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ABSTRACT
Planning, contracting, data acquisition and processing plus the inverter’s quality as-
sessment and inversion of a regional airborne electromagnetic survey may take some
months, while the interpretation of the results is a considerably more complex and
comprehensive process. Most often an interpretation necessitates additional data that
are time consuming to collect and complicated to integrate into an overall model, for
example borehole logs, borehole core samples, water chemistry, surface vegetation,
satellite imagery plus all existing geological background knowledge. Interpretation
basically has to do with identifying categories and finding boundaries between them
so that depths, thicknesses and a whole range of other model attributes can be esti-
mated, qualitatively and/or quantitatively. I present two methods using the continuous
wavelet transform of finding attributes intended to assist the interpreter: one finds
layer boundaries in the smooth multi-layer models that are most often used in the
inversion of large airborne electromagnetic data sets, and the other finds the natural
categories of the model parameter. Naturally, being based on the subsurface con-
ductivity distribution, the boundaries and categories suggested are useful only to the
extent that they coincide with geological/hydrogeological boundaries and categories –
which is for the interpreter to decide.
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INTRODUCTION

The planning and contracting of a regional airborne electro-
magnetic (AEM) survey may take of the order of 2–3 months.
Data acquisition could take another month and data process-
ing an additional couple of weeks. The inverter’s assessment of
data quality, reliability of the contractors information on sys-
tem parameters and noise model and experiments with inver-
sion settings would take from a couple of weeks to a month.
Computation time for the final inversion is of the order of
days. All up, a total of 4–6 months is needed before the in-
verter can put the results on the interpreter’s table. However,
interpreting the product delivered by the inverter, that is the
distribution of subsurface conductivity (which is almost never
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interesting in itself), in terms of geological formations and
the most likely hydrogeological models is a much more com-
plex and comprehensive process than collecting and inverting
AEM data. As a rule, an interpretation necessitates additional
data that can be difficult and time consuming to collect and
considerably more complicated to integrate into an overall
model, for example borehole logs, borehole core samples, wa-
ter chemistry, surface vegetation, satellite imagery plus the
generally accepted geological background knowledge. A com-
plete picture with the required detail and reliability can only be
obtained after considerable effort (Lawrie et al. 2015, 2016,
2017).

It is a basic tenet of this author that inversion and in-
terpretation are two inseparable aspects of the same scien-
tific process and that they must be done in a process of di-
alogue and mutual adjustment. However, they also differ in
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important aspects. In the inversion process, a model discretiza-
tion must be chosen that strikes a proper compromise be-
tween being complex enough to represent the details that we
are interested in, and at the same time simple enough to be
computable within a reasonable time. Once the model type is
chosen, there is an explicit functional relationship between the
model and the data that must be realized in some sufficiently
accurate numerical implementation. In the interpretation pro-
cess, physically and mathematically well-defined functional
relationships are few. Most often the interpreter will have to
make do with ad hoc relationships with limited validity in
space and time containing intrinsically unknown parameters.
A major part of the interpretation process is based on qual-
itative relationships and principles that, in the interpreters
experience, have proven themselves valuable and valid. That
is why, eventually, there is no substitute for the well-educated,
experienced interpreter in making a final interpretation based
on a hugely complex – and often apparently inconsistent – set
of data of many kinds, representing a large span of spatial and
temporal scales.

Basic processes of the interpretation effort have to do
with identifying categories and finding boundaries between
them so that depths, thicknesses and a whole range of other
model attributes can be estimated, qualitatively and quanti-
tatively. To assist in this process, it is desirable to have tools
and procedures that provide suggestions, subsequently to be
edited and corrected by the interpreter using interactive visual-
ization and editing software. There are mainly two approaches
to developing such tools. One is a statistical/machine learn-
ing/artificial intelligence approach that, given certain training
information provided by interpreter input, provides predic-
tions/suggestions about the parameters in question (Kotsiantis
2007; Cracknell and Reading 2014; Cordua et al. 2016; Guld-
brandsen et al. 2017). Another approach is a deterministic
one that from the inversion models extracts attributes that are
more directly useful to the interpreter than the distribution of
conductivity, that is attributes that more directly address the
interpreters efforts of categorizing and delimiting.

In this paper, I develop some methods to derive attributes
about layer boundaries and formation categories using the
continuous wavelet transform (CWT). First I will present the
CWT method using a traditional application as an example,
namely finding layer boundaries in a log. Then I will develop
a method of finding layer boundaries is the one-dimensional
(1D) multi-layer models that are the most commonly used
model discretization in standard inversion of large AEM data
sets, and finally I will outline a procedure that will find the
‘natural’ categories of the model parameter: conductivity or

log(conductivity) for a whole survey or a part thereof. These
methods must be categorized as deterministic, although con-
ditions defined by the interpreter can – and should – be im-
posed in an interactive post-processing procedure. They are
based on the subsurface conductivity distribution, and conse-
quently their usefulness depends on the extent to which con-
ductivity structure can be taken as a good proxy for geologi-
cal/hydrogeological structure in a given environment.

