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S U M M A R Y
We present a new algorithm for 3-D forward modelling and spectral inversion of resistivity
and time-domain full-decay induced polarization (IP) data. To our knowledge, all algorithms
available for handling 3-D spectral inversion of full-decay IP data use a time-domain ap-
proximation to Poisson’s equation in the forward response. To avoid this approximation, we
compute the response in the frequency domain solving the full version of Poisson’s equation
for a range of frequencies (10–8–104 Hz) and then transform the response into the time domain,
where we account for the transmitted current waveform. Solving Poisson’s equation in 3-D
is computationally expensive and in order to balance accuracy, time, and memory usage we
introduce the following: (1) We use two separate meshes for the forward response and the
model update, respectively. The forward mesh is an unstructured tetrahedral mesh allowing
for local refinements whereas the model (inversion) mesh is a node-based structured mesh,
where roughness constraints are easily implemented. By decoupling the two meshes, they
can be tuned for optimizing the forward accuracy and the inversion resolution, independently.
(2) A singularity removal method known from resistivity modelling has been adapted to the
complex IP case and is applied to minimize the numerical errors caused by the fast changing
potential close to the source electrodes. The method includes splitting the potential field into a
primary part (response of a homogenous background) and a secondary part (from the anoma-
lies). Two different forward meshes are then used to compute the forward response: a dense
mesh for the primary potential field (only computed once for each frequency) and a coarser
mesh for the secondary potential field (computed in each iteration step of the inversion). With
this method, the singularity is minimized and the memory usages is decreased significantly
at the same time. (3) Finally, we are sparsing (downsampling) the Jacobian matrix based on
a threshold value of the normalized sensitivity. The Jacobian computation is performed by
time-transforming the frequency-domain Jacobian obtained through the adjoint method. The
Jacobian downsampling is carried out before the time-transform in the frequency domain,
thus avoiding the time-transformation of the Jacobian elements with negligible sensitivity.
We invert resistivity data and all IP time-gates simultaneously and use the Gauss–Newton
model update to minimize the L2 misfit function. We invert the resistivity data and all IP
time-gates simultaneously and use the Gauss–Newton model update to minimize the L2 misfit
function. We demonstrate the performance of our inversion approach with a synthetic data
example with 3-D anomalies and a field example, where lithology logs verify the results. The
data sets contain 1256 quadrupole measurements with 33 IP time-gates each. The inversions
results show good data fits and model retrieval. The inversion takes approximately one hour
per iteration using four CPUs. With this speed and accuracy, we believe this modelling and
inversion approach will be a strong tool for 3-D spectral inversion of resistivity and full-decay
IP field data for both surface and borehole applications.
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Inverse theory; Numerical modelling.
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1 I N T RO D U C T I O N

The direct current (DC) resistivity and induced polarization (IP) geophysical methods are widely applied for near-surface investigations.
In recent years, research has focused on the spectral content of the IP signal (Kemna et al. 2012), which can be linked to the geological
and hydrological properties of the subsurface through petro-physical relations (e.g. Revil & Florsch 2010; Weller et al. 2015). Accordingly,
time-domain spectral IP is increasingly applied in environmental surveys, for example for mapping of contamination and old landfills (e.g.
Gazoty et al. 2012; Wemegah et al. 2014; Johansson et al. 2015), for field-scale estimations of hydraulic conductivity (e.g. Attwa & Günther
2013; Maurya et al. 2018) and for monitoring of contaminant remediation projects (e.g. Flores Orozco et al. 2015; Flores Orozco et al. 2019;
Nivorlis et al. 2019). These applications require a robust and accurate spectral inversion scheme, which is able to handle large data sets from
3-D surveys with thousands of quadrupole measurements within a reasonable computation time and with reasonable memory usage. However,
to our knowledge, no algorithms exist for 3-D time-domain spectral inversion of full-decay IP data (i.e. disregarding integral-chargeability
and one-frequency approaches), which fulfil these requirements. In this paper, we therefore present an algorithm for 3-D time-domain spectral
inversion of resistivity and full-decay IP data with a focus on balancing accuracy, speed, and memory usage when inverting large-scale data
sets.

In the frequency domain, the IP effect of the subsurface can be described by the 3-D-distributed, frequency-dependent, complex
conductivity, σ ∗, which is intended as an effective conductivity that contains both conduction and polarization effects of free and bound
charges, as σ ∗ = σ ∗

free + iωε∗
bound, where i = √−1 is the imaginary unit, ω is the angular frequency and ε∗

bound = ε0 (1 + χe) is the electric
permittivity, defined in terms of the free-space permittivity ε0 and the electric susceptibility χe. By neglecting electromagnetic (EM) effects,
the complex potential, u∗ (ω) = u′ (ω) + iu

′′
(ω), measured in an IP investigation, is linked to the complex conductivity through Poisson’s

equation:

∇ · j∗
s (ω, r) = ∇ · [σ ∗(ω, r)E∗(ω, r)], (1)

where j∗
s is the applied source current density, r = (x, y, z) is the spatial location, and E∗ (ω, r) = −∇u∗(ω, r) is the complex electric

field.
The IP forward responses are modelled by computing the complex potential (eq. 1) for a range of frequencies. In a frequency-domain

spectral inversion, the complex conductivity distribution is retrieved independently, frequency by frequency, or simultaneously for all
frequencies, which makes it possible to define smoothness constraints between the conductivity values of adjacent frequencies (e.g. Günther
& Martin 2016). The spectral content can then be presented, for instance, by fitting Cole–Cole models (Cole & Cole 1941; Pelton et al.
1978) to the resulting complex potentials in each model cell (e.g. Loke et al. 2006). As an alternative, it is possible to invert directly for the
Cole–Cole parameters (e.g. Blaschek et al. 2006) and thereby decrease the length of the model vector during the model update (i.e. from the
number of frequencies to the number of model parameters).

