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The fields from a finite electrical dipole-
A new computational approach

Kurt I. Sørensen* and Niels B. Christensen*

ABSTRACT

Controlled-source, frequency-domain, and time-do-
main electromagnetic methods require accurate, fast,
and reliable methods of computing the electric and
magnetic fields from the source configurations used.
Except for small magnetic dipole sources, all electric
and magnetic sources are composed of lengths of
straight wire, which may be grounded. If the source-
receiver separation is large enough, the composite
electrical dipoles may be considered to be infinitely
small, and in a 1-D earth model the fields are expressed
as Hankel transforms of an input function, which
depends only on the model parameters. The Hankel
transforms can be evaluated using the digital filter
theory of fast Hankel transforms. However, the ap-
proximation of the infinitely small dipole is not always
valid, and fields from a finite electrical dipole must be
calculated. Traditionally, this is done by numerical
integration of the fields from an infinitesimal dipole,

thus increasing computation time considerably.
The fields from the finite electrical dipole are ex-

pressed as Hankel transforms and as integrals of
Hankel transforms. The theory of fast Hankel trans-
forms is extended to include integrals of Hankel trans-
forms, and a method is devised for calculating the filter
coefficients. Unlike the fast Hankel transform, the
computation involved in the integrated Hankel trans-
forms is not a true convolution, and so a set of filter
coefficients must be calculated for each source-re-
ceiver configuration. Furthermore, the method is ex-
tended to include the calculation of potential differ-
ences where one more integration is involved, which is
what is actually measured in the field. The computa-
tion of filter coefficients is very fast, and for standard
configurations, the coefficients need be computed only
once. The method is as fast, accurate, and reliable as
the fast Hankel transforms method, and is up to an
order of magnitude faster than the usual numerical
integration.

INTRODUCTION

Most of these studies were concerned with calculating

The theoretical problem of calculating electric and mag-
netic fields from a grounded electrical dipole of finite length
was solved many decades ago (Sommerfeld, 1926; Foster,
1931). The first formulations dealt with the homogeneous
half-space model, but expressions for two-layer earths were
also found (Riordan and Sunde, 1933; Hohmann, 1973). An
extensive study of the responses of a multilayer earth was
done by Dey and Morrison (1973), and Wynn and Zonge
(1975) and included the effect of anisotropy when calculating
the mutual coupling between grounded electrical dipoles.

dipoles may contain useful information aboutthe earth
parameters.This is consistent with the observation that a
combination of galvanic and inductive methods in many
cases gives a better resolution of earth model parameters
than either separately (Jupp and Vozoff, 1975).

The present method of calculating fields from a finite
electrical dipole was motivated by the desire to interpret
both galvanic and inductive components in geoelectrical
soundings. The ac geoelectrical sounding method (Sorensen,
1979; Sorensen et al., 1979; Christensen, 1987; Christensen,
1989) is a combined galvanic/inductive method, where the
amplitude of the potential from a finite electrical dipole is

inductive coupling present during IP measurements.
It has been suggested (Wynn and Zonge, 1977) that the

inductive coupling between the transmitter and receiver

(Figure 1) at logarithmically spaced frequencies between
measured in a half-Schlumberger electrode configuration

76 and 9765 Hz. The measured total potential difference
includes both the galvanic and the inductive fields, so in one
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single measuring procedure both galvanic and inductive
information is obtained, which gives an enhanced resolution
of the conductivity structure of the earth. The measurements
are interpreted with a 1-D, plane parallel, and transversely
isotropic earth model by means of an automatic, iterative
least-squares inversion program. Without the presented
method of fast and reliable computations of electric and
magnetic fields from a grounded electrical dipole of finite
length carrying ac current, the interpretation of ac geoelec-
trical soundings would be considerably more time consum-
ing.

THE FIELDS FROM A FINITE ELECTRICAL DIPOLE

Numerous papers in the literature have dealt with the
derivation of expressions for the fields from a grounded
electrical dipole of finite length, and the derivation will not
be repeated here. We will depart from the expressions given
in Ward and Hohmann (1989) by assuming the dipole to be
centered at the origin and extending from -a to a along the
x-axis (Figure 2). The expressions for the fields on the
surface in a coordinate system with the z-axis positive
downwards are

(5)

w h e r e

(1)

(2)

(3)

FIG. 1. The half-Schlumberger electrode configuration used
in the ac geoelectrical sounding method. A and B are
stationary current electrodes; one potential electrode N is
placed “far away” and the inner potential electrode M is
moved outwards during the sounding. For small transmitter-
receiver separations this is essentially a pole-dipole config-
uration, while for larger transmitter-receiver separations it is
a collinear dipole-dipole configuration.