THE C ONTINUOUS WAVELET TRANSFORM
METHOD

To introduce the methodology of the continuous wavelet
transform (CWT), the basic principles will be outlined in
this section illustrated with an example of using the CWT
to find layer boundaries in an electrical log. More detailed
presentations of the method can be found in Cowan and
Cooper (2003), Cooper and Cowan (2009), and Davis and
Christensen (2013).

One of the fundamental uses of log information is to
identify boundaries between different formations and thus as-
sist the interpreter in a lithological interpretation. The human
brain is very good at recognizing patterns and structures, and
when visually inspecting a log (see Fig. 1), it is quite straight-
forward to pick up a pencil and draw lines at the layer bound-
aries. However, even for a visual interpretation, it is not al-
ways obvious which boundaries are the most important, and it
can be quite difficult to discern which boundaries can be relied
upon as determined by the signal and which are more dubious
because of the inevitable noise. An automatic procedure could
be very useful in suggesting a proper interpretation, and if it
could assist in discerning between signal and noise, between
the more important and the less important boundaries, that
would be even better. The CWT is an automatic procedure
that does just that.

The CWT is defined as (Mallat 1998)

W [ f (u, s)] =
∫ ∞

−∞
f (t)

1√
s

�∗
(

t − u
s

)
dt, (1)

where s is the scale, u is the position, � is the wavelet used
and * indicates complex conjugate.

In all of the following, the positions of boundaries are
defined as the inflection points of the function ( f ), that is
where the second derivative of the function is zero: f ′′ = 0.
Using the so-called ‘Mexican Hat’ wavelet (also called the
‘Gauss2’ wavelet), it is given as the second derivative of a
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CWT interpretation attributes 3

Figure 1 (a) The Ellog resistivity log Beder-F (black curve) with piecewise constant approximations (thick grey curves) obtained using the CWT
with two layers, (b) eight layers and (c) 22 layers. The spectrum from the CWT analysis of the log is shown in (d).
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where σ is the standard deviation of the distribution, now
playing the role of scale length, and the CWT will de-
liver the second derivative of f at different scales. In the
presence of noise, the CWT of f at small scales will pro-
duce many more zeros than we are interested in. For in-
creasing scale length, the CWT will provide an increas-
ingly smooth version of the second derivative, the number
of zeros will decrease and only the main boundaries will

survive. Eventually the user must decide the scale length,
or equivalently the number of boundaries, relevant for the
interpretation.

In the discrete numerical implementation of the CWT, I
use an approximation to �∗ using discrete binomial filters.
Making use of the fact that convolutions are associative, the
sequence of differentiation and averaging can be freely chosen,
and the procedure is as follows:

(1) Convolve with the smallest binomial filter that will pro-
duce the second derivative, namely [1, -2, 1]/4. This gives the
second derivative at the lowest averaging level.
(2) Each step of the repeated averaging process is imple-
mented by convolving the basic twice differentiated array
with binomial averaging filters of increasing width, N, given
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by 2−N
(N

n

)
, n = 0, . . . , N, until all zeros have disappeared, or

only the most resilient/important ones remain.
On every averaging level, the values of the second deriva-

tive are stored and the zeros found. The two-dimensional ar-
ray spanned by the sample numbers of the original array and
the averaging level constitute the CWT spectrum, also called
a scalogram. When the averaging process is completed, the
zeros of the CWT spectrum are contoured (see Fig. 1). Now
it is up to the interpreter to choose the appropriate averag-
ing level, that is choose the number of zeros and thereby the
number of boundaries. This is the only parameter that needs
to be provided by the user. Finally, the sample values between
the boundaries are averaged to give a mean value of the orig-
inal array between the boundaries, that is the average layer
parameter.

The implementation with discrete binomial filters is at-
tractive because of its simplicity and computational speed. It
can be reduced to very simple elemental operations. Leaving
out the normalization factor: 2−N, the initial twice differenti-
ating filter can be decomposed as

[1, −2, 1] = [−1, 1] ∗ [−1, 1], (3)

and is thus reduced to taking the difference between two con-
secutive elements of the array twice. The sequence of binomial
averaging filters can likewise be decomposed:

N = 2 : [1, 2, 1] = [1, 1] ∗ [1, 1]

N = 4 : [1, 4, 6, 4, 1] = [1, 2, 1] ∗ [1, 2, 1]

= [1, 1] ∗ [1, 1] ∗ [1, 1] ∗ [1, 1]

N = 6 : [1, 6, 15, 20, 15, 6, 1] = [1, 4, 6, 4, 1] ∗ [1, 2, 1]

= [1, 2, 1] ∗ [1, 2, 1] ∗ [1, 2, 1]

= [1, 1] ∗ [1, 1] ∗ [1, 1] ∗ [1, 1] ∗ [1, 1] ∗ [1, 1], (4)

and so forth, and thereby be reduced to adding two consecu-
tive elements of the array. In this way, the averaging is quite
simply implemented as an iterative process consisting of con-
secutive convolutions with [1,1].