In the time domain, Poisson’s equation is given as a convolution between the conductivity and the electric field as a function of the time
t (e.g. Kemna 2000):

∇ · j s(t, r) = ∇ ·
[∞
∫
0

σ (t ′, r)E(t − t ′, r)dt ′
]

, (2)

where σ (t) is the inverse Laplace transform of σ ∗(ω) and E(t, r) = −∇u(t, r). To avoid the computationally demanding convolution,
simplifications are often applied when modelling the forward response in time domain. The approach introduced by Seigel (1959) is a famous
simplification, which postulates that the applied source current density creates a distribution of current dipoles antiparallel to the electric field
with a current volume moment corresponding to the current density j P (r) = ∂ P(r)

∂ t = −m(r) · j free(r), where (P) is the polarization, m is
the model-space chargeability and j free is the primary current density. With this assumption, the total current density including polarization
is given as j = j free + j P = j free (1 − m) = σ∞ (1 − m)E, where σ∞ is the conductivity when neglecting the polarization effects. The
apparent chargeability (ma), defined by Seigel (1959) as the potential measured just after current turn-off normalized by the DC (steady-state)
potential, can then be modelled by solving the forward operator, ∇ · j (r) = ∇(σ (r) · E(r)), twice: once for σ∞ and once for σ0 = σ∞ (1 − m)
(Seigel 1959; Oldenburg & Li 1994). However, this approach implicitly neglects the convolution of eq. (2), because the polarization P is not
treated as the convolution of the electric field with the time-dependent electric susceptibility χe(t, r). Instead, the chargeability m is defined
as a time-dependent property m(t, r), which can be inverted for each time-gate.

More recently, studies have divided the IP decay into time-gates and used an explicit approximation to eq. (2) to compute the forward
response in each time-gate. Here, the convolution of eq. (2) is replaced by a simple multiplication between the conductivity and the electric
field (e.g. Yuval & Oldenburg 1997; Hördt et al. 2006; Hönig & Tezkan 2007):

∇ · j (t, r) ∼= ∇ · (σ (t, r) · E (t, r)) . (3)

Hördt et al. (2006) and Hönig & Tezkan (2007) compared this approximate time-domain solution to the full frequency-domain solution
and showed that the approximation is exact for homogenous half spaces and a good approximation for early and late times of the decay curve

Note: The inversion algorithm presented in this paper is available at https://hgg.au.dk/software/aarhusinv/ and is free to use for non-commercial purposes.
Data, input files, and data processing scripts can be accessed upon request to the corresponding author.
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in general. With the approach, an inversion is performed in each individual time-gate, and the spectral content of the IP signal is determined
by combining the inversion results from the gates and fitting the resulting decay curves to a Cole–Cole model (e.g. Yuval & Oldenburg 1997;
Hördt et al. 2006; Hönig & Tezkan 2007). However, when inverting the time-gates independently, there is a risk of obtaining non-physical
decays. This risk can be mitigated by inverting all time-gates at once as suggested by Yi et al. (2012) and Nivorlis et al. (2017). They also
suggest adding constraints between the gates to avoid irregular shapes of the IP decays. However, it is questionable whether the constraints
will prevent fitting ‘non-standard’ IP decays (e.g. decays with changing signs) as described by Fiandaca et al. (2019). Despite simultaneous
inversion of all time-gates, these time-domain approaches do not obey the physics of Poisson’s equation as the approximation in eq. (3) is
still used.

Fiandaca et al. (2012, 2013) presented an approach for 1-D and 2-D spectral inversion of time-domain IP data, where the forward
response is computed in the frequency domain, solving the full version of Poisson’s equation, and then transformed into the time domain. In
this way, the time-domain approximation (eq. 3) is avoided. However, when using the resistivity and IP method to map subsurface geological
structures with complex geometries, 1-D and 2-D inversion schemes are not always sufficient. For instance, in environmental surveys aiming
to map contaminant plumes or injected remediation products (often using cross-borehole measurements), the anomalies are inherently 3-D
and often show high conductivity contrasts. In such cases, 3-D modelling and inversion of the data are required. Algorithms do exist for
handling 3-D inversion of time-domain IP data (e.g.Li & Oldenburg 2000; Karaoulis et al. 2013; Rossi et al. 2018), however, these all apply
an integral-chargeability approach or the approach presented by Seigel (1959) and Oldenburg & Li (1994) as outlined above.

In this paper, we present a 3-D spectral inversion algorithm for resistivity and full-decay IP data. The inversion follows the approach
of Fiandaca et al. (2012, 2013) and models the forward response in the frequency domain and then transforms it to the time domain, where
the transmitted current waveform is taken into account. Solving Poisson’s equation in 3-D for many frequencies, which is required by IP
modelling, is computationally expensive. We therefore present an adapted version of a singularity removal method (Coggon 1971; Lowry
et al. 1989) and a triple-mesh approach (Günther et al. 2006), previously applied for resistivity modelling. These methods have been adapted
to the complex IP case and combined with a node-based definition of the model mesh. This is done in order to balance the modelling accuracy
and the computational speed and memory usage. Furthermore, an efficient procedure for sparsing (down-sampling) the Jacobian is applied.
The 3-D modelling and inversion algorithm is validated on synthetic data and a field example.

2 DATA A N D M O D E L S PA C E

In the following, the data vector (d) is given by the DC potential (uDC) and the IP potential (uIP) in each time-gate of the IP decay. For the ith
quadrupole measurement we have

di = (
uDC, uIP,1, . . . , uI P,Ngates

)T
, (4)

where the DC potential is measured just before the current is changed and is defined by

uDC = ∫te
ts

u (t ′) dt

te − ts
, (5)

where ts and te are the lower and upper limits of integration of the measured potential u(t). The IP potential of the jth time-gate is defined by

uIP, j = ∫t j+1
t j

u (t ′) dt

t j+1 − t j
, (6)

where t j and t j+1 are the opening and closing times of the jth time-gate. Alternatively, the data vector can be defined by the apparent resistivity
(ρa) and the apparent chargeability (ma, j ) in each time-gate, so

di = (ρa, ma,1, . . . , ma,Ngates )
T . (7)

Here, the apparent resistivity (�m) is given by ρa = K · uDC/I , where K is the geometric factor and I is the injected current and the
apparent chargeability (mV V–1) is given by ma, j = uI P, j/uDC · 1000.