FIG. 2. The source and model configuration. The model
parameters   and  are the conductivity, the
dielectric permittivity, the magnetic permeability, and the
thickness of the mth layer, respectively. The source is an
electrical dipole centered at the origin and extending from
-a to a on the x-axis of a right-hand Cartesian coordinate
svstem with the z-axis positive downwards.
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  and hm are the magnetic permeability, the
dielectric permittivity, the electric conductivity, and the
thickness of the mth layer, respectively. Except for the sign
of the first term in equation (4), these are identical to the
expressions in Ward and Hohmann (1989).

The expressions for the electric and magnetic fields from a
finite electrical dipole are of two different types. One is the
ordinary Hankel transform integral

    (6)

which expresses the fields arising from the end points of the
dipole. The electric field perpendicular to the dipole  and
the magnetic field parallel to the dipole  are expressed
through these integrals alone. The electric field parallel to
the dipole  and the magnetic field perpendicular to the
dipole  are expressed through the above Hankel trans-
forms plus integrals of Hankel transforms of the type

 
          

0
(7)

which expresses the dependence on the length of wire
connecting the grounding points. An integral of the latter
type also expresses the vertical magnetic field  The first
type can be calculated using the digital filter theory of fast
Hankel transforms (Johansen and Sorensen, 1979;
Christensen, 1990), while the second type has required a
numerical integration. A digital filter theory for the latter
type shall be developed in the following paragraphs.

The above observations regarding the dependence of the
field components on the endpoints are also given by
Kauahikaua (1978), who reaches the same conclusions by
comparing field expressions for the finite electrical dipole
with fields from an infinitely long straight wire.

(10)

THE FILTER THEORY OF INTEGRATED HANKEL
T R A N S F O R M S

From the foregoing paragraphs, we see that the electric
and magnetic fields from a finite electrical dipole are ex-
pressed as ordinary Hankel transforms or as integrals of
Hankel transforms. The Hankel integrals of the type

 =    (8)

are calculated using the digital filter theory of fast Hankel
transforms. This method and the theory behind it are now
well established (Johansen and Sorensen, 1979; Anderson,
1989; Christensen, 1990). The input  is sampled
logarithmically and convolved with precalculated filter coef-
ficients, whereby the output function g(r) is obtained at
logarithmically distributed sample points.

The parts of the fields expressed as integrals of Hankel
transforms of the type

     
(9)

    

have traditionally been calculated by numerical integration
of the Hankel transform. However, we shall extend the
digital filter theory of fast Hankel transforms to include
single and multiple integrals of Hankel transforms. We shall
see that integrals like expression (9) can be computed by
convolving logarithmically sampled values of the input func-
tion f(A) with a set of precalculated filter coefficients, the
only difference from the ordinary Hankel transform being
that the set of filter coefficients will be dependent on the
transmitter-receiver configuration. In this respect it is not a
true convolution. As with ordinary fast Hankel transforms,
accuracy of the method and speed of operation depend
mainly on the analytical properties of the input function

 as explained by Johansen and Sorensen (1979) and
Christensen (1990).

Reformulation of the problem

Since equation (9) can be rewritten as

  =    

     + 

we will investigate expressions of the type

  
 
     (11)

Since expression (9) is equal to

                  

(12)

and since T(-y, c) = T(y, c), it canbe assumed that y >
0 throughout this section. Equation (1 1) is reformulated as

    (13)

Performing the substitutions

      (14)

and defining new functions

       
(15)

     

we have
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0

Assuming that the Fourier transform  of F(u) exists,
equation (16) and the convolution theorem (Bracewell, 1965)
imply that

  =    

where

   =      

   

While  depends on the field component,  is arbitrary. For
the horizontal electric and magnetic fields  = 0, while for
the vertical magnetic field, we must use  = 1.

Evaluation of  y, c, s)

The integrals involved in equation (18) can be evaluated by
use of equation 11.4.16, Abramowitz and Stegun  and
equation 3.254.1, Gradshteyn and Ryzhik (1965). Thus

  
       

where

    

 

 
  

which when using equations 15.3.8 and 15.3.3, Abramowitz
and Stegun  is rewritten as

  

 
   

where

 
 

 

 2 2

where I’ is the complex gamma function, and  is the
hypergeometric function.

