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a b s t r a c t 

Some hydrological model predictions are particularly sensitive to the hydrostratigraphy of numerical 

groundwater models, which are used extensively in the management of groundwater resources. In this 

paper we present a method to estimate hydrological prediction uncertainty originating from uncertainty 

in subsurface structure. Densely sampled airborne electromagnetic (AEM) data, which captures the main 

geological features, along with borehole lithological information are used as input to the hydrostrati- 

graphic models. Geophysical resistivity models obtained from spatially constrained 1-D inversion of the 

AEM data are translated into clay-fraction values with a spatially variable translator function. Hydros- 

tratigraphic units are identified by k -means clustering on the 2-D space defined by estimated resistivity 

values and clay-fraction values. Areas with no data are represented stochastically using sequential in- 

dicator simulation (SIS) where the spatial model of each hydrostratigraphic unit is characterized by an 

indicator variogram. This results in an ensemble of equally likely hydrostratigraphic representations of 

the subsurface. A hydraulic conductivity value of each hydrostratigraphic unit of each realization is es- 

timated in a groundwater model calibration constrained by observations of hydraulic head and stream 

base flow. Pumping well catchment areas are calculated for each realization. The result is a probabilistic 

well catchment area, which is checked for bias with a manually constructed geological model. There is a 

probability of 85% of the catchment extending beyond the manually constructed geology. The method is 

applied to the 45 km 

2 large groundwater model of the Kasted site in Denmark. The method presented in 

the paper has the advantage of being data-driven, making the modeling process entirely reproducible. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Hydrological models are often developed as decision support

tools for the management of surface or groundwater resources. The

models are typically set up with a deterministic hydrostratigraphy

using available borehole information, geophysical data sets, and ex-

pert knowledge. Model parameters (e.g. hydraulic conductivity, K),

are subsequently estimated using inversion/calibration. The hydro-

logical observations for this inversion are often limited to head

and flow data. Due to the inherent uncertainty of the determin-

istic representation of the subsurface, these data are insufficient to

address prediction uncertainty. Especially flow and transport pre-

dictions are often sensitive to hydrostratigraphical variation, while

the observations used to inform the hydrological inversion may
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ot be sufficiently sensitive to hydrostratigraphical variation ( Rojas

t al., 2010; Refsgaard et al., 2012; Seifert et al., 2012 ). Correspond-

ngly, decision making under risk (based on uncertain hydrologi-

al prediction estimates) is receiving attention ( Tartakovsky, 2013 ).

ue to the inherent difficulty to map subsurface structures, all hy-

rostratigraphical models are to some extent flawed. Determinis-

ic approaches are therefore inadequate to address the uncertainty

f predictions of flow and transport. Making multiple realizations

f model hydrostratigraphy based on manual data interpretation

s a tedious and difficult task. Applying automated model build-

ng routines based on geostatistical methods provides the means

or estimating the structural uncertainty, but has extensive input

ata requirements. In order to capture variations in the subsur-

ace that can be relevant for groundwater flow, a high spatial data-

ampling rate is often necessary. Lithological data from boreholes

ften have a high vertical resolution, whereas horizontal variability

f geological units is often not captured due to the limited bore-

ole density. Airborne Transient Electromagnetic Methods (AEM)

http://dx.doi.org/10.1016/j.advwatres.2017.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2017.03.002&domain=pdf
mailto:paam@env.dtu.dk
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s a geophysical method that maps variations in subsurface resis-

ivity. Data are obtained by measuring the decay of a secondary

agnetic field, which is caused by the diffusion of electrical cur-

ents through subsurface materials induced by a primary trans-

itter field ( Kirsch, 2009 ). Resistivity models of the subsurface,

.e. the change of resistivity of subsurface materials with depth,

re obtained by inverting the data. AEM provides dense horizon-

al data coverage, but the resistivity models obtained through in-

ersion need to be related to the local lithology, to provide input

o hydrological models. Thus, using the combined information held

n borehole logs and AEM data in a geostatistical framework makes

t possible to estimate the uncertainty related to subsurface struc-

ures in hydrological models. 

Geostatistical prediction and simulation methods were intro-

uced in inverse hydrological problems decades ago to assist

ydrologists to estimate the K field and the associated uncer-

ainty by conditioning to measurements of K and hydraulic head

 Delhomme, 1979; Neuman and Yakowitz, 1979 ). Geostatistical

ethods provide the opportunity to assess hydrological model pa-

ameters and predictions originating from uncertain subsurface

tructural models probabilistically. Many studies have used two-

oint geostatistical methods to simulate aquifer structures, see

or example Dell’ Arciprete et al. (2011 ); examples of applications

n hydrology inclu de Gómez-Hernández (1994) and Klise et al.

lise et al. (2009) . The uncertainty in the simulated aquifer struc-

ures associated with the choice of simulation algorithm is not

ddressed in this paper. For such analysis, the reader is referred

o for example Dell’ Arciprete et al. (2011 ), who compare SISIM,

ProGS and MPS using a 2-D training image. This study focuses

n the hydrologic uncertainty represented by the ensemble of sub-

urface realizations. Multiple-point statistical (MPS) methods are

opular because the use of training images makes it possible to

epresent subsurface structures that are closer to geologic real-

ty Linde et al. (2015 ), see for example Dickson et al. (2015 ),

ermans et al. (2015) , and Ronayne et al. (2008) for applications in

ydrology. Dickson et al. (2015 ) compared an MPS interpretation to

 deterministic interpretation of airborne magnetic data to model

he aquifer of a groundwater model. They found that the structural

nformation in the training image improved the fit to hydrological

ata. Since AEM surveys can cover large areas with high sampling

ensity, the main geological features of a given site can often be

aptured, which makes the use of a training images less crucial. 