In the model space, different parametrizations of the complex conductivity can be used to describe the spectral content. Table 1 gives an
overview of some of the parametrizations that have been implemented. For the inversion examples presented in this study, we invert directly
for the maximum phase angle (MPA) Cole–Cole model parameter (Fiandaca et al. 2018). The MPA model is a reparametrization of the
classic Cole–Cole model (Cole & Cole 1941; Pelton et al. 1978). Compared to the classic Cole–Cole model, the reparametrization uses the
maximum of the phase shift instead of the intrinsic chargeability, which minimizes the correlation of the model parameters in the inversion
(Madsen et al. 2017; Fiandaca et al. 2018). The model space is defined by:

m = (
log10(ρ0), log10 (ϕmax ) , log10

(
τϕ

)
, log10 (C)

)T
. (8)
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Table 1. Implemented parametrizations of IP.

Parametrization Model parameters Reference

Resistivity Cole–Cole model m = {ρo, m0, τρ, C} (Cole & Cole 1941; Pelton et al. 1978).
ρ∗ = ρ0 [1 − m0(1 − 1

1+(iωτρ )C )]

Drake model m = {ρo, ωl, ϕ} (Van Voorhis et al. 1973; Johansson et al. 2015)
ρ∗ = K (iω + ωl)−b

ρo = K (ωl)−b

ϕ = π
2 b f or ω > ωl

Constant phase angle (CPA) m = {ρo, ϕ} (Van Voorhis et al. 1973; Johansson et al. 2015)
As the Drake model, but with

ωl = 10−6 rad/s
Maximum phase angle
Cole–Cole

m = {ρ0, ϕmax , τϕ, C} (Fiandaca et al. 2018)

τϕ = τρ (1 − m0)1/2C

ϕmax = tan−1(
ρ′′(1/τϕ )
ρ′(1/τϕ ) )

3 F O RWA R D M O D E L L I N G

We model the 3-D resistivity and IP forward responses in the frequency domain for a range of frequencies using the finite element method.
The responses are then transformed into the time domain for each quadrupole measurement and the transmitted current waveform is applied.
The steps of the forward modelling are described in the following.

3.1 Finite element formulation

The frequency-domain 3-D resistivity and IP forward operator (neglecting EM effects) is defined by Poisson’s equation:

∇ · (σ ∗ (ω, r) ∇u∗ (ω, r)) = −I δ (r − r s) , (9)

where σ ∗(ω, r) and u∗(ω, r) are the previously described complex conductivity and electric potential, respectively, I is the electric current
injected as a point source at r s = (xs, ys, zs) and δ is Dirac’s delta function, such that I δ (r − r s) = ∇ · j s(ω, r). Boundary conditions are
enforced after Dey & Morrison (1979):

du∗ (ω, r)

dn
+ v (r, n) u∗ (ω, r) = 0 on  = S ∪ ∞, (10)

where n is the outward normal of the respective boundary (). At the surface–air interface (S), natural boundary conditions prohibit current
flow through the surface with v (r, n) = 0. At the outer domain boundaries (∞), mixed boundary conditions describe the asymptotic
behaviour of the potential field with v(r, n) = (n · r)/|r|2 (Dey & Morrison 1979). The finite element method converts the boundary value
problem into a minimization of an integral functional. By subdividing the modelling domain into elements, the integral can be evaluated
for each element and the problem is reduced to a system of linear equations for each frequency, A∗u∗ = b, where A∗ is a complex and
symmetric coefficient matrix of size Nn x Nn (Nn being the number of nodes). The vector u∗ (size Nn) holds the complex potentials at the
nodes and the vector b (size Nn) holds the source term. For a more general introduction to the finite element method, the reader is referred to
Jin (2015).

3.2 Singularity removal

Using eq. (9), a singularity arises close to the source due to the delta function on the right-hand side. This means that the numerical
approximations of the potential field become poor close to the electrodes. Coggon (1971) and Lowry et al. (1989) suggested that this
singularity can be removed by splitting the potential field into a primary part (background) and a secondary part. In the following, u∗

p is the
complex primary potential caused by a current source in a homogenous half-space of conductivity σ ∗

p . The complex secondary potential (u∗
s )

is then caused by the anomalous conductivity σ ∗
s (ω, r) = σ ∗ (ω, r) − σ ∗

p . The secondary potential problem can be written as (Lowry et al.
1989)

∇ · (σ ∗(ω, r)∇u∗
s (ω, r)) = ∇ · ((σ ∗

p − σ ∗(ω, r))∇u∗
p), (11)

du∗
s

dn
+ v (r, n) u∗

s = du∗
p

dn
+ v (r, n) u∗

p = 0 on , (12)

where the current density of eq. (9) is removed and the expression only depends on the primary field, which can be computed analytically
for flat-Earth models. However, the singularity is only removed if the primary conductivity equals the local conductivity at the source (Zhao
& Yedlin 1996). In the inversion, we use the conductivity at the source (interpolated from the connected elements) from the previous model
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iteration as the primary conductivity, which in this way is updated for each source individually. To avoid computing the primary potential
for each iteration, it is only computed once for each source for σ = 1 S m–1 and then scaled by the conductivity of the source node at the
respective iteration, as suggested by Rücker et al. (2006). For each frequency, the forward problem (eq. 11) is now reduced to a system of
linear equations: Aσ∗

u∗
s = (Aσ∗

p − Aσ∗
)u∗

p, where Aσ∗
p may be evaluated as Aσ = 1σ ∗

p to avoid computing the coefficient matrix for each
source individually (see Rücker et al. 2006).

In case of topography, the primary potential field must be computed numerically by evaluating eq. (9). The accuracy of the response is
then improved by refining the forward mesh close to the source electrodes. However, increasing the number of nodes in the forward mesh
increases the computation time and memory usage, and we therefore follow the approach of Günther et al. (2006), where two different forward
meshes are applied: a locally refined mesh for computing the primary potential and a coarser mesh for the secondary potential (described
further below). As the primary potential is computed only once (for = 1 S m−1) and only the secondary potential has to be updated in the
inversion, this approach decreases the computation time and memory usage significantly.

