the training data (blue) and validation data (green) (b) shows the
training loss (c) shows the validation loss. The ANN starts overfitting after about 35 000 epochs, as indicated by the red lines. Note the choice of log10 for the
x-scale, which emphasizes the improvements of the training statistics at late epochs.

vector (Sumner 1976). In the frequency domain, where AC current
is injected at varying frequencies, the phase-angle of the impedance
corresponds to the delay of the measured voltage relative to the
injected current. The maximum phase angle corresponds to the
maximum value of the phase spectrum in the relevant frequency
range, typically 0.1–100 Hz for geophysical applications (Lévy
et al. 2019). Moreover, for a given Cole–Cole impedance model,
the phase angle can be calculated, using the arctan of the ratio be-
tween the ‘Cole–Cole predicted’ imaginary and real conductivity, at
a given frequency (Cole & Cole 1941). The maximum-phase-angle,
used in the MPA parametrization, corresponds to the value of this
Cole–Cole-computed phase angle, taken at the frequency where the
phase angle peaks/reaches a maximum. This peak frequency, or the
corresponding relaxation time, is calculated from the chargeability,
Cole–Cole exponent and relaxation time of the Cole–Cole model
in its complex resistivity form (Pelton et al. 1978; Fiandaca et al.
2018). With the MPA parametrization, the model space consists of
DC resistivity, ρ0, maximum phase angle, φmax, time constant, τφ

(inverse of the angular frequency at which the phase angle reaches
a maximum) and frequency exponent, C.

The depth of investigation (DOI) computation in AarhusInv is
based on approximate covariance analysis, following Fiandaca et al.
(2015). The analysis takes the noise in the data and the final derived
model into account. In the results section, the DOI is shown as
conservative (shallow) and less conservative (deeper). For each in-
version, a dimensionless total data misfit χ is calculated using:

χ =
√√√√ 1

N

N∑
i=1

(log10(dobs,i ) − log10(dfwd,i ))2

δ2
di

, (12)

where dobs is the observed (measured) data, dfwd is the forward
prediction, δd is the standard deviation of the observed data and N
is the number of data points.

The relative standard deviation of resistivity is estimated to 1
per cent. The relative standard deviation of IP parameters is calcu-
lated as:

δdIP = �A + Vthreshold

VIP

1√
nstack

1√
gwidth

10

, (13)

where �A is a minimum constant standard deviation, δdI P is the
standard deviation of IP parameters in a given gate, Vthreshold is the
nominal noise floor for 10 ms integration time, gate width, and one

stack in mV, VIP the voltage value for a given gate in mV, nstack is
the stack size (dimensionless) and gwidth is the gate width in ms
normalized to 10 ms, that is gwidth/10 ms is dimensionless. The
parameters Vthreshold and �A are adjusted manually until a suitable
noise model is obtained. Values of 10 mV and 5 per cent are used
in the present study, respectively. The objective function, which is
minimized using the L2 norm, also contains vertical and lateral
roughness constraints, where the relative difference (in log space)
between the model parameters of two adjacent cells and the con-
straint value are compared (Auken & Christiansen 2004; Fiandaca
et al. 2013, 2018). The following vertical and lateral constraint
values are used here for resistivity, ρ, φmax τ and C: [0.5,0.15],
[0.5,0.15], [0.15,0.45] and [0.5,0.15], respectively. No constraint
on the a priori value is used.

3 R E S U LT S

The manual- and ANN-based processing is compared in two dif-
ferent ways: (i) visual and statistical comparison of data remaining
after ANN and manual processing (Fig. 6 and Table 4) and (ii) vi-
sual comparison of inversion results from the ANN and manually
processed data (Fig. 7).