The relation between the binomial filters and the Gaus-
sian function is that, in the limit N → ∞, we have (Lindeberg
and Bretzner 2003):(

N

m

)
→ G[m] = 1

σ
√

2π
· exp

(
− m2

2σ 2

)
, m = n − N/2,

σ =
√

N/2, (5)

where N is the number of coefficients minus 1. We can, thus,
define a half-width of the binomial filters as w1/2

= 2σ = √
N.

By keeping track of the equivalent cumulative number of bi-
nomial coefficients in the iterative process, the number of
elemental convolutions in each iteration can be chosen so that
the averaging level dimension of the CWT spectrum reflects
the half-width in a simple way. In the CWT spectrum in Fig. 1
– and in all subsequent CWT spectra in this paper – the half-
width is twice the index number of the averaging level.

When the user has chosen the number of relevant bound-
aries by choosing the proper averaging level, the position of
the boundaries is chosen not as the actual position of the
zeros at that averaging level, but by following the zero con-
tours to the zero position at the lowest averaging level. This
ensures that the position is found with the best possible pre-
cision and that the boundary thus defined does not change
when/if more boundaries are added. This establishes a unique
hierarchy between the boundaries, which is a prominent and
very desirable property of the CWT analysis. The procedure
of tracing the zero crossings to the lowest averaging level is
equivalent to identifying the convergence of lines of maxima
in other applications of CWT analyses (Mallat 1998).

Figure 1 illustrates a traditional application of the CWT
in finding boundaries in a log. The electrical log, Beder-F,
was measured with the Ellog measure-while-drilling auger tool
(Sørensen and Larsen 1999) in eastern Jutland, Denmark. The
figure shows an electrical log and the piecewise constant ap-
proximations to the log obtained by choosing one, seven and
21 boundaries (two, eight and 22 layers), corresponding to av-
eraging levels number 250, 142 and 34, respectively, together
with its CWT spectrum.

In the above example, and throughout this paper, I have
used the Gauss2 wavelet. It is a well tried and understood
wavelet, and numerically it is quite straightforward to identify
the zero crossings to find the boundaries. Other wavelets have
been used in the literature. Chandrasekhar and Rao (2012)
compare the relative merits of finding maxima/minima of the
Gauss1 wavelet with the zero crossings of the Gauss2 wavelet,
and Hill and Uvarova (2018) use the zero crossings of the
Gauss3 wavelet to estimate whether the boundaries found
with the Gauss2 wavelet are sharp or gradational.

USING T HE CONTINUOUS WAVELET
TRANSFORM T O FIND LAYER
BOUNDARIES IN A M ULTI -LAYER M ODEL

Once an airborne electromagnetic (AEM) survey has been
conducted, a successful inversion process will provide the in-
terpreter with proper inversion models that will indicate the
distribution of subsurface conductivity.
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Only very rarely is the conductivity interesting in itself;
however, it carries information that the interpreter can use
to make a geological and hydrogeological interpretation, thus
making sense of the distribution of subsurface conductivity in
terms of a quantitative delineation of depths to layer bound-
aries and a qualitative identification of different lithologies.
There are mainly two different kinds of models used in AEM
inversions: multi-layer models (MLMs) and few-layer models
(FLMs). Their respective assets and drawbacks can be sum-
marized as follows.

Multi-layer model inversion models

In the inversion, the layer boundaries of multi-layer models
(MLMs) are fixed and only the layer conductivities are inver-
sion parameters.
� MLM construction criteria: To avoid bias in the result-

ing inversion models from the discretization of the MLM,
it must fulfil certain criteria: The top layer must be thin
enough, the depth to the lowermost layer boundary deep
enough and the number of model layers high enough that
no individual layer is well determined/resolved in the inver-
sion.

� MLM asset: With a simple initial model of a homogeneous
half-space and with proper regularization control of the
iterative inversion, convergence is stable and robust and a
final model fitting the data (under the given constraints) is
ensured.

� MLM asset: With a regularization of the correct strength,
one that allows all model details supported by the data to
appear without permitting the artefacts of fitting the data
noise, MLMs will permit subtle conductivity changes to be
seen in the model sections revealing features that are not
necessarily well resolved, but nevertheless clearly indicated.