The expressions (19) and (20) are identical, but (19) will be
used for    while (20) shall be used for    
to ensure numerical stability (see Appendix A). On the axis
Y = 0 we find

l  (cV s)

where

1
V X .

For = 0 we shall choose = 2. This choice gives us
expressions without unnecessary complications, and gives
the same input function  for the integrated Hankel
integral as for the ordinary Hankel integral. This is seen from

       = 

Inserting = 0 we find for  c, s) in the case  = 2:

       

    
   

  

    

      +
Y

where

   

 



868 Sørensen and Christensen

The discrete formulation

The expression (16) for T( y, c) is not a convolution
integral, but has a more complicated functional dependence
on y and c. To find an approximation T*( y , c) to T( y , c),
we shall adopt the same approach as in Johansen and
Sorensen (1979), Sorensen (1979), and Christensen (1990),
and insert an approximation F*(u) to F(u) in equation (16).
Let F*(u) be a sampled and interpolated version of F(u):

   

The computation of T( y , c) involves the spectrum 
However, the multiplication of  by  the spec-
trum of the interpolating function, in equation (17) has a
negligible influence on the value of T( y, c) if the cut-off
frequency  is sufficiently high. The asymptotic behavior of
the integrand in equation (17) also depends on  ( y , c, s),
but in Appendix B, we show how it is controlled mainly by

Substituting equation (26) into  we obtain an approx-
imation  c) to  c):

Though T( y, c) is not a convolution integral, we have
arrived at a convolution-like expression (27) for T*( y , c).
Contrary to the computation of ordinary Hankel transforms
where it is necessary to compute only one filter, which then
gives us all values of the integral through an ordinary
convolution, we must now compute a new filter for each ( y,
c) argument.

Substituting equation (23), (24), and (25) in (28) we get

The expression involving   is a true convolution
since  (v) is independent of y and c. However, the
integrand is not expressable in terms of fast Hankel trans-
form filter functions.

It remains to be shown how the filter coefficients 
are calculated. Following the approach in Johansen and
Sorensen (1979), Sorensen (1979), and Christensen (1990),
G’“,(v) shall be calculated as contour integrals in the complex
s-plane by summing the residues from the poles of the
integrands. In Appendix A, an example demonstrates how
filter coefficients for integrated Hankel transforms may be
calculated. The properties of the hypergeometric functions
involved in the calculations are analyzed, and the questions
of convergence and numerical stability are considered.

Error estimation

To obtain an error estimation, we shall proceed along the
same lines as in Johansen and Sorensen (1979) and Chris-
tensen (1990).

The spectrum  of the interpolated function F*(u) is
given by
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 =  

and substituting this expression in equation  we obtain

where results from Johansen and  (1979) regarding
the filter function  have been used. By applying the
spectrum majorization theorem to F(u), we find

where   exp  iw)) is analytic within the area   
Substituting this majorant for  in equation (33) we find

In the theory of fast Hankel transforms,    = 1 identically,
and the above error integral can be calculated in closed form.
In our case, however, it turns out that   increases as a
power function for    In Appendix B the integral in
equation (35) is estimated. The results are that the error is of
the same order of magnitude as for fast Hankel transforms,
and the error decreases exponentially with the sampling
density of the discrete convolution. In Christensen (1990) the
error expression of fast Hankel transforms is analysed, and
it is shown how the parameters of the filter coefficients may
be chosen optimally. This theory of optimized fast Hankel
transforms can be applied to the filters for integrated
Hankel transforms as well.

Filters for potential differences

In practical applications what is measured is the potential
difference between two points. We will restrict ourselves to
the following two possibilities: the equatorial dipole config-
uration and the collinear dipole configuration.

In the equatorial dipole configuration, we wish to compute
integrals of the following type

 =  + 

where the latter expression is valid for y  0 no matter the
signofx  a.

Following the same lines as in the previous sections we
see that the integral over  enters only in the function  y,
c(x), s), so using the previous result (19) we have

where x enters only in the expression containing the hyper-
geometric functions in the brackets.

Let us define the integrated function

Evaluating the integral over x we find

and a similar expression for the term involving (x - a).
Using the identity

and substituting in equation (40) we get

where

which is rewritten
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where

or by applying equation 15.3.8 and equation 15.3.3,
Abramowitz and Stegun (1970)

The expressions (43) and (44) are identical, but (43) will be
used for    while expression (44) will be used for

    to ensure numerical stability. For the same
reasons as with the filters for electric fields, we will again
choose  = 2, which for v = 0 yields the expression

The discrete formulation and the error estimation follow
exactly the same lines in the case of filters for the electric
fields.

In the case of the collinear dipole we shall evaluate
integrals of the following type

which is rewritten

In the collinear dipole configuration from formula (21), we
have

We define the integrated function

Evaluating the integral over x we find
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The discrete formulation and the error estimation follows
exactly the same lines as with the E-filters.