3.3 Implementation

The algorithm is implemented using Fortran 90. The frequency-domain IP forward response is obtained by solving eq. (11) for a range of
frequencies, typically 10−8 < ω < 104 Hz with two to five frequencies per decade (see discussion in the next paragraph). In addition, the
DC potential is computed as the response of frequency zero (ω = 0 Hz). For each source electrode, we calculate the potential field in the
entire modelling domain, and the quadrupole responses are then computed by superposition of the potentials at the potential electrodes. This
method is efficient as all electrodes are used more than once, and it allows the code to handle multiple current injections (i.e. current injected
in more than two electrodes at the same time).

The coefficient matrix (Aσ∗
) of the linear system of equations generated from eq. (11) holds the boundary conditions and thus depends

on the location of the source electrode. As suggested by Rücker et al. (2006), Aσ∗
is computed for an average source position, so it only has

to be computed once. The linear system can then be solved in one go with multiple right-hand sides, so A∗(Nn x Nn ) u∗(Nn x Ns ) = b(Nn x Ns )

(Nn being the number of nodes and Ns being the number of sources). We store the sparse matrices in compressed sparse row (CSR) format
to save memory and solve for the potentials using the direct solver Intel MKL PARDISO (Schenk & Gärtner 2018), which works with an
OpenMP parallelization (e.g. Chapman et al. 2007) and applies a lower-upper (LU) decomposition.

3.4 Time-transform

When the forward response has been computed for all frequencies and superposition has given us the quadrupole responses, these responses are
transformed into the time-domain. The inverse Fourier transform of the frequency-domain step response, u∗(ω)/ iω, gives us the time-domain
step-on response,

ustep-on (t) =
∞
∫
0

I m

(
u∗ (ω)

iω

)
ω J1/2 (ωt) dω, (13)

where the Fourier transform is expressed by a Hankel transform of the imaginary part in terms of J1/2, i.e. the Bessel function of order 1/2.
In this way, the integral can be evaluated using the Fast Hankel transform as described by Johansen & Sørensen (1979).

To ensure the accuracy of the Hankel transform, 10 points per decade are required as input from the frequency-domain response.
However, the frequency-domain kernels are much smoother than the transform coefficients. It is therefore possible only to calculate the
frequency-domain response for a smaller number of points per decade (typically two to five) and then use cubic splines to interpolate the
response to the 10 points per decade required by the fast Hankel transform (see Fiandaca et al. 2013). Fiandaca et al. (2013) showed that
computing the frequency-domain response for more than 5 points per decade does not increase the accuracy significantly. In the presented
inversion code, the number of frequencies per decade used for the forward response can be tuned by the user. The choice is then a trade-off
between accuracy and computation time (computation time being directly proportional to the number of frequencies, as the parallelization is
made within the single frequency).

3.5 Modelling the current waveform

The actual injected current waveform differs from an ideal instantaneous current step function, which means that the measured response also
differs from a step response in eq. (13). The duration of the injected current rarely exceeds the decay-time, which means that the measured
pulse response has a smaller amplitude and a faster decay compared to a step response. Fiandaca et al. (2012) showed that with a current
on-time of 4 s, the amplitude of the pulse response is 2/3 of the step response and that the signal decays to 50 per cent three times faster. To
avoid errors, we therefore model the pulse response following the procedure of Fiandaca et al. (2012). We first computed the step-off response
from eq. (13):

ustep-off (t) = uDC − ustep-on (t) , (14)
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where uDC = u(ω = 0). The pulse response (upulse) is then computed by superposition of two time-shifted step-off responses of opposite
sign:

upulse (t) =
2∑

i=1

(−1)i ustep-off (t + (i − 1) Ton) , (15)

where Ton is the current on-time. Due to stacking, the injected current waveform is composed by a sequence of alternating pulses, where the
decaying potential from the jth pulse will affect the potential response of all the following pulses. For a 50 per cent duty cycle, this effect is
modelled following Fiandaca et al. (2012), and the averaged potential after stacking is computed as

ustack (t) = 1

Nstack

Nstack∑
j = 1

(−1) j+1
j∑

k = 1

2∑
i = 1

(−1)i+kustep-off (t + (i − 1) Ton + ( j − k) (Ton + Toff )). (16)

Eq. (16) holds for both the on-time and the off-time of the signal and should be used to compute the apparent chargeability as well as
the apparent resistivity in eqs (4) to (7).

4 M U LT I M E S H A P P ROA C H

To discretize the 3-D problem, we have adapted and combined the triple-grid inversion approach presented by Günther et al. (2006) and the
voxel inversion approach of Christensen et al. (2017). In the triple-grid approach, a coarse tetrahedral mesh is used for the inversion (the
model mesh) and two finer discretized tetrahedral meshes (one for the primary potential field and one for the secondary potential field) are
used to compute the forward responses. With this method, it is possible to obtain a high accuracy of the forward response, while keeping the
computational demands of the inversion down. In our adaption of the triple-grid approach, the model mesh is a node-based structured mesh,
which is spatially decoupled from the forward meshes. In the voxel inversion approach of Christensen et al. (2017), the model parameters are
defined on the nodes of a structured mesh, and then linked to the forward mesh (1-D forward meshes in Christensen et al. 2017) through an
interpolation function. In this study, two tetrahedral unstructured forward meshes and the node-based structured model mesh are combined
in a multimesh approach, as explained in detail in the following.

4.1 Model mesh

In the structured model mesh used in the inversion, the values of the model parameters are defined on the nodes. The nodes are uniformly
spaced in the x- and y-direction and with log-increasing spacing in the z-direction to compensate for the decreasing resolution with depth.
Topography is incorporated by shifting the nodes in the z-direction (Fig. 1a). An advantage of the structured model mesh (compared to an
unstructured/tetrahedral mesh) is that roughness constraints (vertically and laterally) are easily applied between the neighbouring nodes and
that the final model is easy to interpret—especially in layered environments. Furthermore, defining the model parameters on the model mesh
nodes, and linking them to the forward meshes through an interpolation function (as explained in the next paragraphs), allows us to completely
decouple the model and the forward meshes, without increasing the size of the forward meshes.