The statistical comparison of the data after ANN and manual
processing are found in the confusion matrix (Table 4). The table
has been compiled by considering the manual processing flags as
the ‘true’ values, and the ANN processing flags as the comparison
values. Using the numbers presented in the table, precision and
recall can be computed.

accuracy = 19978+29461
19978+29461+1309+3684 = 90.8 per cent.

precision = 19978
19978+1309 × 100 = 93.9 per cent.

recall = 19978
19978+3684 × 100 = 84.4 per cent.

The ANN-processing performs well, with an accuracy of 90.8
per cent, precision of 93.9 per cent and a recall of 84.4 per cent, re-
spectively. Since the main objective of the processing is to keep only
apparent chargeability curves that can be predicted by the forward
response of an MPA model, a visual comparison between ANN and
manually processed data is also shown (Figs 6a and b). The com-
bination of ANN processing and outlier curve detection performs
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Figure 6. Comparison of the manual and ANN processing for the test data (profile 3), where two sets of 10 representative chargeability curves have been
hand-picked, the first set presented in (a) and the second set in (b). The same chargeability curves as presented in Fig. 2 are presented in (a). Note that the outlier
from Fig. 2 is also removed by the ANN processing routine. The blue circles denote gates that were kept by both the manual and ANN processing routines.
The red diamonds denote gates kept by manual processing, but removed by ANN processing. The cyan triangles denote gates kept by ANN processing, and
removed by manual processing.

Table 4. The confusion matrix of the ANN-processing result for the test
data (profile 3). The table is compiled by computing the number of true
positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN) relative to the manual processing result.

Actual positive Actual negative

Positive prediction TP: 19978 (36.7 per cent) FP: 1309 (2.4 per cent)
Negative prediction TN: 29461 (54.1 per cent) FN: 3684 (6.8 per cent)

well, and yields similar results, with only small differences, such
as the ANN keeping more data at earlier times. In both plots, the
outlier curve from Fig. 2 has been removed, showing that the out-
lier curve detection routine can successfully identify outlier curves
and removed them. Furthermore, the ANN processing result is less
conservative, that is less data is removed. This results in some irreg-
ular features remaining at early times for a few chargeability curves
(Fig. 6b).

The outlier curve detection algorithm identifies and removes out-
lier curves that are significantly different from their neighbours. The
results for profile 3 are affected by the removal of outlier curves,
which can be seen in the summary statistics, Table 5. Removing out-
lier curves both reduces the accuracy and precision, but increases
the recall. The outlier curve detection algorithm identified 95 (6.3
per cent) outlier curves for profile 3, which contained a total of 1512
chargeability curves. During manual processing 83 (5.5 per cent)
outlier curves were identified and removed from profile 3.

Inversion results, based on manually and ANN processed data for
profile 3, are presented in Fig. 7. Overall, the four inverted param-
eters shows similar distribution, although clear differences appear
for the inverted time constant τ . For example, the inversion results
from manual processing shows patches of low time constant in the
northern part of the profile, which are absent in ANN processed
result.

The DC processing was identical for the manually and ANN
processed IP data, and since the ANN processing has no influence
on whether or not DC data are kept in the inversion, the resistivity
pseudo sections are identical for manual and ANN processing . The
ANN processing only deals with apparent chargeability curves. As
a consequence, a few differences can be observed between the two
integral chargeability, <M>, pseudo sections. For example, a few
more quadrupoles are absent at the centre of the ANN processing

pseudo section, meaning that they have been considered as outliers
by the ANN processing but not by the manual processing. The total
data misfit are almost identical for the manually and ANN processed
data sets (2.7 and 2.8, respectively).