Modification of the ordinary Hankel integrals

It has now been shown that potential differences in the
equatorial and collinear dipole configurations can be calcu-
lated using the same input function as the one used for the
calculation of electric fields, but with application of a differ-
ent filter. We would like the same thing to be possible with
regard to the ordinary Hankel integrals entering in the
expressions for the electric fields.

For the expressions containing ordinary Hankel integrals,
we find for the potential differences in the equatorial dipole
configuration expressions of the following type

We see that if we want to leave the input function f(A)
untouched, we must be able to calculate filters of the type

  This is not possible since the integrand involved
in the calculation has a singularity on the real axis. However,

for the difference filter in question, this singularity vanishes,
and it is thus possible to calculate the difference filter. A
special program has been made to perform this difference
filter calculation. Besides leaving the input function f(A)
untouched, this method removes the numerical instability
that could otherwise have been a problem if we subtracted
one Hankel filter from the other. Furthermore, the decay of
the product of the input function with the filter coefficients in
the discrete convolution is faster with the difference filter
than would otherwise have been the case.

In the collinear dipole configuration, we must calculate

For this configuration we may calculate the filter as a
difference between two of the foregoing difference filters
with y = 0.

Application of integrated filters

As mentioned in the introduction, the development of the
present method of calculating fields from a finite electrical
dipole came from the intention to use ac current in geoelec-
trical soundings. The ac geoelectrical sounding method
(Sorensen, 1979; Sorensen et al., 1979; Christensen, 1987;
1989) is a combined galvanic/inductive method, where the
amplitude of the potential from a finite electrical dipole is
measured in a half-Schlumberger electrode configuration
(Figure 1) at logarithmically spaced frequencies between
76 and 9765 Hz. The measured total potential difference
includes both the galvanic and the inductive fields, so in one
single measuring procedure both galvanic and inductive infor-
mation is obtained, which gives an enhanced resolution of the
conductivity structure of the earth. The measurements are
interpreted with a l-D, plane parallel, and transversely isotro-
pic earth model by means of an automatic, iterative least-
squares inversion program. The present method of fast and
reliable computations of electric and magnetic fields from a
grounded electrical dipole of finite length carrying ac current
has facilitated the interpretation of ac geoelectrical soundings
considerably.

Figure 3 shows model responses from a four-layer model
typical of Danish Quatemary deposits for three different fre-
quencies: 76,2441, and 9765 Hz. The electrode configuration is
a half-Schlumberger configuration (Figure 1) with a 10 m
transmitter dipole and the far potential electrode 400 m from
the transmitter. Calculations are made with a spatial data
density of 10 per decade in the interval from 1.26 to 3 16 m for
a total data set of 25 points. The normalization of the response
to apparent resistivity is done using the dc formula. We see that
the low frequency of 76 Hz resembles the dc response and that
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all responses coincide with the dc response for small transmit-
ter-receiver separations as is expected. For longer transmitter-
receiver separations the curves separate.

In the experimental phase of the development of the
method, it was not clear which electrode configuration
would be the best, and thus programs for the calculation of
filters were made very general. Filter programs for the
calculation of horizontal electric and magnetic fields any-
where on the surface from a finite electrical dipole were
implemented together with programs for the direct calcula-
tion of potential differences in the equatorial dipole and the
collinear dipole configuration.

Let us turn to a comparison between the direct calcula-
tions using integrated Hankel filters and the traditional
method of discrete convolution for the Hankel transform
followed by numerical integration. As an example we have
taken the calculation of the electric field from a dipole of
length 10 m in a collinear dipole-dipole configuration. The
electric field is calculated at 23 points at distances from
1.26 m to 200 m from the closest current electrode of the
source dipole with a density of 10 data points per spatial
decade. In both cases, the calculations are performed to a
relative accuracy of 10-3 of the field values. Programs are
written in FORTRAN77 compiled with the Salford FTN77/
486 compiler and run on a Compaq SLT 386s/20 with
coprocessor (0.143 MFLOP). Figure 4 presents schemati-
cally the processes involved in the two approaches.

The method involving numerical integration begins with
the calculation of kernel function values followed by a
discrete convolution with filter coefficients to give the field
values from an infinitesimal dipole in a set of discrete points.
Thereafter a numerical integration over the length of the
transmitter dipole is performed using a Simpson integration
algorithm or something equivalent for each transmitter-
receiver separation in which the field value is wanted. The
field values used in the integration algorithm are obtained by
interpolating the set of discrete points. Generally, the most

time consuming part is the calculation of the kernel function
values, the discrete convolution is very fast (appr. 200 complex
floating point operations), and the time used for interpolation in
the numerical integration algorithm is comparable with the time
used for kernel function value computations. The time used for
the calculation of kernel function values increases with the
number of layers in the model, while the numerical integration
lasts equally long for all models.