4.2 Forward

In the tetrahedral meshes, which are used to compute the forward responses (one mesh for the primary potential field and one mesh for
the secondary potential field), the complex potentials are defined on the nodes and the complex conductivities are defined in the centre of
each element (making it uniform within the element). With the tetrahedral mesh, it is possible to locally refine the mesh around the source
electrodes and let the volume of the tetrahedral elements increase toward the outer boundaries. This ensures a good accuracy of the forward
response close to the source, while keeping the computational demands down.

The unstructured tetrahedral meshes are (in contrast to the structured model mesh) complicated to build and are therefore constructed
using external software. As a first step, we build a 2-D surface mesh using the mesh generator Triangle (Shewchuk 1996), where the positions
of the electrodes are defined, and triangulation gives us the output surface nodes. In the second step, elevation is added to the surface nodes and
the surface mesh (now also with z-coordinates) is given as input to the mesh generator TetGen (Si 2015), which generates the 3-D tetrahedral
mesh. The output mesh from TetGen is used for the secondary field, that is the secondary potential mesh (Fig. 1b). As a third step, which only
is needed in case of topography (where the primary field must be computed numerically), the secondary potential mesh is refined around the
electrode to generate the primary potential mesh (Fig. 1d). This is done using the secondary potential mesh as input to TetGen, together with
a maximum node distance defined as a function of the distance to the nearest electrode.

4.3 Interpolation

The link between the model mesh and the forward meshes is established through an interpolation function following Christensen et al. (2017).
The values of the model parameters (defined in the model mesh nodes) are interpolated to the forward mesh elements using an interpolation
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3-D spectral inversion of TD IP 2107

Figure 1. Illustration of the multimesh approach, where a node-based structured mesh is used for the model update in the inversion and a separate tetrahedral
mesh is used for the forward calculations of the primary and secondary potential fields. The red dots show the location of the electrodes. (a) The structured
model mesh with the model parameters defined at the nodes. (b) An inner section of the tetrahedral forward mesh, which is constructed around the model
mesh nodes. (c) The blue elements show the elements of the tetrahedral forward mesh that are used for computing the sensitivity. (d) In case of topography,
the primary potential field is computed numerically on a tetrahedral mesh, which is a refinement of the mesh nodes used for the secondary potential fields thus
increasing the accuracy.

function f (using nearest neighbor or inverse distance):

p = f (P) = F · P, (17)

where the vector p holds the values of the model parameters in the forward mesh elements, and P holds the values in the model mesh nodes. F
is the matrix representation of the interpolation function and contains the interpolation weights, which only depend on the relative distances.
In this way, the model mesh nodes are not required to be part of the forward mesh and no strict geometrical link needs to exist between the
model mesh and the forward mesh.

5 S E N S I T I V I T Y

The Jacobian matrix (or sensitivity matrix) is the partial derivative of the forward response (d) with respect to the model parameters (m):

G = ∂d

∂m
. (18)

As for the forward response, the Jacobian matrix is computed in the frequency domain and then transformed into the time domain. The
complex frequency-domain Jacobian matrix (G∗

F D) is computed for each frequency (ω) in each element (e) of the secondary potential mesh
as:

G∗
F D,i,k (ω, e) = ∂u∗

i (ω)

∂ pk (e)
= ∂u∗

i (ω)

∂σ ∗ (ω, e)

∂σ ∗ (ω, e)

∂ pk (e)
, (19)

where pk is the kth model parameter (k = 1, ..4) and u∗
i is the potential of the ith quadrupole measurement. The partial derivative of the

conductivity with respect to the model parameter (∂σ ∗/∂ pk) is computed by differentiation for each frequency separately, and the partial
derivative of the potential with respect to the complex conductivity (∂u∗/∂σ ∗) is then computed using the adjoint relationship (Spitzer 1998):

∂ A∗

∂σ ∗ u∗ = − A∗ ∂u∗

∂σ ∗ . (20)

The time-transform, the derivative defining the Jacobian, and the interpolation function (mapping the sensitivity from the forward mesh
to the model mesh) are all linear operations, so we may write the time-domain Jacobian matrix as:

GT D (t) = L
(
G∗

F D (ω)
) · FT = L

(
G∗

F D (ω) · FT
)
, (21)
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2108 L.M. Madsen et al.

where L is the time-transform (which also takes the current waveform in account as described for the forward response) and FT is the
(transposed) matrix representation of the interpolation function of eq. (17). By applying the transformation matrix before the time-transform,
the number of time-transform operations is decreased (as the number of nodes in the model mesh is significantly smaller than the number of
cells in the forward mesh).

The number of elements in the frequency-domain Jacobian matrix is Nd · Nω · Ne · 4 (where Nd is the number of data, Nω is the number
of frequencies, Ne is the number of mesh elements, and 4 is the number of model parameters). This number can easily exceed 109 elements
and it is therefore useful to neglect elements of low sensitivities (e.g. small mesh elements far from the applied electrodes) in order to decrease
the memory requirement. A way of sparsing (downsampling) the Jacobian matrix, is by evaluating the absolute sensitivity of each mesh
element against a threshold value as done, for instance, by Günther et al. (2006) for inversion of resistivity data. We have adapted this method
to the spectral IP inversion case. In practice, we define an inner subdomain of the forward mesh (the secondary potential mesh) and compute
the sensitivity with respect to the resistivity (ω = 0 Hz) in all mesh elements of the inner subdomain, which extents five times the applied
electrode spacing beyond the model mesh in all directions. In addition, we compute the sensitivity with respect to one middle range frequency
(e.g. ω = 10−2 Hz for an applied frequency range of 10−8 < ω < 104 Hz). A mesh element will then be kept in the final Jacobian matrix, if
either the resistivity or the representing IP sensitivity obeys

abs

(
du∗

dσ ∗ (e)

)
abs (σ ∗ (e))

abs (u∗)

1

volume (e)
≥ threshold. (22)

For the remaining IP frequencies, the sensitivities are only computed for the kept mesh elements,decreasing computation time and
memory usage significantly compared to threshold testing all elements and frequencies. Note that the forward response still needs to be
computed using the full mesh, and only the matrix multiplication in eq. (20) can be omitted for the nodes belonging to the disregarded mesh
elements. The down-sampling is carried out in the frequency domain, before the time-transform, in order to decrease both computation time
and memory usage. For the inversion examples presented in this paper, the threshold value is 10−6 for both resistivity and IP data. This
threshold ensures the same convergence and final misfit within a few per cent compared to using the full Jacobian matrix. Experience has
shown that a threshold value between 10−6 and 10−5 is satisfying in most cases. Fig. 1(c) shows an example of a forward mesh, where the
mesh elements contributing to the final Jacobian are shown in blue.