Geophysical data are used widely in hydrology, see for exam-

le Rubin and Hubbard (2005 ) and references therein. Geophys-

cal data offer imaging and coverage opportunities of structures

elevant for groundwater flow that hydrological data alone cannot

onstrain. AEM data are unique in terms of coverage and depth

f investigation while obtaining a fine enough resolution of the

ubsurface that is necessary for large-scale groundwater model

pplications. The data can cover up to hundreds of square kilo-

eters down to depths of 300 m below ground surface. Applica-

ions of AEM in hydrogeology include: modeling of 3-D geological

tructures of unconsolidated sedimentary environments ( Burschil

t al., 2012; Bosch et al., 2009; Jørgensen et al., 2010; Gunnink

nd Siemon, 2015; Steinmetz et al., 2014 ); mapping of saltwater

ntrusion and anomalies ( Sulzbacher et al., 2012; Rasmussen et al.,

013; Chongo et al., 2015 ); and descriptions of complex hydrologi-

al systems ( Friedel et al., 2012; Gondwe et al., 2010; Meier et al.,

014 ). 

The use of AEM data in hydrogeophysical inversions (see

 Hinnell et al., 2010 ) for definitions) are rare. Gunnink and Siemon

2015 ) and He et al. (2015 ) used variogram models and transition

robabilities in a sequential indicator simulation (SIS) framework

o probabilistically model the spatial distribution of sand and clay

acies. He et al. (2015 ) applied the method to a subdomain of a

ydrological model, and extracted sand and clay information from
EM data using a threshold value determined from comparison of

EM data and lithological borehole logs. K values of the sand and

lay facies were determined subsequently through inversion of an

ntegrated hydrological model. A uniform correlation between re-

istivity and sand/clay across the large domain may be incorrect

ue to influence of for example variable pore-water conductivity

nd variable AEM data resolution with depth. 

To our knowledge this paper is the first to present a method

o estimate structure-dependent probabilistic groundwater model 

redictions (of states not used for calibration) using hydrogeophys-

cal inversion informed by an AEM data set over a large domain.

ne of the objectives of this analysis is to address the uncer-

ainty of data scarce areas in the modeled domain is addressed.

he method makes use of all primary hydrological, lithological

nd geophysical data available. The prediction uncertainty is ad-

ressed with an ensemble of subsurface model realizations that

re automatically generated from borehole information and AEM

ata. Translation between geophysical and hydrological properties

s handled through inversion for a spatially variable relationship

etween resistivity and lithological observations of clay and k -

eans cluster analysis ( Foged et al., 2014; Marker et al., 2015 ).

he number of facies (clusters) to represent the subsurface struc-

ures is determined using the hydrological data and model. Utiliz-

ng sequential indicator simulation (SIS) the categories are simu-

ated onto a regular grid; forming an ensemble of subsurface struc-

ure realizations. Hydraulic properties of each structural realization

re estimated with a groundwater model by calibrating the model

o head and flow observations. The prediction uncertainty of the

odel is estimated from the variation in the predicted well catch-

ent area within the ensemble. 

The workflow has been applied to a Danish site character-

zed by glacially formed aquifer systems. This type of Quaternary

quifer systems are of great interest for drinking water supply in

orthern European countries like the Netherlands, Northern Ger-

any, and Denmark as well as in the northern part of North

merica. 

. Materials and methods 

A complete overview of the method presented in this pa-

er is shown in Fig. 1 . The methods build on previous

ork by Christiansen et al. (2014), Foged et al. (2014) , and

arker et al. (2015) . Parts of the workflow applied in this paper

ave been described in Foged et al. (2014) and Marker et al. (2015) ,

lthough a different case study was used in these two papers.

oged et al. (2014) present the 3-dimensional clay-fraction proce-

ure along with the combined clustering of clay-fraction and resis-

ivity values. Throughout the paper the estimated parameter val-

es of the resistivity models, which have been obtained through

patially constrained 1-D inversion of the geophysical data, will

e referred to as resistivity values. Marker et al. (2015) use the

luster model deterministically (grey boxes in Fig. 1 ) to represent

roundwater model hydrostratigraphy and directly estimate K val-

es of the clusters through hydrological calibration. In this pa-

er the method is extended to create an ensemble of hydrostrati-

raphic cluster models, and the thick dashed box in Fig. 1 indicates

he novelty and the focus of this paper. We use the term ‘hydros-

ratigraphy’ to characterize a subsurface model, which is obtained

y geostatistical simulation of categorical cluster values. The units

hat make up the hydrostratigraphy are typically referred to as ‘hy-

rofacies’ . However, we use ‘hydrostratigraphy’ to make it clear

hat the entire 3-D subsurface model is used directly in a ground-

ater model. 
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Fig. 1. Overview of complete hydrogeological inversion approach. Square black-lined boxes are input data, square dash-lined boxes are model or model outputs, and diamond 

shaped boxes represent inversion or other processing steps. The two braces show where details on the first parts of the workflow can be found. The area indicated by the 

thick black dashed box is the extension of the method, which is the focus of this paper. 
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2.1. Study area 