� MLM drawback: Because of the regularization, conductiv-
ity changes appear gradual and formation boundaries are
not immediately evident.

Few- l ay e r mode l i nv e r s i on mode l s

In inversions with few-layer models (FLMs), both layer
boundaries and layer conductivities are inversion parameters
to be adjusted in the inversion.
� FLM asset: If sharp vertical conductivity contrasts are

found in the subsurface conductivity structure, FLM inver-
sion will deliver a better definition of the layer boundary
than multi-layer model (MLM) inversion where such layer
boundaries are blurred due to the regularization.

� FLM drawback: FLM inversion often needs good initial
models to ensure stable convergence, especially in the in-
version of fairly sparse data sets, for example frequency
domain data.

� FLM drawback: The number of model layers must be de-
cided before inverting the data. However, the optimal num-
ber of layers is not always evident, meaning that often a
trial and error procedure must be undertaken before the
correct number is found. The choice of the number of layer
boundaries is equivalent to a fairly strong regularization,
the exact nature of which is difficult to quantify.

� FLM drawback: Layer boundaries are not necessarily for-
mation boundaries, especially in present-day laterally cor-
related inversion, where the most prevalent practice is to
use the same number of layers for all models along a profile
no matter what the optimal number for the individual data
set might be. This will sometimes have the consequence
that a formation ‘changes layer number’ along the profile,
in which case layer boundaries will obviously no longer be
formation boundaries.

� FLM inversion model acceptance criteria: If no specific ge-
ological indications are available, an FLM must have the
smallest possible number of layers that still makes it possi-
ble for the model response to fit the data.

Most often MLMs will be used for inversion of large data
sets, often as the final inversion product, but at least as the first
of a series of inversion products. If FLM inversion is required,
very good initial models for FLM inversion that ensures quick
and stable convergence can be derived from the MLMs.

Finding layer boundaries in multi-layer models

Finding layer boundaries in inversion models to compensate
for the blurry definition of formation boundaries in multi-
layer models (MLMs) has been a research effort in several
instances, for example, reported by Chambers et al. (2010)
and Hsu et al. (2010). In this section, I will develop a pro-
cedure that finds layer boundaries in MLMs using the con-
tinuous wavelet transform (CWT). The procedure consists of
two steps: first the zero points of the second derivative of
the MLM model are found and the few-layer model (FLM)
boundaries are placed at these zero points. Optionally, if the
user wishes to reduce the number of initial FLM layers and/or
establish a hierarchy between the boundaries, a CWT analysis
can be carried out by averaging a densely sampled version of
the second derivative found in the first procedure.

Figure 2 shows a plot of a MLM with 30 layers from an
airborne electromagnetic (AEM) survey. The inversion was
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Figure 2 (a) Multi-layer model with 30 layers. (b) The integrated model with a fourth-degree polynomial (cyan curve) fitting the five points
indicated with red circles. (c) The piecewise linear approximation of the second derivative of the model. (d) CWT spectrum of the model log
(conductivity).

carried out using the methodologies outlined in Christensen
(2016a, 2016b). Again, as was the case with the log example,
a visual inspection would enable the interpreter to define the
major layer boundaries, but with large surveys with millions
of inversion models a manual procedure is out of the question
and there is a need for an automatic algorithm.

Keeping the definition that a boundary is situated where
the model has an inflection point, the question is how to find
the second derivative of the model. With the piecewise con-
stant MLMs, the second derivative is everywhere zero except
at the MLM boundaries where the first derivative is a Dirac
delta function and the second derivative is the derivative of a

delta function – which in a generalized sense is also zero at the
boundaries. To get around this situation, what is needed is a
smooth version of the model, but then the problem arises as
to the position of the samples that define the model; the layer
conductivity is the same all through a layer. To get around
these difficulties, instead of working with the model param-
eter itself – conductivity or log(conductivity) – I consider the
integrated model parameter also shown in Fig. 2 and seek a
way to find its third derivative. For the integrated parame-
ter, the values are well defined at the MLM layer boundary
positions and by fitting the unique fourth-degree polynomial
that fits five consecutive points and taking its third derivative
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for the central of the five points, the second derivative of the
model is defined at that central point. The third derivative of
the fourth-degree polynomial is a non-degenerate linear func-
tion, but I will use its value only for the central point.

By first using points 1–5 to find the second derivative
of the model at point 3, I proceed with using points 2–6 to
find the derivative at point 4, and then points 3–7, and so on
all through the integrated model parameter array to find the
second derivative of the model at all the MLM layer boundary
positions (except the end points, but that is not a great loss).
The procedure is illustrated in Fig. 2. Linear interpolation
between these values to find the zeros will explicitly produce
all layer boundaries implicitly present in the MLM. If this
result is acceptable – possibly after some post-processing (see
below) – a CWT analysis is not necessary.