The direct method using integrated Hankel filters also
begins with the calculation of kernel function values. The
number of kernel function values is approximately the same
as with the ordinary discrete convolution, since the behavior
of the integrated Hankel filters asymptotically is the same as
for ordinary Hankel filters. Then follows the discrete con-
volution with integrated Hankel filter coefficients, one for
each transmitter-receiver separation. This concludes the
calculations. The time-consuming part is the calculation of
the kernel function values. The discrete convolutions take
little time, requiring approximately 200 fluid number opera-
tions per transmitter-receiver separation. Obviously, this
procedure is faster than the traditional method.

Figure 5 shows the computation times of the two ap-
proaches as a function of the number of layers in the model.
For the integrated filters we see an approximate linear
increase in computation time with the number of layers in
the model. For the numerical integration scheme, different
curves show the time needed for the convolution (kernel
function calculations plus discrete convolution), the numer-
ical integration time, and the total time. The numerical
integration method takes approximately 1 s longer than the
technique using integrated Hankel filters for any number of
layers. For a half-space model, this is an increase in com-
putation time with a factor of 3; for a five-layer model, the
increase is a factor of 2.

In the ac geoelectrical sounding method, the half-Schlum-
berger electrode configuration is used (Figure 1). This con-
figuration minimizes the direct source-receiver coupling and

FIG. 3. Four-layer model responses of the ac geoelectrical sounding method. Model curves in the
half-Schlumberger electrode configuration for the three frequencies 76, 2441, and 9765 Hz are shown together
with the model. The abscissa is the distance between the inner potential electrode and the closest current
electrode. The far potential electrode is placed 400 m away, and the source is a 10 m electrical dipole.
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the influence from near-surface inhomogeneities, which
proved themselves to be major obstacles to unambiguity in
the interpretation of a deeper conductivity structure with
other electrode configurations. The calculation of the poten-
tial differences measured in this configuration takes exactly
the same time as the calculation of the fields when the
integrated Hankel filters are used. When the potential differ-
ences must be calculated by integrating field values numer-
ically, a considerably longer time is needed to integrate over
the long receiver dipole. This paper does not deal with the
intricacies of two-fold numerical integration, and so no
quantitative computation comparisons have been made in
the case of potential differences. An estimate is that at least
a factor of 10 is gained by the present method of doubly
integrated Hankel filters assuming an average number of 10
field values for the integration over the receiver dipole. This
is seen from Figure 5, where the interpolation time would
increase from approximately 0.8 to 8 s, which is approxi-
mately 10 times larger than the average computation time
with the integrated filters.

In the practical inversion situation, when measured field
data are interpreted with a 1-D earth model, many response
calculations are performed, and the differences in computa-

tion time add up. Computation time for one iteration equals
the number of model parameters plus one times the compu-
tation time for a model response. In a four-layer model we
have four resistivities, four coefficients of anisotropy, and
three layer thicknesses, i.e., one iteration requires 12 re-
sponses. Assuming 20 iterations in the inversion procedure,
we need 240 response calculations, which equal 3.5 minutes
(plus reading and writing) using the integrated Hankel filters.
An assumed factor of 10 between the computation times of
the two methods means that the numerical integration
scheme would take half an hour longer.

RESULTS AND DISCUSSION

In the previous sections, we have demonstrated how it is
possible to extend the theory of fast Hankel transforms
(Johansen and Sorensen, 1979; Sorensen, 1979; Christensen,
1990) to include the integrals of Hankel transforms appearing
in the expressions for electric and horizontal magnetic fields
from a finite electrical dipole. The case of the vertical
magnetic field, which has not been presented here, can be
treated analogously.

FIG. 4. Schematic presentation of the computational processes involved in the calculation of electric and magnetic fields from
the finite electrical dipole using integrated Hankel filters and the ordinary Hankel filters followed by numerical integration,
respectively.
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Let us turn to an overview of assets and limitations of the
new method.

1) The method is elegant. This may in itself not be a
conclusive criterion, but it demonstrates the power of
analytical work, and it may be an inspiration in other
related fields of research.

2) The method possesses all the assets of optimized fast
Hankel transforms (Christensen, 1990), which are
(a) It is possible to estimate the error of the discrete

convolution. Though the actual estimations may be
difficult to do on paper, it can always be done
numerically.

(b) The error decreases exponentially with the cut-off
frequency sc. This means that a moderate increase
in sampling density will make the error decrease
dramatically.