6 I N V E R S I O N

The inversion is performed iteratively following the established practice of linearized approximation (Menke 1989) in combination with the
Levenberg–Marquardt adaptive minimization scheme (Marquart 1963), where an adaptive damping value (λ) is used to stabilize the inversion
(described further below). The n + 1′th model vector is given by

m(n+1) = m(n) +
[

G′T
(n)C

′−1 G′
(n) + λ(n) I

](−1)
· [G′T

(n)C
′−1

δd ′
(n)], (23)

where the Jacobian matrix (G
′
n), the data vector update (δd ′

(n)) and the covariance matrix (C ′) and are given by

G′
(n) =

⎡
⎢⎣G(n)

I
R

⎤
⎥⎦ , (24)

d ′
(n) =

⎡
⎢⎣δd(n)

δm(n)

δr (n)

⎤
⎥⎦ =

⎡
⎢⎣ d(n) − dobs

m(n) − mprior

−Rm(n)

⎤
⎥⎦ , (25)

C ′ =

⎡
⎢⎣Cobs 0 0

0 C prior 0
0 0 C R

⎤
⎥⎦ . (26)

In eq. (24), G′ contains the Jacobian matrix of the forward mapping (eq. 21) as well as the matrices imposing the constraints on the prior
information (I) and the roughness constrains (R), which are described in detail by Auken et al. (2014). In eq. (25), the data update vector
(d ′

(n)) is given by the difference between the nth forward response (d(n)) and the observed data (dobs), the difference between the nth model
vector (m(n)) and the prior values (mprior), and the rougthness if the nth mode vector (−Rm(n)). In eq. (26), the covariance matrix is given by
the covariance on the observed data (Cobs), the covariance on the prior information (Cprior), and the covariance on the roughness constraints
(C R). For each node in the model mesh, lateral constraints are made to the four neighbouring nodes in the x- and y-direction, and vertical
constraints are made to the two neighbouring nodes in the z-direction. For a detailed description of how these constraints are implemented
through R and C R , the reader is referred to Auken et al. (2014).

The adaptive damping parameter λ(n) is used to stabilize the inversion of the G′T
(n)C

′−1 G′
(n) matrix in the model update (eq. 23) and to

controls the size of the model update. The damping is determined by the maximum of the diagonal of the G′T
(n)C

′−1 G′
(n) matrix reduced by
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Table 2. Steps in the inversion scheme.

1. Read input files (data, topography, constrains, etc.).
2. Generate the model mesh.
3. Generate the forward mesh (for the secondary potential).
4. Refining the forward mesh (for the primary potential).
5. Model the primary potential for σp = 1 (analytically or

numerically) and interpolate to the secondary mesh nodes.
6. Compute the complex conductivity from the model parameters.
7. Model the secondary potential, scale the primary potential, and

compute the total potential
8. Transform the total potential into time-domain.
9. Compute the sparse FD Jacobian matrix.
10. Transform the Jacobian matrix into time-domain.
11. Update the model.
12. Repeat 6–12, until the decrease of the objective function becomes

smaller than 1 per cent.

an iteration-dependent scaling factor fn (Marquart 1963; Auken et al. 2014):

λ(n) = max diag(G′T
(n)C

′−1 G′
(n)) · fn . (27)

In IP inversions, the magnitudes of the Jacobian elements differ significantly among the model parameters (e.g. τϕ spans a relative large
value range and is usually poorly resolved, meaning that it often has a very small sensitivity compared to the other model parameters). To
avoid overdamping the weakly resolved parameter types, eq. (27) is evaluated block-wise for each parameter type individually, as suggested
by Lin et al. (2019). During the inversion, the value of the scaling factor fn is decreased with the iteration number, thus increasing the step
size of the model update. This is done in order to avoid very large variations in the model update, when the inversion is far from the model
that minimizes the objective function.

The objective function minimized by eq. (23) is given as

Q =
(

δd′T C
′−1δd′

Nd + Nm + Nc

)1/2

, (28)

where Nd is the number of data, Nm is the number of model parameters and Nc is the number of constraints. The iteration stops when the
decrease of the objective function between consecutive iterations becomes smaller than 1 per cent. The full workflow of the inversion scheme
is presented step-wise in Table 2.

7 A C C U R A C Y

The accuracy of the 3-D resistivity and full-decay IP forward response and Jacobian matrix is tested against a highly accurate 1-D solution
(Fiandaca et al. 2012), which also takes the current waveform into account. Using the MPA Cole–Cole parametrization (Fiandaca et al. 2018),
a synthetic three-layer model is defined by the model parameters: ρ0 = (100, 500, 100) �m, ϕmax = (4, 20, 4) mrad, τϕ = (1, 0.1, 1) s,
C = (0.6, 0.6, 0.6) and thickness = (7, 7, −) m. We compute the 1-D and 3-D forward responses of the model for 20 quadrupoles
(simulating a Schlumberger sounding) with |AB|/2 ranging from 3.75 to 248.75 m and |MN|/2 from 1.25 to 33.75 m limiting the geometrical
factor to 3000 m. The current waveform has a 4 s on-time and a 4 s off-time. The IP decay is divided into 33 time-gates with log-distributed
gate length and with fist centre-gate-time at 2.3 ms. We compute the forward response using 26 frequencies (10−8 − 104 Hz) including the
DC frequency (0 Hz).

Fig. 2(a) shows the 1-D and 3-D DC resistivity forward responses together with the relative errors, which are below 1 per cent for all 20
quadrupoles. Fig. 2 (b) shows the IP decay for three of the quadrupoles (representing the three layers). The relative error is below 2.5 per cent
for all time-gates. The lower accuracy of the IP response compared to the DC responses depends on the splining of the frequency-domain
kernels, as well as on propagation of the frequency-domain inaccuracy in the time-transform.