If a hierarchy between the FLM boundaries is desired by
the interpreter, a dense equidistant sampling of the piecewise
linear function that passes through the values thus defined will
then provide the input array to the CWT.

Figure 2 also shows the piecewise linear approximation
to the second derivative of the MLM and the pertinent CWT
spectrum. Compared with the CWT spectrum of the Ellog, it
is seen that because the input array is quite simple and without
short-wavelength noise, the number of zeros is small and the
CWT spectrum is simple. Figure 3 shows the CWT models
resulting from choosing four, five and six layers, and it seems
fair to choose a model with six layers. The root-mean-square
(RMS) errors of the four, five and six layer models are 0.504,
0.477, and 0.469, respectively. The reason why the RMS er-
rors are quite similar is of course that the CWT algorithm
ascribes the mean values in the depth intervals resulting from
the CWT analysis of the respective model, and that the lower
and well-conducting parts of the models are the same.

In some interpretation situations, the most interesting
layer boundary is not necessarily the one that is highest in
the hierarchy defined by the CWT analysis. In this case, the
best procedure might be to choose all the zeros of the sec-
ond derivative found without applying the CWT analysis and
supplement with a series of post-processing steps demanding
that certain criteria must be fulfilled by the FLMs. I have
used two criteria: (1) all layers must be thicker than a cer-
tain user-defined limit and (2) no two neighbouring layers can
have a relative parameter contrast smaller than a user-defined
limit. When using criterion (1), the thin layer is merged with
the neighbouring layer for which the parameter difference is
the smallest. When using criterion (2), the boundary is just
deleted from the array of boundaries and a new mean value of
the model parameter for the joined layer is calculated. Other

criteria can be defined to highlight a certain boundary de-
manding, for example that it lies in a certain depth interval
or that the parameter contrast between the lower and upper
layers of a boundary lies in a certain interval. These post-
processing steps are interpretation oriented and can preferably
be implemented in an interactive program where boundaries
can be displayed and edited.

Figure 3a shows the MLM model section from the in-
version, and Fig. 3d shows the FLM model section found by
using the above procedure of retaining all the layer boundaries
without a CWT analysis. It is seen that it is identical to the one
obtained using the CWT with the same number of layers – as
it should be. The two top plot frames of Fig. 4 show the MLM
model section and the FLM model section produced using the
layer boundary routine, respectively, and Fig. 5 shows that
the FLMs derived in this manner fit the data at least as well
as the MLMs.

USING A CONTINUOUS WAVELET
TRANSFORM A NALYSIS T O IDENTIFY
PARAMETER CATEGORIES

The procedures of the previous section are focused on finding
boundaries and works on one multi-layer model (MLM) at
a time. The number of layers of the derived few-layer mod-
els (FLMs) varies along the profile, but this must be seen as
an advantage: the procedure adapts to the complexity of the
models. However, in this approach there is no focus on the
lateral correlation of the model parameters or on what is ac-
tually delineated with the boundaries. It would be desirable
to have a method of identifying the basic formations as de-
fined by the parameter values by taking a whole survey, or a
part thereof, into account. In this section, I develop a method
based on a continuous wavelet transform (CWT) analysis of
finding the ‘natural’ bins for the parameter values of a survey.

In the previous CWT analysis examples, focus has been
on the boundary positions along the index dimension of the
input array and the resulting average values of the layers de-
fined by the boundaries followed as a consequence of their
position. In this section, the main interest is on the value di-
mension of the input array and the aim is to develop a routine
that will indicate the ‘natural’ bins of values of the input array.
The suggested procedure is as follows:
(1) collect all layer parameters, that is conductivities or
log(conductivities), from all models of (a subarea of) a sur-
vey into one array,
(2) sort the array,
(3) use the sorted array as input array to the CWT analysis.

C© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 1–14



8 N.B. Christensen

Figure 3 (a) A few-layer approximation with four layers. (b) A few-layer approximation with five layers. (c) A few-layer approximation with
six layers. (d) Using all layer boundaries without CWT analysis. In all plot frames, the black curves are the multi-layer models and the grey
curves are the few-layer models.

This procedure is motivated by the observation that if all
model parameters are collected in a one-dimensional array and
sorted, a ‘plateau’ in the sorted array will indicate that a large
number of model parameters are of approximately the same
size, and the plateau will therefore reflect a natural category of
the model parameter. Neighbouring plateaus will be separated
by inflection points, and the boundary between bins can thus
be found in a CWT analysis. As pointed out several times
through this paper, it must be emphasized that the binning
of the model parameters of a survey (sub)area makes geologi-
cal/hydrogeological sense only to the extent that the categories

of interest to the interpreter are characterized by differences in
conductivity.