Throughout this paper we will refer to three areas used in the

analysis: the regional area, the local area, and the focus area. The

regional area (pink dashed line in Fig. 2 ) presents the outer limits

of the groundwater model and provides the hydrological bound-

ary conditions for the embedded local area model. The ensemble

is only created for the local area (thick black line in Fig. 2 ), which

is the target area of the method presented in this paper. Finally

the probabilistic prediction results will be shown for a well in the

focus area (solid grey line in Fig. 2 ). Although emphasis is on the

local area, the data input to and model setup for the regional and

local areas are presented together in Sections 2.2 to 2.6 . The meth-

ods presented in Section 2.7 (hydrostratigraphic cluster ensemble)

are only applied to and presented for the local area. 

The regional study area covers 472 km 

2 with a local area of

45 km 

2 , and is located in the eastern part of Jutland, Denmark, see

Fig. 2 . Quaternary glacial activity has formed the near-surface geo-
ogical features and current aquifer systems of the study area. The

uaternary sediments were deposited as a consequence of move-

ents of advancing/retreating glaciers from the North/Northeast,

nd melt-water sediments were incised into the underlying thick

aleogene clays. The incised sediments make up a system of tun-

el valleys, which are oriented in several directions due to the om-

idirectional glaciations during the Pleistocene. Terrain elevation is

p to 126 mamsl (meters above mean sea level) and the 1990–2011

eriod average annual precipitation is 806 mm. The local area bor-

ers the second largest city in Denmark, Aarhus, with a popula-

ion of approximately 0.3 million people. Groundwater resources

re abstracted for drinking water supply. The largest well field (the

asted well field) has 12 pumping wells located in the center of

he local area with a total abstraction between 2 and 3 million

 

3 /year. 

A geological model of the local area is presented by

øyer et al. (2015) . The model is based on a manual interpreta-
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Fig. 2. Basemap of hydrological observations at the Kasted site. The delineation of the regional groundwater model is in dashed pink and the delineation of the local 

groundwater model is indicated with a bold black line. Head observation wells are marked with red dots, pumping wells with black dots, and the three stream discharge 

stations are marked with green dots. The catchment area of the discharge station 23.01 falls almost entirely within the local model area. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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ion of the same resistivity models and borehole information as

he hydrostratigraphical cluster models presented in this paper. 

.2. Geophysical data and inversion 

The AEM survey of the local area was conducted in August 2013

ith the SkyTEM304 system Sørensen and Auken (2004 ), where

pproximately 330 line kilometers were flown with a dense line

pacing of 100 m. The resistivity model spacing along the flight

ines is approximately 25 m. The SkyTEM data was carefully pro-

essed using the Aarhus Workbench software package following

he processing scheme described by Auken et al. (2009 ). During

he processing phase data affected by noise (due to coupling to

an-made installations and conductors) were removed. The result-

ng data positions and the subsequent 1D-resistivity model posi-

ions are shown in Fig. 3 a. The inversion was carried out in a spa-

ially constrained inversion setup ( Viezzoli et al., 2008 ) with a 1D

harp model formulation ( Viezzoli et al., 2008 ), using the Aarhus-

nv inversion code ( Auken et al., 2014 ). In a spatially constrained

nversion, a stratified geological environment is mimicked through

orizontal and vertical regularization constraints between neigh-
oring 1-D resistivity models. The sharp formulation ensures that

ertical transition between contrasting resistivity layers occurring

ver short vertical distances is rewarded in the inversion objec-

ive function, and that smooth vertical transitions are punished.

he resistivity models have been terminated individually at their

stimated depth of investigation (DOI) calculated as described by

hristiansen and Auken (2012 ). The resistivity values used in the

luster analysis are average resistivity values of fixed elevation in-

ervals. These average resistivity values are obtained by upscaling

he resistivity model values, which are obtained through inversion

f the geophysical data. See Foged et al. (2014 ) for details on how

he resistivity models have been upscaled. 

The geophysical data in the regional area consists of mainly

round based TEM and DC (direct current, a ground based geo-

hysical resistivity method) data collected during the 1990 s, and a

inor SkyTEM survey from 2003. In total, the regional area com-

rises approximately 3,0 0 0 ground based single site TEM, 7,400

ulled array TEM (PATEM ( Sørensen et al., 2005 )), 24,600 SkyTEM,

nd 225,0 0 0 pulled array continuous electrical sounding (PACES)

 Sørensen, 1996 ) resistivity models. 
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Fig. 3. Cluster variables and cluster model at −2.5 mamsl. a) Resistivity models, b) Corresponding clay-fraction values, c) Corresponding 4 cluster mode model, and d) 

Histograms of how resistivity and clay fraction values are represented by the clusters. 
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2.3. Borehole data and clay-fraction procedure 

Approximately 400 borehole logs are available in the local

model area. 63% or these boreholes are less than 35 m deep and

only 3% are deeper than 100 m. Borehole descriptions, locations,

and drill depths for the local area can be found in Høyer et al.