Finally, the ANN processing routine was applied to profile 1,
where the manual processing had been carried out in a more con-
servative way, as compared to profile 2, 3 and 8 (Fig. 8). The data
remaining after manual and ANN processing for profile 1 are pre-
sented in Fig. 9. With manual processing, early time gates before
10−1 s were generally removed (Figs 8c and 9a). With ANN pro-
cessing, gates as early as 10−2 s were kept (Fig. 9b), according to
the manual processing of profiles 2, 3 and 8 used for the train-
ing. Two outlier curves were identified during manual processing,
a fully negative and fully positive chargeability curve, represented
by the two grey chargeability curves in Fig. 8(b). These two outlier
curves were successfully identified by the outlier curve detection
algorithm, used by the ANN processing scheme, and were removed
(Fig. 9b). The precision and recall for profile 1:

accuracy = 93489+67921
93489+67921+9402+22040 · 100 = 83.7 per cent

precision = 93489
93489+9402

100536
100536+22546 × 100 = 90.9 per cent.

recall = 93489
93489+22040

100536
100536+14993 × 100 = 80.9 per cent.

The performance of the ANN, when using the manual processing
as a reference, is more satisfying for profile 3 than for profile 1.
Especially when looking at the summary statistics: the accuracy
was 83.7 per cent for profile 1 and 90.8 per cent for profile 3, the
precision was 90.9 per cent for profile 1 versus 93.9 per cent for
profile 3, and finally the recall was 80.9 per cent for profile 1 and
84.4 per cent for profile 3. At first glance, this might indicate an
overall drop in performance from profile 3 to profile 1. Ideally, both
the precision and recall would reach 100 per cent, meaning there are
no false negatives nor false positives. However, it is important to
remember that the summary statistics are computed relative to the
manually processed data, and we do not expect the ANN to behave
exactly the same as a human, especially if the reference manually
processed data are different from the training data set. For profile 3,
the precision was 93.9 per cent, and the recall was 84.4 per cent. For
profile 1, the precision was 90.9 per cent of the positive predictions
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Figure 7. Data and inversion results for profile 3, using manually and ANN processed IP data (left- and right-hand columns, respectively). Manual and ANN
processed data sets are inverted separately. Seven panels are shown for each inversion, from top to bottom: four model parameters corresponding to the MPA
parametrization (resistivity ρ, maximum phase angle �max, time constant τ , frequency exponent (c), then resistivity and IP pseudo sections, and finally misfit
evolution along the profile, with each value on the graph corresponding to the average misfit over the vertical column. The white lines in the lower part of the
figure represent the shallow and deep DOI for each inverted parameter.

Table 5. The summary statistics before and after removing outliers in profile
3.

Before After Difference

Accuracy (per
cent)

91.2 90.8 −0.4

Precision (per
cent)

95.8 93.9 −1.9

Recall (per cent) 83.5 84.4 +0.9

correctly (precision), and the recall was 80.9 per cent. Both the
precision and recall were lower. This was to be expected, since the
neural network is trained on data, where the manual processing
is less conservative than on profile 1. For example, many false
positives are observed in the ANN processing of profile 1, since the
ANN keeps more early-time gates. However, the data misfit after
inversion are similar for the manually and ANN processed data (1.3
and 1.4, respectively). Comparing the inversion results of the two
processing methods (Fig. 7) reveals a similar resistivity, ρ, and �max

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/224/1/312/5912366 by Aarhus U

niversity Library user on 07 July 2022



Processing IP data using Machine Learning 321

Figure 8. Manual processing for profile 1. Panel (a) shows a selection of chargeability curves before processing, with red circles showing data that were
negative before normalization. Panel (b) shows the same selection of chargeability curves, with gates removed by the manual processing shown in grey. Panel
(c) shows the remaining data after manual processing.

Figure 9. Comparison of the manual and ANN processing results for profile 1 as test data, where two sets of 10 representative chargeability curves have been
hand-picked, the first set presented in (a) and the second set in (b). The same chargeability curves as presented in Fig. 8 are presented in (a). The blue circles
denote gates that were kept by both the manual and ANN processing routines. The red diamonds denote gates kept by manual processing, but removed by ANN
processing. The cyan triangles denote gates kept by ANN processing, and removed by manual processing.

sections for profile 3. On the other hand, the τφ and C sections are
different.