The boundaries found in the CWT analysis are now used
to define the end points of the ‘natural’ intervals of the sorted
array values, that is the values that ‘naturally’ belong together.
As seen in the previous sections, the CWT analysis defines a
hierarchy between the number of boundaries and thereby the
number of bins. Furthermore, due to the fact that bound-
aries on a higher averaging level do not change when more
boundaries are added, it has the very valuable property that
bin interval end points do not change when more bins are
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Figure 4 Model sections of an AEM line from an Australian Survey. From the top: multi-layer models; few-layer models produced with the
layer boundary routine; model sections showing four, seven and 10 bins produced with the CWT binning routine.

C© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 1–14



10 N.B. Christensen

Figure 5 The sorted array (black curve) of the AEM line shown in Fig. 4 with the piecewise constant approximations illustrating the binning
with (a) four bins, (b) seven bins and (c) 10 bins. The CWT spectrum is shown in (d).

considered. This means that when more complex structures
are permitted by introducing more bins, the complexity is al-
ways expressed as a subdivision of already existing bins. In
this respect, it differs from traditional techniques of clustering
(Jain, 2010; Wu, 2012).

If a survey area consists of several different geological
provinces, it is obviously a good idea to subdivide the area to
ensure that the CWT analysis does not lump parameters of
very different origin together. In this way, the bins are more
likely to be indicative of the specific geological setting.

Inversion of large airborne electromagnetic (AEM) sur-
veys will often produce millions of inversion models with tens
of millions of parameter values. Computation time for the
CWT analysis is approximately N2, where N is the number

of elements in the input array. This means that though the
sorting of millions of values is not a problems these days,
the CWT analysis would become too time consuming. I have,
therefore, developed a staged approach to the CWT analysis
for large arrays:

(1) If there are less than 10,000 elements in the input array,
use the array as it is as input to the CWT analysis.
(2) If there are more than 10,000 elements in the input array,
choose the first 5000 elements and perform the iterative CWT
analysis on those. Only average until at least 100 intervals
remain after the averaging, select the interval end points of
these and store the values. Continue this way until the whole
original array is exhausted.
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(3) Collecting the stored values from the previous round
of CWT analyses, sort the array and subject it to the fi-
nal CWT analysis. If there are more than 10,000 elements
of this array, repeat the selection process as in the previous
step.
(4) When the staged selection process results in an array of
less than 10,000 values, perform the final CWT analysis.

The averaging procedure of an array with 5000 elements
to produce 100 samples is very fast, of the order of 0.1–
0.2 s, so it is not a problem to perform thousands of those. It is
the final analysis that takes up most of the computation time,
but for an array of 5–10,000 elements, the computation time
is less than 1 min. Thus, it is not a computational problem
to handle hundreds of millions of parameter values in the
analysis. Other approaches could be used to select the final
array, but with the procedure outlined above, the same CWT
analysis is used to select the elements in the staged process as
the one used in the final analysis. This reduces the chance of
introducing an unwanted bias in the selection and the final
analysis. This is an application of the superposition principle,
which is generally valid for CWT analyses provided that the
scales involved are similar and that the data lengths of the
segments are similar.

As before, the only user-selected parameter is the number
of bins to be used, but once the CWT averaging has been
continued until only a small number of bins remain, the larger
numbers follow naturally and without further computation
time from the inherent hierarchy of the CWT analysis. Thus,
the analysis only needs to be performed once to make various
numbers of bins available to the user for a subsequent selection
according to which one best suits the purpose.

A FIELD EXAMPLE

Figure 4 shows a part of the original multi-layer model
(MLM) inversion model section of a line from an Australian
survey together with the model sections resulting from ap-
plying the layer boundary and the binning procedures. Data
were recorded with the SkyTEM312 system and the inversion
was implemented with a hybrid approach using both the
approximate inversion (Christensen 2016a) and full accuracy
calculations. Laterally correlated models were produced using
a strictly horizontal lateral parameter correlation procedure
(Christensen 2016b). The MLM profile consists of 3696
soundings inverted with 30-layer models, which gives in total
110,880 parameter values. The continuous wavelet transform
(CWT) was performed on log(conductivity) and because
the number of parameters exceeds 10,000, 22 initial runs

with 5040 samples in each were conducted, each extracting
227 samples. Typically the CWT only had to run to an
averaging level of 8–9 and the computation time for the
22 runs was approximately 3 s. The final CWT analysis
took 19 s.