(2015 ). Approximately 30 0 0 boreholes are available for the regional

area with a similar drill depth distribution as the local area. 

The clay-fraction procedure is an inversion approach for spa-

tially variable translation of resistivity values into clay-fraction val-

ues, as described by Foged et al. (2014 ). Observations of sand and

clay from borehole logs are used as observations in the inversion.

Clay-fraction values, observed and simulated, are defined in fixed

elevation intervals, meaning that a clay-fraction value is the ac-

cumulated amount of clay in an elevation interval. The transla-

tion is carried out by a two-parameter translator function that is

allowed to vary in the 3-D model grid. The observations are ob-

tained through interpretation of lithological borehole logs: clayey

tills and fat clays for example are interpreted as ‘clay’, while sand

and gravel at varying coarseness are interpreted as ‘sand’ . The

misfit between simulated and observed clay-fraction values at each

elevation interval along with regularization terms in the form of

spatial constraints make up the objective function that guides the

inversion. Fig. 3 b shows the resulting clay-fraction values of the

translated resistivity values in Fig. 3 a. 

2.4. Hydrological data 

Base-flow estimates were obtained from three sub-catchments

( Fig. 2 ), and their averaged base flows were utilized in the steady

state inversion of the hydrological model. Average base flows

are estimated using the automatic filter approach presented by

Arnold and Allen (1999 ) and Arnold et al. (1995 ). 

Steady state hydraulic heads were obtained from a total of 506

measurements within the regional model area (see definition in
ig. 2 ). 106 of these measurements were collected in the 62 wells

hat are screened in multiple aquifers, while 336 wells have a sin-

le screening interval and thus a single steady state head esti-

ate. Within the local groundwater model area, a total of 94 mea-

urements were available. 19 of the measurements were collected

rom the 11 wells that are screened at multiple depths, while 75

f the wells have a single screening interval. Uncertainty of each

ead estimate was evaluated taking into account factors such as:

he source of position coordinates (GPS, topographic map etc.); the

ethod used to determine the reference level of a borehole; the

ength and temporal variation of time series used for estimating

teady state heads; and the quality of the borehole (ranging from

oreholes being part of the national groundwater monitoring pro-

ram to old wells used for single household water supply). The

stimated errors on observed head range between 2 m and 5 m,

lease see Henriksen and Sonnenborg (2005 ) and Appendix A in

arker et al. (2015 ) for details on the method. 

.5. Groundwater model and calibration 

The groundwater model is a steady-state MODFLOW-USG

 Panday et al., 2015 ) model with the 50 m discretized local area

mbedded in the 100 m discretized regional are (see Fig. 2 for

elineations). MODFLOW-USG is a control volume finite differ-

nce formulation of the well-known groundwater flow model code

ODFLOW ( Harbaugh, 2005 ). No-flow boundaries and constant

ead boundaries are defined for in-land and sea boundaries re-

pectively. The model is forced by spatially variable recharge.

treams interact with the groundwater through a conductance pa-

ameter, which is also spatially variable. Recharge and conductance

stimates are obtained by scaling the values used in the Danish

ational water resources model ( Henriksen et al., 2003 ). Drains are

efined throughout the domain and are represented by two con-

uctance values; one for local area and one for the regional area

hus accounting for the different grid cell sizes. Stream discharge is
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Fig. 4. Parsimonious cluster model selection. Local area groundwater model cali- 

bration performance as a function of number of cluster to represent the subsurface, 

ranging from a homogeneous subsurface (1) to an 8-cluster model (8). 

Table 1 

Estimated K values in md −1 of the clusters in 2-cluster, 3-cluster and 4-cluster 

models. 

K1 K2 K3 K4 

2-cl. model 4 .8 3 .1 ×10 −2 

3-cl. model 6 .0 4 .6 ×10 −2 2 .9 ×10 −2 

4-cl. model 6 .6 3 .6 1 .3 ·10 −2 8 .6 ×10 −5 ∗

∗ Value fixed during calibration 
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m  
alculated as the sum of water drained by drains and the ground-

ater lost to the streams. Three stream catchments are defined for

he regional model area. 

The groundwater model calibration is performed using the local

on-linear least-squares method implemented in PEST ( Doherty J.,

010 ). The inversion minimizes the misfit, �, between simulated

ead and base flow, h sim 

, q sim 

, and observed head and base flow,

 obs , q obs , defined as: 

= 

N h ∑ 

i =1 

w i (( h sim,i − h obs,i ) / σh,i ) 
2 + 

N q ∑ 

i =1 

(( q sim,i − q obs,i ) / σq,i ) 
2 

(1) 

Contributions are weighted according to estimates of observa-

ion variances, σ 2 . The procedure for estimating the variance (er-

or) on head observations is described in Section 2.4 . Observation

orrelations are not considered, because these are not trivial to de-

ermine. To account for overrepresentation of wells in some areas,

ells located in areas with a large number of wells have been as-

igned a lower weight, w i . 