(c) The filter coefficients decrease exponentially for 
  This is an important property, since it re-

stricts the discrete convolution to a limited interval.
(d) The filter coefficients are accurate. The filter coef-

ficients are expressed as series expansions, which
makes it possible to evaluate them to any desired
accuracy. Thus no additional error in the calcula-
tions is introduced from inaccuracies of the filter
coefficients.

3) The method is faster. Instead of first performing a
discrete convolution between calculated values of the
kernel function and precalculated filter coefficients and
then numerical integrating, the convolution suffices for
the new method presented.

4) Today’s increased computer power has brought more
time consuming computational tasks within the horizon
of ‘‘realizability. ’’ One aspect is that the computeriza-

FIG. 5. Comparison of computation times for 23 values of the
electric field in the collinear dipole configuration using the
integrated Hankel filters and a numerical integration method
as a function of the number of layers in the earth model. The
curve (a) shows the computation time for integrated Hankel
filters; curve (b) shows the computation time for the numer-
ical integration method. The computation time for the nu-
merical integration method consists of the time needed for
the convolution shown in curve (c) and the time needed for
the numerical integration (d). Thus (b) = (c) + (d).

tion of data collection has brought a considerable
increase in the amount of data measured and thereby in
the time needed for their interpretation. Another is that
more complicated models for interpretation are used
more frequently. Many of these-for example 2- and 3-D
modeling-often involve repeated use of 1-D responses,
and so the gain in computation time has kept its impor-
tance, though it is small for simple applications.

Although a new set of filter coefficients is needed for each
transmitter-receiver separation, this is not a serious draw-
back. In the case of theoretical numerical studies of a
particular setup, a set of filter coefficients for a set of
distances, which is chosen sufficiently dense for reliable
interpolation, is calculated once and for all and used hence-
forth. In the case of an established field method in an applied
electromagnetic method, the same transmitter-receiver con-
figuration is used over and over again, and the pertinent
coefficients need only be calculated once and for all, and
afterwards, not even interpolation is needed.

If a new set of filter coefficients is demanded, they may be
calculated quickly. The filter coefficients may be calculated
with the same speed as optimized fast Hankel transform filter
coefficients, i.e., approximately 3.5 ms per coefficient plus
approximately 500 ms overhead for each transmitter-receiver
separation. The filter coefficients are calculated in double
precision to a relative accuracy of 10-l2 (FORTRAN77 pro-
grams compiled with the Salford FTN77/486 compiler and run
on a Compaq SLT 386s/20 with coprocessor, 0.143 MFLOP).

It is very important to estimate the error of computation.
In Appendix B, we demonstrate how the problem of error
estimation may be reduced to that known from the theory of
optimized fast Hankel transform filters. As mentioned under
(2), this error estimation may be difficult in practice with pen
and paper, but numerically it is possible. This is in contrast
to the method of numerical integration. Although one may
use optimized fast Hankel transform filters for the convolu-
tion and thus have an error estimate for that part of the
computations, it is very difficult to make a reliable error
estimation of the numerical integration-and even more
difficult for the two-fold numerical integration involved in
the calculation of potential differences.
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APPENDIX A
THE CALCULATION OF FILTER COEFFICIENTS

To be able to decide about the convergence of the integral
expression for the filter coefficients, we need to find an
estimate of the hypergeometric functions involved. Let us
first look at the  function entering in the expressions for
the electric field

     ( A - l )

Equation 15.7.2 Abramowitz and Stegun (1970) gives an
asymptotic expansion of 

 
 

 

For  constant,    we find

For s constant,    we have

(A-2)

(A-3)

(A-4)

   ( A - 5 )
 

The hypergeometric function thus increases exponentially in
the lower complex half-plane, while it decreases slowly in
the right, the left, and the upper half-plane.

Let us now consider the   function entering the expres-
sions for potential differences

   ( A - 6 )

Equation 15.7.2, Abramowitz and Stegun (1970), gives an
asymptotic expansion of 

 

 
  

  
  

. (A-7)

For  constant     we find

  . (A-8)

For s constant,    we have

(A-9)

while for s constant, a    we see that while for s constant     we see that
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       = s +  is analytic except for the points    
 (A-10) ( n + 1), n = 0, 1, 2, …where it possesses simple poles

with the residues
Thus, the hypergeometric function increases exponentially
in the lower complex half-plane, whileit increases slowly as
a squareroot in the right, the left, andthe upper half-plane.

 
     

(A-12)

Calculation of the filter coefficients  is analytic except for the points  =   +
 + 1/2), n = . . . -2, -1, 0, 1, 2, . . . , where it

As an example of how the filter coefficients are calculated possesses simple poles with the residues
let us turn to equation (29). We will show how the expression
(29) is found as sums of residues in the complex plane.