In order to study the τφ discrepancy between inversion models
stemming from manual and ANN processing, observed at profile
coordinates 45–60 m in profile 3, all model cells in this area are
analysed closely. At profile coordinate 55 m we also note a peak in
IP data misfit, see bottom two frames Fig. 7. In Fig. 10, the forward
prediction are shown together with the corresponding data, that is
remaining chargeability gates after processing. The nine chargeabil-
ity curves presented in Fig. 10 are a representative selection of the
curves at profile coordinates 45–60 m. The forward predictions in
Figs 10(a) and (b) show some examples where the ANN performs
well, whereas Figs 10(c) and (d) show some cases where the ANN
performs poorly.

4 D I S C U S S I O N

In this study, outliers are defined as data that cannot be fitted by
a Cole–Cole model and are removed from the data set. A clear
advantage of this model is the limited number of parameters. How-
ever, this approach can face some limitations when real IP data,
corresponding to polarization within the geological units where the
electrical current, does not follow a Cole–Cole behaviour. This can

be the case if, for example, polarization occurs at different scales
at the same time, in which case a single Cole–Cole model may not
represent the complexity of the processes in a satisfactory manner
(Lévy et al. 2019). Given the resolution and signal level of time-
domain IP data, adding parameters to the model space is not an
option. Approaches including Debye decomposition, limited to 2 or
3 fixed relaxation times, could be considered in the future but this
is beyond the scope of this paper.

The processing of profile 3 took 6.3 s using a trained ANN, includ-
ing the sequence sorting, outlier detection algorithm, and writing
the processing result to the disk. On the other hand, the manual
processing of a profile of comparable size takes about 4 hr, and
processing the whole survey takes several days. ANN processing
significantly increases the computational efficiency, as well as auto-
mates IP processing. The training of the ANN took 3.5 hr, and might
take less/more time to train depending on the size of the training
data set.

The choice of profiles to use as training data influences the ANN
performance. We tried training the ANN using profiles 2 and 3 as
training/validation data, and profile 8 as a test set. This yielded a
different result. The final accuracy was 89.8 per cent, however, the
precision and recall values were lower, with a precision of 83.1
and recall of 84.9. Generally, profile 3 contained a lot of data, and
was difficult in regards to processing, that is more outlier gates,
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Figure 10. Chargeability curves, including data and forward predictions. Panel (a) shows two curves (corresponding to two quadruples) removed during
manual processing, but not during ANN processing. Panel (b) shows four curves where both the manual and ANN processing do a good job. although the ANN
slightly improves the results. Panel (c) shows a case where the ANN processing removes too many gates; it should bed noted that it is the only quadruple we
found resulting in such a poor processing. Panel (d) shows two chargeability curves (quadruples) that were kept by both the manual and ANN processed data
but were not correctly fitted in either case.

outlier curves, and more noisy chargeability curves. This means the
correlation between the input data, X, and the corresponding labels,
y, is lower. For the purpose of this study, profile 3 was used as a
test set, since this yielded better ANN performance. However, it is
important that the profiles used as training data are processed in a
similar and consistent manner. We tried to include profile 1 in the
training set, which decreased the overall performance of the ANN,
since the training data set contained discrepant or contradictory,
data. This was reflected in the ANN processing result, where data
was processed in a more conservative fashion. Therefore, increasing
the size of the training data set does not necessarily improve the
performance of the ANN. Especially, if the added data is of poor
quality. The final ANN used a training data set comprised of profiles
2 and 8, amounting to 17.8 per cent of the data set. Alternatively,
using profiles 2 and 3 as training data, which is a larger training
data set amounting to 23.1 per cent of the data set, yielded worse
performance. The precision and recall of the smaller training data
set was 91.1 and 88.3 per cent, respectively. The larger training data
set had a precision of 81 per cent and a recall of 85 per cent.