Initially the entire model domain (regional and local area) is

alibrated. The hydrostratigraphy for this calibration is built using

he k -means cluster approach by Marker et al. (2015 ). All avail-

ble resistivity models and clay-fraction models for the local and

egional areas are used for the subsurface clustering. The calibra-

ion utilizes all head observations in the study area and base-flow

stimates calculated from the three stream discharge stations, re-

pectively red dots and green dots in Fig. 2 . Calibration parame-

ers are horizontal hydraulic conductivity of each cluster, a multi-

lier of the spatially variable stream bed leakage, and a recharge

ultiplier of spatially variable recharge estimate. Anisotropy of

/10 was fixed between horizontal and vertical hydraulic conduc-

ivity values. From the calibration of the regional model an aver-

ge recharge was estimated to 282 mm/year (the yearly precipita-

ion is 806 mm/year), which is reasonable compared to recharge

stimates presented by Henriksen et al. (2003 ), and the estimated

85 mm/yr obtained using an integrated hydrological model in a

revious analysis of the groundwater resources, which is presented

n a report by Søndergaard et al. (2004 ). The regionally calibrated

echarge was fixed for the local model calibration. 

For the local area model calibrations the estimated hydraulic

arameters of the regional model are fixed. The local calibration

tilizes only head observations in the local area and the base-flow

stimate for discharge station 23.01 (base-flow estimates for sta-

ions 21.57 and 21.113 are also included in the calibration although

ith small contribution as the weights are lowered). Calibration

arameters are horizontal hydraulic conductivity of each cluster

nd a multiplier of the spatially variable stream bed leakage. 

The parsimonious number of clusters to represent the subsur-

ace of the local area groundwater model is determined by cali-

rating hydraulic conductivities of models containing 1 to 8 clus-

ers, as was done in Marker et al. (2015) . Fig. 4 shows the calibra-

ion objective function as a function of the number of clusters in

 hydrostratigraphic cluster model. ‘1’ is a homogeneous subsur-

ace. The cluster models are generated according to the approach

resented in the subsequent Section 2.7 as modes of a given en-

emble. For cluster models with 4 or more clusters the hydraulic

roperties of the ‘last cluster’ are fixed at values corresponding

o impermeable clay (thus representing the Paleogene clay under-

ying Quaternary deposits, see study area description). With only

ne degree of freedom difference between the 2-cluster and the

-cluster model combined with more than 10% decrease in the ob-

ective function, the 4-cluster model was selected as the parsimo-

ious model. 

As the subsurface is divided into an increasing number of clus-

ers, not only are new hydrostratigraphic interfaces introduced but

lso existing interfaces are modified. This may explain the poorer
t of the 3-cluster model in comparison to the 2-cluster model, as

een in Fig. 4 . The estimated K values of the 2-cluster, 3-cluster

nd 4-cluster models are presented in Table 1 . K2 in the 3-cluster

odel coincides spatially with K1 and K2 in the 2-cluster model

nd with K2 and K3 in the 4-cluster model. However, in terms of

 value, K2 in the 3-cluster model is similar to K2 in the 2-cluster

odel and K3 in the 4-cluster model. I.e. the areas/parts of K2 in

he 3-cluster model that spatially coincide with K1 in the 2-cluster

odel and K2 in the 4-cluster model are represented with an inap-

ropriate K value. This indicates that the relatively poorer fit of the

-cluster model is likely due to a hydrologically unfavorable subdi-

ision of the subsurface. Some parts of the domain, which have a

igh hydraulic conductivity, have been grouped with other parts,

hich have a low hydraulic conductivity. 

.6. Particle tracking 

The uncertainty of a well catchment area was estimated using

article tracking as implemented in mod-PATH3DU ( Muffels et al.,

014 ). A catchment area was estimated using backward tracking.

articles were released from the computational layer where the

umping well is screened. The particles are placed randomly inside

 cylinder with a diameter of 25 m and a length corresponding to

he computational layer thickness. The particles were tracked back-

ard until termination at the ground surface. The catchment area

as subsequently estimated by locating particles that terminated

ithin cells of a 50 m by 50 m grid on the surface. Each cell on the

urface thereby contributed to the well catchment if a minimum

f one particle terminated within it. Due to computational limita-

ions, the number of particles released was limited to 10,0 0 0. To

ecure model mass balance, the size of the well catchment area

ust be adjusted, such that the amount of recharge within the

atchment corresponds to the amount of water abstracted from

he well. The size and the shape of the seeding volume were ad-

usted by performing a mass balance check on the estimated catch-

ent area, until a reasonable discrepancy was obtained. This seed-
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Fig. 5. Horizontal sample and fitted indicator variograms for the four clusters of 

the 4-cluster model. 
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ing volume was then used for the remaining analysis. Well catch-

ment probabilities were estimated by averaging over catchments

estimated using all realizations of the input hydrostratigraphy. 