We calculate  
(A-13)

   =    
while  y, c, s) and exp  are analytic everywhere.

Figure A-l shows the logarithm of the absolute value of the
integrand in equation (A-23) seen from a point 10 degrees from

   (A-11)

 =
  

 

the negative imaginary axis towards the positive real axis, and
10 degrees over the complex plane. The poles are given a finite
value for clarity. We see the row of poles of  down the
negative imaginary axis and the two rows of poles of 

where

and

Consider the contour  of Figure A-2 in the lower
half-plane =     < 0. For     goes to
zero faster than any exponential function,  stays
bounded outside its poles,     increases exponen-
tially, and exp  decreases exponentially for v < 0 and
increases exponentially for v > 0. Thus the integral along
the lower horizontal return path vanishes in the limit for  

  no matter the sign of v. For  fixed,    
decreases as  in the lower half-plane, exp 
stays bounded,      decreases as   and

     , so the integrals along the
vertical paths of  vanish in the limit. We obtain

FIG. A-l. The logarithm of the absolute value of the integrand in equation (A-l 1) for     = 1
(optimized filters) and v +  = 0.8. The surface is seen from a point 10 degrees from the negative imaginary
axis towards the positive real axis, and 10 degrees above the complex plane. The poles are given a finite value for
clarity. The zeroes of the integrand appear as poles on the positive imaginary axis pointing downward, since the
plot is logarithmic.



Integrated Fast Hankel Transform Filters 877

     residues inside 

  
       

     

      
 

     
 

(A-14)

Inserting zn in the exponential function and observing that
 =  and        we find

that the second and third sums are each other’s conjugates,
and we obtain

 

    

     

   and so the integrals along the
vertical paths of C 1 vanish in the limit. We obtain

        l  residues inside 

       

     
 

 

where      
Again we observe that the two sums are each other’s

conjugates and we obtain

      

     

       (A-18)

For       can be expressed as a
discrete Fourier sum minus sums of filter coefficients of
arguments to the left and right of v (Christensen, 1990)

     . (A-15)

Though the expression (A-15) is convergent for all values of
v, y , and c, we shall only use it for values of v < v - , since
for large values of v the first terms of the summation will
consist of large alternating terms, and numerical accuracy
may be lost. This is accentuated by the presence of the
hypergeometric function, since it will contribute to the
exponentially increasing terms. Inserting zn in the asymp-
totic expansion of      we see that the exponen-
tially increasing terms of the first sum are proportional to

     
 

(A-16)

By demanding          we are sure to retain
numerical accuracy.

Now, consider the contour  of Figure A-2 encircling the
upper half-plane =  +    0. For     goes
to infinity faster than any exponential function,  stays
bounded outside its poles,     decreases as  
and exp  increases exponentially for v  0 and
decreases exponentially for v > 0. Though  increases
faster than any exponential function, the exponential decay
of exp  for v > 0 introduces a “valley” in which we
may place the horizontal return path in the upper half-plane.
The minimum in the valley decreases as v increases, so a
certain v + exists such that the integral through the valley
becomes negligible for v > v + . For  fixed,      
increases as    in the upper half-plane,       
decreases as    exp  stays bounded, and

FIG. A-2. The position of the poles of the integrand in
equation (A-11) and the integration paths C1 and C2 used for
the calculation of the filter coefficients. The poles on the
negative imaginary axis marked with a circle with a dot
belong to the gamma function quotient, the two rows of
poles marked with circles with a cross belong to the filter
function B(s).
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     and for    > 1/4 we will use the expression
(30)

   

   

   (A-19)

The method of calculating the filter coefficients in the case
of equation (30) and equation (31) is similar in concept to the
previous section. In the case of equation (30), we observe
that the first term is covered by the theory of fast Hankel
transforms. The second term includes the function  
1/2), which has a single simple pole on the negative imagi-
nary axis and a hypergeometric function, which has a row of
simple poles on the negative imaginary axis. The case of
equation (3 1), y =0, is really just a special case of the
second term in equation (30).

Choosing  so small that v     and v +  > 
for all v- < v < v+, equation (A-19) enables us to calculate

    in the range      Here,  = 
 v  ) is the greatest  meeting this demand and is thus the

best one, as a smaller  would result in a denser sampling
on the real axis of   

Filter coefficients for the calculation of potential differ-
ences are computed in an analogous way.