Fig. 3(a) shows the sensitivity of the 20 resistivity data with respect to the model parameters, and Fig. 3 (b) shows the accuracy. The
error is between 0 and 16 per cent with a mean of 2.8 per cent and a median of 2.0 per cent. The high relative error at quadrupole 15 is
associated with low sensitivity values. The 3-D Jacobian matrix for the IP values follows the same trend. The mean error of the IP Jacobian
matrix is 7.0 per cent, while the median is 2.2 per cent. Again, the high mean can be explained by a few elements with very low sensitivities,
where the relative error raises above 100 per cent.

8 E X A M P L E S

In the following, we present a synthetic example and a field example of 3-D inversion of resistivity and time-domain IP data. The field data
were collected across a small stream in Grindsted, Denmark, where contamination from a nearby pharmaceutical factory is leaking into the
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2110 L.M. Madsen et al.

Figure 2. Accuracy of the 3-D forward response shown as a comparison between the 3-D and an accurate 1-D computation (Fiandaca et al. 2012). (a) The
DC resistivity value for 20 quadrupole measurements and their relative error to the 1-D solution. (b) The accuracy of the modelled IP decays for three of the
quadrupoles and their relative error to the 1-D solution. The IP decays are colour-coded to (a).

Figure 3. Accuracy of the 3-D Jacobian shown as a comparison between the 3-D computation and an accurate 1-D algorithm (Fiandaca et al. 2012). (a) The
3-D sensitivity shown for the DC resistivity values with respect to the model parameters (ρ0, ϕmax, τϕ, C) for each layer in a three-layer model. (b) The relative
error of the DC Jacobian.

stream (see Balbarini et al. 2018). The field setup comprises four 80 m acquisition profiles with 10 m spacing between each profile. Each
profile has 42 electrodes with a two meter spacing. The setup is shown in Fig. 4 together with two boreholes, where we have lithological
information. The boreholes, B1 and B2, are registered in the Danish national borehole database with identification number DGU 114.2570
and DGU 114.2507. The data were collected using a Terrameter LS instrument (ABEM) with a 4 s on-time and a 4 s off-time, sampling with
a rate of 3750 Hz. A total of 1456 quadrupoles were measured using gradient array (Dahlin & Zhou 2006). The IP decays are gated into 33
logarithmically spaced IP time-gates with first centre-gate-time at 2.3 ms. Previous 2-D inversion results of the data can be found in Maurya
et al. (2018).

Before we present the inversion of the field data, an inversion of synthetic data using the same electrode configurations is presented to
verify the resolution capability.

8.1 Synthetic example

A synthetic model is constructed simulating a background formation with four box-formed anomalies defined by the MPA Cole–Cole
parameters (eq. 8). The synthetic model is shown in Fig. 5 (a). The model mesh is constructed with 6210 nodes (46 × 9 × 15) with a 2 m
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Figure 4. Sketch of the field setup across Grindsted Stream, Grindsted, Denmark. Four DCIP profiles of 80 m with 42 electrodes in each are laid out along the
stream. Two boreholes with lithology logs, B1 and B2, are located close to the profiles.

Figure 5. (a) Synthetic model with the four MPA Cole–Cole parameters shown as an xz-plane in the middle of the 3-D model mesh. (b) The inversion results
of the synthetic model. (c) The synthetic model in a 3-D view with the ρ0 (blue), ϕmax (red), τ (green) and C (yellow). (d) The inversion results in 3-D view.
The four anomalies are shown for threshold values of ρ0 > 200 �m (blue), ϕmax > 8 m Rad (red), τ < 0.5 s (green) and C < 0.5 (yellow).

spacing in the x-direction (along the profile) and 3.5 m in the y-direction. The node spacing in the z-direction increases logarithmically with
depth with a minimum thickness of 0.5 m and a maximum depth of 25 m.

We compute the primary potential numerically in the forward modelling as must be done for the field example where topography is
present. A standard deviation of 1 per cent is assigned to the resistivity data and 10 per cent to the IP data, which determine the balance
between the resistivity and the IP data in the model update through the covariance matrix (Cobs) in eq. (24). Random noise with these standard
deviations is added to the synthetic data to resemble the noise level in the field. For the roughness constraints (C R) imposed on the model
update (eqs 24 and 26), a factor of 1.5 (2.5 for τϕ) is assigned for vertical constraints and 1.2 (1.6 for τϕ) for lateral constraints between
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Table 3. Computation time and memory usage of 3-D resistivity and IP inversions of synthetic data and field data using
4 CPUs. (Note: Topography is only added to the meshes in the field example, which explains the relative high number of
nodes in the forward mesh used for the field example. The topography in the model mesh is added by vertically distorting
the mesh nodes and the number of model mesh nodes is therefore the same for the two examples).

Synthetic example Field example

Model mesh 6210 nodes 6210 nodes
Forward mesh, secondary potential 11 340 nodes 55 386 nodes

62 428 elements 159 320 elements
Forward mesh, primary potential 76 419 nodes 251 101 nodes

394 447 elements 1273 114 elements
Number of data 1456 quadrupoles 1427 quadrupoles

49 504 data (DC + IP) 31 697 data (DC + IP)
Inversion parameters {ρ0, ϕmax, τϕ, C} {ρ0, ϕmax, τϕ, C}
Forward response primary field 9 s 27 s
Frequency-domain forward response (26 frequencies) 30 s 150 s
Time transform of forward response 0.2 s 0.2 s
Frequency-domain Jacobian (26 frequencies) 22 min 47 min
Time transform Jacobian 6 s 10 s
Time per iteration 1.1 hr 1.3 hr
Total inversion time 10 hr (9 iterations) 18 hr (14 iterations)
Maximum memory 19 000 MB 37 000 MB

the model parameters of the neighboring mesh nodes. These are standard values (determined from experience with 1-D/2-D inversions),
which ensure model smoothness without preventing the data fit. The constraint values for the time-constant (τϕ) are larger, both because τϕ is
expected to span several decades in range and because it is less resolved (so weaker constraints are used to avoid oversmoothing the variations).
The inversion is started from a homogenous half space model with the parameter values of the background formation and converges after six
iterations. The final data χ -misfit is 0.97 for the resistivity data and 1.06 for the IP data (the total χ -misfit, including constraints, is 0.71),
where a data χ -misfit of one means that on average the model describes the data within the error bars. The inversion results are shown in
Fig. 5(b) and show that all four anomalies are resolved. In general, the inversion overshoots the anomalies in their centres and undershoots at
the edges, as a consequence of the L2 roughness constraints. The computation time and memory usage of the inversion are summarized in
Table 3.