2.7. Ensemble of hydrostratigraphic cluster models 

An ensemble of equally probable hydrostratigraphical models

for the local area is built. The resistivity values and the clay-

fraction values form the basis for the ensemble of structural mod-

els. The principal components of the spatially coinciding resistivity

values and clay-fraction values are subsequently grouped into clus-

ters in a k -means cluster analysis. This approach is presented in

Marker et al. (2015 ). In this paper, the cluster analysis differs from

the approach presented in Marker et al. (2015 ) in two ways: a) the

cluster analysis is performed at the geophysical sounding sites at

the regular elevation intervals defined in the clay-fraction proce-

dure (i.e. the cluster analysis is carried out in 3-D for the entire

domain and the input variables are scattered in xy and regularly

distributed in z ) and b) clusters are simulated (not kriged) onto a

regular grid. The changes made to the approach remove smooth-

ing effects that originate from kriging resistivity values and clay-

fraction values. A 5 m depth interval at −2.5 mamsl of the 4-cluster

mode model is shown in Fig. 3 c. Fig. 3 d illustrates how the clusters

are represented in terms of resistivity values and clay-fraction val-

ues. The clusters are sorted by average corresponding clay-fraction

value, i.e. cluster 1 has the lowest clay-fraction value and cluster 4

has the largest clay-fraction value, which is also clear from Fig. 3 d.

Clusters 1 and 2 have low clay-fraction values and are discrimi-

nated by the clay-fraction information while they cannot be dis-

criminated from resistivity values. Clusters 3 and 4 predominantly

have clay-fraction values of 1 while the two clusters are clearly dif-

ferent in terms of resistivity values. Cluster 4 is well-defined with

resistivity values below 10 Ω m and represents the thick Paleogene

clays into which the tunnel valley aquifer systems, of contrasting

resistive material, are incised. The resistivity values of Paleogene

clays of Danish buried valley systems have been reported in previ-

ous studies: Jørgensen et al. (2003a) report values between 1 Ω m

and 12 Ω m; Jørgensen et al. (2003b) present values between 1 Ω m

and 10 Ω m; and Høyer et al. (2015) reports values below 12 Ω m. 

The ensemble of cluster models is generated as realizations uti-

lizing sequential indicator simulation (SIS) ( Gómez-Hernández and

Srivastava, 1990 ). The sequential indicator simulation code, SISIM,

from the geostatistical package GSLIB ( Deutsch and Journel, 1998 )

was used. The algorithm simulates scattered categorical data onto

a regular grid using a variogram model for each category. The

probability of occurrence of a category separated by a distance h

is described by its sample indicator semi variance γ s ( h ): 

γs (h ) = 1 / (2 N(h )) 

N(h ) ∑ 

i 

(I(i ) − I(i + h )) 
2 

(2)

where I ( i ) is the indicator value at point i and N ( h ) is the number

of observation pairs for the separation distance h . I.e. the indica-

tor variogram value 2 γ s ( h ) measures how often two locations a

distance h apart belong to different categories [47, p35 Goovaerts

(1997) ]. 

In terms of the xy plane, the SIS simulation grid and the numer-

ical groundwater model layers are the same. The SIS grid however

is discretized into regular 5 m intervals in the vertical, whereas

the numerical groundwater model consists of 11 layers of vary-

ing thickness. The upscaling from the SIS grid to the numerical

groundwater model layers is handled using the MODFLOW-USG

utility geo2mfusg.exe ( Vilhelmsen, 2012 ), which calculates horizon-

tal and vertical hydraulic conductivities respectively as arithmetic

and geometric means. 

Using SIS in combination with geophysical data has been

demonstrated in Gómez-Hernández and Wen (1994) and
lise et al. (2009) . Using geostatistical simulation with geo-

hysical models introduces the issue of over-conditioning if the

patially, especially horizontally, correlated geophysical models are

ot treated properly ( Koch et al., 2014 ). The method presented in

his paper automatically solves this issue by combining geophys-

cal and borehole information into clusters, and performing the

imulation on clusters instead of directly on geophysical models. 

Contrary to two-point statistics, multiple point statistics (MPS)

as the advantage of reproducing realistic geological features, such

s channel structures, see review by Linde et al. (2015 ) and refer-

nces therein. Due to the dense coverage of AEM data, in which

ominating geological features are already captured (for example

unnel valley systems), the simpler two-point statistical SIS ap-

roach using variogram models was chosen in this paper. Also

PS, as described for example by Ronayne et al. (2008) , is compu-

ationally very demanding. Computational resources in this paper

ere spent on hydrological inversion for a large number of hydros-

ratigraphic realizations. 