The performance of the outlier detection algorithm can be seen
in the summary statistics before and after removing outliers. The
total percentage of positive predictions that were correctly classi-
fied was slightly reduced (precision), but the percentage of actual
positive cases is increased (recall, see Table 5). This means that the
number of false negatives are reduced, and moved to true positives
in cases where we have identified the same outliers as in the manual

processing. Outlier curves that are removed manually, but not re-
moved by the outlier detection algorithm, decreases the accuracy
and precision, since they increase the number of false positives.
Overall, the outlier detection algorithm removes obvious outlier
curves, but does not mimic the manual approach.

The ANN processing results are consistent and reproducible in
the sense that the same ANN will always yield the same processing
results. In our experience, in some cases, the ANN can also yield
better results than manual processing, for example for profile 1.
However, this is only the case when the ANN was trained using a
good and consistent training data set. A common problem in ML is
bad training data. Here, bad training data can be considered as data
with a weak correlation between the patterns of the input data, X, and
the corresponding labels, y. In such cases, the training data needs to
be cleaned prior to training the ANN. One issue we encountered, was
that detected outlier curves are removed by setting all gates to ‘off’,
for the entire chargeability curve. Such an outlier curve, although
it still might portray a decaying chargeability signal, is removed
based on the fact that it has a too high, or too low, signal level,
or is too different from neighbouring curves. Such outlier curves
confuse the ANN. The loss function cannot be reduced beyond
a certain point if it sometimes has to remove entire chargeability
curves with a decaying pattern, and in other cases keep them. In our
case, outliers are dealt with using an outlier detection routine, and
therefore all chargeability curves, which were considered outlier
curves, were removed from the training data. This improved the
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overall performance of the ANN, as well as the generalization, since
these outlier chargeability curves no longer confuse the network
during training.

Due to the nature of human-based manual processing, the training
data can be strongly affected by human error, for example when
the processing used in the training has not been carried out in
a consistent manner. In manual processing, as opposed to rule-
based approach, similar soundings can have small fluctuations as
to whether a gate is removed or not. This will confuse the ANN.
If a given gate is kept in one chargeability curve, and removed in
another similar curve, then the loss function cannot do better than
favouring one or the other—never both. The consequence of this is
that the performance can not increase beyond a certain limit, since
the network cannot prioritize such contradictory data at the same
time. In order to improve the training data, a rule-based approach
should be used to produce a relatively consistent training data set.

Testing the ANN on profile 3, it had an accuracy of 90.8 per cent,
a precision of 93.9 per cent, and recall of 84.4 per cent, which means
differences between the ANN and manual processing do exist. Gen-
erally, the ANN keeps gates at much earlier times, and is less con-
servative, as is evident in Fig. 6. The outlier detection algorithm
used in tandem with the ANN also does not remove all outliers.
For profile 3 the outlier curve detection algorithm identified 95 out-
lier curves, while during manual processing 83 outlier curves were
identified. This is the key difference we observe between the manual
and ANN processing. Furthermore, the ANN processing is judged
on its ability to process the gates correctly, but also on how well
the outlier curve detection algorithm works. If the outlier detection
does not identify the same outliers as the manual processing, or
removes outlier curves that were not removed manually, this also
increases the uncertainty of the ANN processing. Overall, ANN
processing should never be expected to be identical to the manual
processing, and with precision of 93.9 per cent and recall of 84.4
per cent, respectively, we are confident that the ANN works. This is
further supported by the fact that the IP inversion results are similar
in nature, except for the τφ and C section. The differences between
the τφ and C sections in the inversion results based on the manual
and ANN processing results, can be seen clearly in Fig. 10, where
some key differences are presented in an area with a high data mis-
fit, that is between profile coordinates 45–60 m. Generally, in areas
of high data misfit, the inversion result is influenced by chargeabil-
ity curves in the vicinity of the high misfit. Since there are some
significant differences in the processing result in the area presented
(Fig. 10), it is expected that there will also be some differences in
the final inversion result. The ANN is not as conservative as manual
processing, both in regards to removing outlier curves, and indi-
vidual gates. This slightly alters the forward predictions, in some
cases even improving the data misfit (Figs 10a and b). However,
in one case the ANN did not recognize the chargeability pattern
properly, and did a poor processing job (Fig. 10c). This is an indi-
cation that we either need more training instances that resembles
the pattern, or that there is an instance in the training set that is
poorly processed and is confusing the ANN. Also a few examples
are presented where both the manual and ANN processing yielded
high data misfits (Fig. 10d).