8.2 Field example

The measured raw data are signal processed using the scheme described by Olsson et al. (2016), where harmonic noise, background drift
and spikes are removed. This automatic signal processing step is followed by a manual processing step, where early time-gates affected by
coupling (often seen as fast decaying potentials in the first few time-gates) and outliers are removed. Out of the 1456 quadrupoles, 2 per cent
of the resistivity data and 37 per cent of the IP data were removed. Fig. 6(a) shows the number of IP time-gates kept for each quadrupole
measurement and Fig. 6(b) shows examples of the measured IP decays and their fit.

The model mesh from the synthetic example is distorted vertically to fit the topography and the forward meshes are generated with
topography as well. We apply 1 per cent error bars on the DC data and 10 per cent on the IP data. Furthermore, a factor of 1.5 (2.5 for τϕ) is
used for vertical constraints and 1.2 (1.6 for τϕ) for lateral constraints between the model parameters of the neighbouring model nodes (same
as the synthetic example). The inversion converged after 14 iterations with a data χ -misfit of 1.6 and a total χ -misfit (including constraints)
of 1.1. Fig. 6(c) shows the χ -misfit for each of the quadrupole measurements and Fig. 6(d) shows the averaged χ -misfit for the IP data. The
timing and memory usage of the inversion are listed in Table 3.

Fig. 7 shows the resulting model of the four MPA Cole–Cole parameters in 3-D view, while Fig. 8 presents a comparison of the
inversion results and the borehole information along a 2-D slice of the model. Fig. 8(a) shows the geological model of the area, which is
constructed based on lithology information from borehole B1 and B2. Figs 8(b) and (c) show 2-D sections of the 3-D inversion results
along the northernmost profile (see Fig. 4) for the resistivity (ρ0) and the maximum phase angle (ϕmax), respectively. We see that the till
and clay/lignite layers identified from the boreholes match well with the high chargeability (Fig. 8 c), whereas the low resistivity volume
(Fig. 8b) is less continuous and does not match the boreholes as well. The low resistivity anomaly has previously been correlated to a high
water conductivity caused by pollution (Maurya et al. 2018). The low water resistivity in the sand is thus shadowing the response from the
lithology in the resistivity section. The inversion results, including the τϕ and C section, agree well with the previous 2-D inversion presented
in Maurya et al. (2016, 2018), who also provide a thorough interpretation of the lithology and the polluted plume.

Four cross-plots of the model parameters retrieved in the model mesh nodes are presented in Fig. 9, that is the correlation between ϕmax

and the other three parameters as well as the correlation between τϕ and C . The cross-plots show that no clear correlations are present between
the parameters, but that the parameter ranges decrease with depth. This indicates that the variability of the IP parameters in the inversion is
data driven, instead of predominantly due to parameter correlations, but that the parameter resolution decreases with depth, as expected.
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Figure 6. (a) Number of IP time-gates kept after processing. (b) Measured IP data in black and inversion result shown for selected quadrupole measurements
(colour-coded to a). (c) DC data χ -misfit for each quadrupole measurement shown in a pseudo section. (d) IP data χ -misfit for each quadrupole avenged over
all time-gates.

Figure 7. Inversion results of field data from Grindsted Stream (Grindsted, Denmark). The Maximum Phase Angle Cole–Cole model parameters are the
resistivity ρ0 (a), the maximum phase angle ϕmax (b), the relaxation time τϕ (c) and the frequency exponent C (d).

9 C O N C LU S I O N S

Several codes are available for 1-D and 2-D spectral inversion of time-domain IP data. These codes solve many problems, but in the case of
very complex subsurface structures, 3-D modelling is necessary. We have therefore developed a 3-D inversion algorithm for resistivity and
time-domain spectral IP data, where the forward response is computed in the frequency domain by solving Poisson’s equation. The response
is then transformed into the time domain, where we take the current waveform into account in order to model, quantitatively, the IP effect and
retrieve the full spectral content of the IP signal.
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Figure 8. (a) Geological model of the area around Grindsted Stream (Grindsted, Denmark) interpreted from lithology description from borehole B1 and B2.
(b) 2-D section of the 3-D inversion results along the northernmost profile (see Fig. 4) showing the resistivity, ρ0. (c) The same 2-D section showing the
maximum phase angle, ϕmax.

Figure 9. Cross-plot of the model parameter values retrieved from inversion of the field data. The parameters are plotted as maximum phase angle ϕmax against
the three other inversion parameters, that is resistivity ρ0 (panel a), time constant τϕ (panel b) and frequency exponent C (panel c); furthermore the correlation
between τϕ and C is shown in panel (d). The colour indicates the depth of the mesh nodes below the surface.

3-D spectral inversion of large-scale field data sets is very expensive computationally. In order to keep the inversion time of large-scale
field data sets below 24 hours, which is preferable especially in monitoring cases, where data collections are repeated within short time
intervals, we have found a significant advantage in applying singularity removal together with an approach for sparsing (downsampling) the
Jacobian matrix. Both methods, which are known from resistivity modelling, have been adapted to the complex IP case, and we have shown
that with these adaptions it is possible to carry out spectral 3-D inversion of large-scale resistivity and time-domain full-decay IP data sets.

The performance of the proposed inversion algorithm has been demonstrated on a synthetic example with 3-D anomalies and a field
example with both good data fit and model retrieval. For a data set with 1256 quadrupoles measurements, each with 33 IP time-gates, an
inversion took approximately 1 hr per iteration using four CPUs. Currently, we are testing the approach for cross-borehole and time-lapse
applications with encouraging preliminary results, which we believe will make the algorithm an even stronger tool for field scale environmental
applications.
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