Exponential indicator variogram models are fitted to the exper-

mental variograms of each cluster. Fig. 5 shows experimental var-

ograms as well as fitted variogram models for each cluster in the

-cluster model. Nugget models represent uncertainty in the data

r within grid uncertainty as random error. We have not included

ugget effects in the modeled variograms because nugget effects

ould result in random checkerboard patterns in the simulated

odels, which are not necessarily hydrostratigraphically meaning-

ul. Data uncertainty should represent the uncertainty in the esti-

ated resistivity model values and clay-fraction values. Thus, fol-

owing the strategy of this paper, data uncertainty must be ad-

ressed prior to clustering. This paper has not addressed uncer-

ainty in the estimated resistivity model values and clay-fraction

alues, although this may be an important component of uncer-

ainty. An automatic variogram fitting routine ( Pebesma, 2004 ) was

sed to fit the 36 horizontal variogram models (this covers all clus-

er of the cluster mode models shown in Fig. 4 ), some of which

ere inspected manually to verify and check reasonability of the

t. The sill of the corresponding vertical variogram model is the

ame as the horizontal sill while the range was obtained by scal-

ng the horizontal range by a factor ranging between 10 and 20,



P.A. Marker et al. / Advances in Water Resources 103 (2017) 86–98 93 

Fig. 6. Eight realizations of the ensemble, shown for a 5 m depth interval at −2.5 mamsl of the focus area. The location of the focus area is shown on Fig. 2 . 
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hich was determined from manual inspection. Automatic fitting

outines for variograms do not necessarily guarantee best repre-

entation of spatial properties (length mean, length standard devi-

tion, and proportion) of the categories, nor that the correct model

tructure has been chosen ( Ritzi, 20 0 0 ). Because we do not explic-

tly interpret the characteristics of the clusters (in terms of geology,

ithology or hydrostratigraphy), a manual selection of a variogram

odel based on background knowledge about the spatial behavior

f the modeled phenomenon is in this case not straightforward. 

The ensemble of structure models thus captures the uncertainty

riginating from incomplete data coverage. Resistivity values and

lay-fractions value are used deterministically and the stochastic

odels are generated as realizations to fill out gaps in the data

overage. 

. Results and discussion 

The hydrological analysis is based on 75 realizations of hydros-

ratigraphical cluster models. Other studies that report hydrological

odels and analyses based on geostatistically generated subsurface

ealizations have used ensembles with a number of realizations

anging from 10 to 200 ( Gómez-Hernández, 1994 ; Gunnink and

iemon, 2015 ; He et al., 2015 ; Goovaerts, 1999 ). Realizations of

he subsurface structures will be shown for the focus area. Parti-

le tracking will be considered for pumping well 89.1221, which is

ocated in the Kasted well field ( Fig. 11 ). 

The uncertainty of hydrological predictions originating from

ubsurface structural uncertainty is assessed through the predic-

ion of the well catchment area for pumping well 89.1221. The re-

ult does not represent an average level of uncertainty for this type

f prediction; the calculated uncertainty is valid for the selected

ell only. 

.1. Ensemble realizations 

A horizontal slice of the focus area at −2.5 mamsl for 8 real-

zations is shown in Fig. 6 a-h. A relatively large part of the focus
rea is not covered by AEM data. The realizations show variation in

he simulated structure of a SW-NE trending valley (black arrow in

ig. 6 a). The valley is either connected or disconnected with clus-

er 1 (in 2-D as shown here). The presence of a valley however is

epresented throughout the 75 realizations; the variability simu-

ated using the indicator variograms thus represents fine scale fea-

ures. Although cluster 1 has the largest variogram range and sill

alues, cluster 1 is interrupted by cluster 2 and cluster 3. Cluster 2

s more discontinuous in space, which is also clear from the vari-

gram. The composition of the valley fill with respect to cluster 1,

luster 2, and cluster 3 and the area marked by the white arrow

n Fig. 6 a varies throughout the realizations. Although the effec-

ive hydraulic connectivity of the entire valley in three dimensions

ight not vary between realizations, local flow patterns are likely

o differ due to differences in spatial orientation of cluster 1, clus-

er 2, and cluster 3. Apart from groups of boreholes at the corners

f the focus area, borehole information in the focus area includes

 boreholes of 40 to 80 m depth and 4 boreholes of 15 to 40 m

epth, and the remaining boreholes are shallow wells between 0

nd 15 m depth. See Høyer et al. (2015 ) for a map of the boreholes.

The hydrological and geological interpretation of geophysical re-

istivity models is known to be non-unique, because formation re-

istivity depends on both lithology and porewater quality, see for

xample Barfod et al. (2016 ) and Purvance and Andricevic (20 0 0 ).

his issue must be considered in any hydrogeological application of

eophysical data or models. In a manual geological model building

rocess, a modeler depends on borehole information to interpret

he geophysical models. In the cluster approach, borehole infor-

ation is incorporated through the clay-fraction procedure. When

ithological information is available, the clay-fraction value is fixed

or the given location. Fig. 3 d shows an example of this. Clusters 1

nd 2 overlap entirely with respect to resistivity values, while clus-

ers 1 and 2 are clearly separated with respect to clay-fraction val-

es. To resolve non-uniqueness the model parameters in the trans-

ator function will be adjusted in order to translate the resistivity

odel into a clay-fraction value similar to the observed. In areas
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Fig. 7. Estimated hydraulic conductivity values (black lines) for 60 of the 75 calibrated models and associated 95% confidence intervals (blue lines). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. RMSE and ME for head and percentage misfit for base flow. The black line 

in the uppermost panel shows RMSE in meters; in the lower panel the blue line 

is ME in meters and the misfit for base flow in % is shown with the red line. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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with little or no borehole information, it is difficult to correctly

attribute resistivity variations to lithology/porewater quality varia-

tions. This naturally applies for cognitive as well as automatic ap-

proaches. However, little variation of pore-water quality has been

reported for the Kasted area ( Søndergaard et al., 2004 ). 