The presented ANN is trained for 36 gate chargeability curves,
and hence the input vector consists of a 36-element array (Table 1).
If the measurement and/or gating is different, and contains fewer,
or additional gates, then the presented ANN will not work. To
generalize the ANN it would be necessary to up-sample the curves
to a larger number of gates. Then, the network is trained using the
up-sampled curves, and when a survey containing, for example 25

gates is conducted, it is simply up-scaled, and then fed through the
ANN. Such a generalization would also mean that any IP data set
could be used for training and prediction.

In its current form, the presented ANN processing scheme can be
applied as a tool to aid in manual IP processing. Once a subset of the
data has been processed, in our case about 15–20 per cent, an ANN
can trained. The trained ANN can then process the remaining data
set in less than a minute. The end goal is a generalized ANN, which
can be applied on other surveys,, but that requires training data
from many different surveys. The ANN recognizes outlier patterns
found in the chargeability curves it has been shown, and therefore
does not know how to deal with new outlier patterns. Applying
the ANN on a different survey than it was trained on might yield
variable results, depending on how similar the surveys are. Future
plans include expanding the training data set and testing the ANN
on additional surveys.

5 C O N C LU S I O N S

We apply ANNs for quality assurance and processing of time-
domain induced polarization data. The presented results revealed
that ML works as a viable tool for processing chargeability curves,
and was tested on a real-world survey from Grindsted, Denmark.
The Grindsted survey consists of eight profiles, 2085 chargeability
curves per profile on average, amounting to 16 511 curves in total.
Two profiles, profiles 2 and 8, which contain 2946 (17.8 per cent)
chargeability curves, were manually processed and used to train
an ANN, which in turn is used to process the remaining data. The
network can process an IP profile in 6–15 s, and took 3.5 hr to
train on a modern computer system with a dedicated graphics pro-
cessing unit (GPU). The manual processing of a data set can take
days, depending on the experience of the person processing, how
large the data set, and the amount of noise present in the IP data.
The presented approach is consistent and rapid, in contrast to the
manual approach, which is time consuming and relatively often
inconsistent.

We showed that by processing about 18 per cent of the induced
polarization data, we could train a neural network to process the re-
maining 82 per cent of the data set in less than a minute. Although,
the performance of the neural network was good, there were also
some caveats. The biggest caveat was the inability to identify out-
lier curves based on one chargeability curve at a time. This problem
was remedied by applying a outlier curve detection scheme. After
incorporating the outlier detection into the neural network, a preci-
sion of 93.9 per cent and a recall of 84.4 per cent was achieved. The
inversion results based on the neural network processed data, was
comparable to the inversion results based on the manually processed
data. The average misfit for the manual based inversion in the test
profile, that is profile 3, was 2.7, while the same data misfit for the
neural network based inversion was 2.8.

Even though the ANN performed well, strategies still need to
be developed and tested for improving and generalizing neural net-
works for quality assurance and processing of induced polarization
data. Such strategies include finding a better way to obtain con-
sistent training data, such as exploring rule-based processing as a
means of making training data. Additionally, a avenue could be to
explore more complex ML methods, such as convolutional neural
networks, to see if they can improve the results. This is a trade-off
between computation time, performance, and availability of training
data. The more complex the network, the larger the computational
demand, but with better overall performance, and vice versa.
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