In Fig. 4, the top plot frame shows the MLM inversion
model section, the next frame shows the model section re-
sulting from using the layer boundary routine of the previous
section, including all boundaries, and the bottom three frames
show the model sections resulting from selecting four, seven
and 10 bins. As can be seen, the simplifications obtained are
close to what one would expect from a manual categorization
of the model section, and it is quite obvious that increasing the
number of bins results in a subdivision of already existing bins.
Looking at the results, it seems quite obvious that the few-
layer model (FLM) section produced with the layer boundary
routine reflects all of the characteristics of the MLM section.
Looking at the binned sections, it is seen that four bins are not
quite enough to represent the original MLM inversion section;
seven bins clearly do a better job than four bins, while the ad-
ditional complexities of the 10 bin model section only serve
to introduce transitional layers between already existing bins.
In the next section, it is shown that the seven-bin models are
the simplest ones that will actually fit the data and thereby
account for the same amount of information as the MLM
model section, making seven bins a good choice if no other is-
sues must be taken into consideration. It must be emphasized
that the binning procedure is an algorithmic activity resulting
in a suite of attributes; choosing which of these are the rele-
vant ones is part of a more complex interpretation situation.
Figure 5 shows the final sorted array with the binning inter-
vals indicated as a piecewise constant function approximating
the sorted array for the above mentioned cases of four, seven
and 10 bins together with the CWT spectrum of the sorted
array.

In a similar way to the layer boundary routine, an
interpreter-oriented post-processing of the CWT results can
be implemented to enhance the characteristics that the inter-
preter is most interested in. In Fig. 5, it is seen that when
choosing 10 bins in the CWT analysis, four fairly small bins
with average parameters very close to each other around a
value of 40 �m are produced. This could be perceived as an
unwanted complication within a small interval, and a post-
processing procedure can therefore be applied that permits
the interpreter to remove bin boundaries separating bins with
average parameter contrast smaller than a user-defined limit.
The seven-bin case shown in Figs. 4 and 5 has actually been
created from the 10-bin situation by requiring that the relative
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Figure 6 The data residuals of the few-layer models normalized with
the data residuals of the multi-layer models using the layer boundary
routine (black) and the binning routine, retaining four (blue), seven
(red) and 10 (cyan) bins.

difference between neighbouring bin average values is larger
than 0.2.

The choice of the limiting value must be seen as part
of the interpretation situation and must be made based on
the conductivities of the lithologies present in the survey. If
it is known that the situation is simple with large differences
between the conductivities of the lithologies, a larger value
might be preferable. Generally, in hydrogeophysical surveys,
small differences in conductivity can be important and often
the conductivity ranges of various geological units overlap
considerably. Therefore, in the above example, I have chosen
the fairly small number of 0.2 as the limiting value.

Data fits of the simplified models

A relevant question is to which extent the models derived
with the layer boundary routine and the binning routine fit
the data. To answer that question, I have calculated the one-
dimensional (1D) forward responses of the few-layer models
(FLMs) arising from the layer boundary routine, including all
boundaries, and the binning routine for the models shown in
Fig. 4. Figure 6 shows the ratio between the data residuals of
the FLMs and the data residual of the MLM. For the FLM
model section derived using the layer boundary routine, the
mean of the data residual ratio is 0.65. For the binned sections
with four, seven and 10 bins, the mean of the data residual ra-
tios is 2.24, 0.99 and 1.02, respectively. Not surprisingly, the

residual ratio decreases when the number of bins increases,
and for seven- and 10-bin cases, the data residuals are essen-
tially the same as for the MLM, meaning that they fit the data
just as well. The FLMs derived using the layer boundary rou-
tine actually fit the data better than the MLMs on average,
which of course is due to the vertical smoothness constraint
of the MLMs.

D I S C U S S I O N

The main focus of this paper is to present the method of find-
ing boundaries in multi-layer model (MLM) inversion models
with the option of qualifying the relative importance of the
boundaries, and the method of finding the ‘natural’ bins of
the parameter values. The aim of both methods is to pro-
vide interpreters with good suggestions that might be useful
in their interpretation efforts of quantifying depths to bound-
aries and identifying various formations. Both methods offer
a simplification of the MLM model structures and outline the
boundaries between different formations, but they are also
different in several aspects.

The first method is boundary oriented and finds bound-
aries in one-dimensional (1D) conductivity structures. Param-
eter values for the resulting layers are subsequently found as
the mean between the boundaries. The analysis of the previous
section shows that the few-layer models (FLMs) constructed
this way fit the data at least as well as the MLMs from which
they were derived. An analysis of how well the FLM layer pa-
rameters, that is layer thicknesses and depths to layer bound-
aries, are determined could be performed in the traditional
way with a minimal computational effort. The FLMs would
also be excellent initial models – and could also be used as
prior constraints – in a subsequent FLM inversion to adjust
the model parameters to improve the fit to the data – if that
is deemed necessary at all. Because of the high-quality initial
models, the FLM inversion would be very fast.