In all cases, the number of residues to be added is quite
small. Experience has shown that on the negative imaginary
axis and on the lines     less than 20 residues are needed
to calculate the sums to a relative accuracy of 10-12. On the
real axis less than 100 terms in the Fourier sum are needed.

Except for the presence of the hypergeometric function, Computation time is approximately 0.5 ms per coefficient
the method outlined above is identical with the one for per 1 MFLOP computing power plus approximately 70 ms
optimized fast Hankel transforms (Christensen, 1990). In overhead per 1 MFLOP for each transmitter-receiver sepa-
the theory of optimized fast Hankel transforms we chose ration. A set of 100 filter coefficients can thus be calculated

= 0 and  = 4 +  but the presence of the in approximately 120 ms. The filter coefficients are calcu-
hypergeometric function “steals” some of the lower lated in double precision to a relative accuracy of 10-l2

range, which is not “paid back” in the upper range, using a FORTRAN77 program compiled with a Salford
because it does not decrease exponentially in the upperFTN77/486 compiler. Programs for the calculation of filter
complex half-plane. Thus the middle range can become verycoefficients for horizontal electric and magnetic fields from a
large for    large, which means that the Fourier sum in horizontal finite electrical dipole and for potential differences
the middle range needs a very dense sampling and there-in the equatorial and the collinear dipole-dipole configuration
fore consists of many terms and numerical accuracy is lost.have been made, but filters for the vertical magnetic field
Therefore, we will choose  = 0 and restrict ourselves to have not yet been implemented.

APPENDIX B
ERROR ESTIMATES

In this Appendix we estimate the error integral appearing
in the expression (35)

     

       (B-l)

In the theory of fast Hankel transforms for ordinary Hankel
integrals (Johansen and Sorensen (1979), Christensen,
1990)), we meet an error expression similar to equation (B-l)
but with    = 1.

The task is to find majorants for the function       
entering in the filters for the fields and for       
pertaining to the filters for potential differences on the real
axis, Im (s) = 0. We will do this for the cases   y/2,

  y/2, and = 0 mentioned earlier. However, as
the expression (2) is identical to (1) for all values of y and c,
and the choice between the two expressions is concerned
with numerical considerations only, we shall look at the
expression (2) for c  0 and use (1) for c = 0. On the axis,
Y = 0, we will use the expressions (3). Recalling equation
(24), we have

   

  
 

    

    

and we find

  
 

(B-2)
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(B-3)

This estimate is not valid for c = 0. However, for c = 0 we
will investigate the expression, equation (23)

  
   
 
  

  ( B - 4 )

and we find
(B-9)

    (B-5)

which of course is another way of saying that there is no
contribution to the field from this term. On the axis y = 0,
we will use the expressions (25)

   
    

  

    
(B-6)

and we find

(B-7)

Let us turn to the filters for potential differences. Again we
use the expression (46) in our estimates. Recalling formula
(46)

   

  
   

 
    

    

we find

 

However,

(B-10)

Hence from equation 1.643.2, Gradshteyn and Ryzhik (1965)

  

  

(B-l 1)
This estimate is not valid for c = 0. For c = 0 we use the
expression (45)

  

    

  
  

(B-12)
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and we find      (B-20)

  2 2 2 (B-21)

(B-13) All terms independent of s present no difficulties, since the
On the axis, y = 0, we have equation (54) theory of fast Hankel transforms applies. The constants

m
entering the expressions will typically be of the order of

   
  

magnitude of 1 or smaller.
2     

(B-14)
The term involving  can be dealt with if we can

and thereby calculate the integral

  
 

 
  1

(B-15)

Recollecting the results, we have found for the E-field
filters

    =  exp 

   (B-22)

       
 

     (B-16)
C

   =  (B-17)

and

1
  y = 0. (B-18)

I IC

For potential difference filters we find

 
   

  
 

  

     

(B-19)

The integral is convergent, since        1 and
it can be expressed in terms of infinite sums of incomplete
gamma functions. The case  =   =  which is the
relevant one in this connection, has been integrated 
ically for optimized filters with different  , and the result is
shown in Figure B-l. The error expression plotted is 
malized with respect to the error of fast Hankel transforms

   = 0) given in Christensen (1990). We see a
very moderate increase in the error with increasing cut-off
frequency  compared with the results from the theory of
optimized fast Hankel transforms.

For all practical purposes, as a rule of thumb, we may say
that the computational error using the integrated Hankel
filters is of the same order of magnitude as for ordinary
Hankel filters.

FIG. B-l. The error integral appearing in equation (B-22) of the integrated Hankel transform method as a
function of the cut-off frequency   for  =  =  The error is normalized with respect to the error
integral of ordinary optimized fast Hankel transforms.