The second method is parameter oriented and finds the
interval endpoints and subsequently the mean value within
these intervals of the parameter values of a (subarea of a)
whole survey. The mean of the parameter values within a
bin is then ascribed to the original model parameters lying
within the bin limits. By plotting the resulting model sections,
boundaries between formations appear and structures become
clear. As expected, the 1D FLMs derived this way fit the data
increasingly well for an increasing number of bins, and the
field example suggests that even a small number of bins is
adequate to make the FLMs fit the data as well as the original
MLMs. As was the case for the first method, the local 1D
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FLMs thus defined could be analyzed to see how well their
model parameters are determined or serve as initial model
for a 1D FLM inversion. However, the main purpose is to
automatically define the formations of a model section or
a whole survey and the simplified models may serve as the
starting point for geological/hydrogeological model building.

An advantage of the first method is that layer bound-
aries are found for each individual inversion model and that
the number of layers can change along a model section to
properly reflect the varying model complexity. A weakness
of the approach is that it looks at only one model at a time,
and the lateral continuity observed in the continuous wavelet
transform (CWT)-derived FLM model sections is only present
because of the lateral continuity of the original MLM model
section ensured by the lateral constraints of the inversion.

For the parameter binning method, the advantage is that
it considers a whole survey (sub)area and that the CWT anal-
ysis provides a natural hierarchy between the number of bins.
A consequence of this hierarchy is that when more bins are
introduced the previous bin boundaries remain and the effect
consists of subdivisions of already existing bins.

Computation time is not a problem. With the layer
boundary method, thousands of models can be processed per
second. With the parameter binning, hundreds of millions of
parameter values can be processed within minutes. If a hy-
drogeological interpreter intends to use the electrical conduc-
tivity values to estimate the hydraulic conductivity by using
the simple assumption that the logarithm of the hydraulic
conductivity is a linear function of the logarithm of the elec-
trical conductivity: log σhy = a·log σel , using log σel , as the pa-
rameter of the binning process is a perfect proxy for binning
log σhy.

Although it is generally acknowledged that the presence
of the inevitable uncertainty in geophysical data and the re-
sulting model ambiguity should be taken into account in a
subsequent interpretation, it is still common practice to de-
liver only one final model (at a time) to the interpreter. The
full potential of the attributes developed in this paper can
only be realized if the interpreter has some interactive dis-
play/editing software at his/her disposal in which qualified
questions can be asked of the inversion product and the result
be presented rapidly. Ideally, the inversion MLM, the FLM
model sections created by the layer boundary method and the
formation binning should all be available to the interpreter as
input for the geological/hydrogeological model building, and
it should be possible for the interpreter to select the number
of layers and/or the number of bins in an interactive way.
A further perspective and a more powerful option would be

to have the attributes included in a machine learning/AI en-
gine embedded in the interpretation software. Therefore, it is
this author’s belief that the focused attributes developed here
would improve the predictive power of a machine learning
approach and/or reduce the uncertainty of the predictions –
but to verify this is the subject of another paper.

CONCLUSIONS

This paper presents the continuous wavelet transform (CWT)
analysis method as a tool for finding attributes in the volume
of inversion models from, for example, an airborne electro-
magnetic (AEM) survey that can be of assistance in the geo-
logical and hydrogeological interpretation. Two methods have
been developed. One focuses on finding the depths to bound-
aries of the MLM inversion models and ascribes the mean
value of the original MLM to the model layers of the resulting
few-layer model (FLM). In the other method, all layer param-
eters of (parts of) a survey are binned into ‘natural’ intervals as
defined by the hierarchical structure of the CWT analysis. In
both methods, the CWT analysis offers a hierarchy of bound-
aries/bins, and presented with these attributes the interpreter
must decide, based on his/her experience and understanding
of the EM inversion process and the CWT methodology, to
which extent the categories delivered can be identified as for-
mation boundaries.

The CWT analysis is implemented as an iterative aver-
aging process using binomial filters and the simplicity of the
processing means that the computation cost is low. Further-
more, a staged approach to the binning process has been de-
vised that ensures that hundreds of millions of parameters can
be processed in a few minutes.

In this paper, the CWT analysis has been demonstrated
on logs and on the inversion models of an AEM survey, but
the principles are applicable to the inversion models of any
survey from a variety of geophysical methods. In addition,
the method offers itself to be integrated into machine learning
approaches, providing a first deterministic suggestion of for-
mation boundaries which, together with the user picks, can
be used in a machine learning prediction process.
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approach to developing new methods to automate hydrogeo-
logical mapping and interpretation procedures incorporating
AEM data.
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