The cluster approach is here presented for a geological setting

where the main aquifer structures are determined by the distri-

bution of sand, gravel, till, and clay sediments. We are able to

map these structures with EM methods and we can use the clay-

fraction procedure to handle non-uniqueness related to the distri-

bution of sand/clay sediments. The method presented in this paper

may not be directly transferable to different geological settings, for

example fractured limestone aquifers. 

3.2. Results of local calibration 

The calibrated hydraulic conductivity values of the clusters are

5.2 to 7.0 md 

−1 , 0.85 to 3.5 md 

−1 and 8.6 10 −4 to 6.9 10 −3 md 

−1 

for cluster 1, cluster 2, and cluster 3 respectively. The estimated K

values and the corresponding 95% confidence intervals for 60 out

of the 75 realizations are presented in Fig. 7 . It was only possible

to calculate parameter covariance matrices for 60 realizations. 

The RMSE and ME of simulated head and the percentage error

of simulated base flow at station 23.01 for the 75 realizations is

displayed in Fig. 8 . RMSE values (black line) fluctuate around 5.5 m

and ME values (blue line) fluctuate around 0 m, with the exception

of a few outliers. The misfit for base flow (red line) is between 0%

and −4% for the majority of the realizations. 

Calibration results with respect to head are shown in Fig. 9 b

with a scatter plot of observed versus simulated hydraulic head.

The median of the 75 realizations is illustrated with a red cross

and the minimum and maximum values are illustrated with the

black vertical lines. The blue dashed lines indicate a 5 m misfit to

observed heads. 

Fig. 9 a shows a map of the absolute median and standard de-

viation of the misfits of the 75 calibrated models. Red, yellow and

green dots are observations associated with a low to intermedi-

ate median misfit. Light and dark blue dots overlapping with small

grey dots (small standard deviation) indicate observations that are

not fitted well throughout the ensemble. 

Observation A, see Fig. 9 a, is located in an area with little AEM

data, but the borehole is deep and there is thus lithological infor-

mation. The ensemble is constrained by lithological information in

this area, which explains the agreement between the realizations.

The borehole is one out of two deep wells in the area, which is

otherwise represented by shallow boreholes between 0 and 15 m

depths. The large misfit of A may therefore be due to the lack of

surrounding structural information, and thus an uncertain struc-
ural representation of the area. The observations in group B in

ig. 9 a have a low weight in the groundwater calibration. This can

xplain why the realizations fail to fit these observations, despite

f good AEM and borehole coverage in the area. The observations

n group C are found in an area with a good AEM and borehole

overage. The biased misfit in the realizations is potentially related

o structures misinterpreted or unaccounted for in the model. 

.3. Well catchment area predictions 

Convergence of the probabilistic catchment area as a function

f the number of realizations is illustrated Fig. 10 . 

Fig. 11 shows the probabilistic well catchment area of well

9.1221 based on the 75 hydrostratigraphic realizations. The map

s produced by generating a binary grid map (50 m by 50 m grid

ize) for each realization; 1 indicates that one or more particles

each the grid cell, and 0 indicates that no particles reach the grid

ell. The 75 binary grid maps are combined in a 2-D histogram.

he map is normalized to express occurrence frequency where 1 is

00% and 0 is 0%. Colors of the probabilistic catchment correspond

pproximately to: light blue 85% (64 out of 75 realizations); cyan

3% (47 out of 75 realizations); yellow 30% (25 out of 75 realiza-
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Fig. 9. a) Map of the absolute median misfit and standard deviation of the ensemble, b) Simulated versus observed hydraulic head. 

Fig. 10. Area covered by probabilistic catchment area for well 89.1221 as a function 

the number of realizations. 
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Fig. 11. Probabilistic catchment area for pumping well 89.1221. The star indicates 

the location of the pumping well. Green dots are the particle endpoint locations 

obtained with the manual geological model. Black dots are AEM sounding sites. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

w  

u  
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t  
ions); orange 15%; red 2% (2 out of 75 realizations). Two realiza-

ions contribute to the catchment grid nodes in the area close to

he south-western border of the local model area. The initial par-

icle locations, which are determined at random, have insignificant

ffect on the resulting catchment delineation. This was checked by

omparing the probabilistic catchment areas resulting from three

ets of random particle starting locations. 

A local groundwater model calibration was performed using the

anually constructed geology of the local area ( Høyer et al., 2015 ).

he resulting well catchment area is shown with green dots in

ig. 11 b. The groundwater model and calibration setup, as well as

article tracking routine, used for the manually constructed ge-

logy are identical to those used for the cluster ensemble. The

anually constructed geology is based on the same borehole in-

ormation and resistivity models. Aside from added expert knowl-

dge, the geologists processes and interprets the borehole informa-

ion and resistivity models in a manner very different from that of

he automatic clustering routine. We therefore use the well catch-

ent area predicted with the groundwater model informed with

he manually constructed geology as a bias check for the ensemble

redictions. 

64 out of the 75 realizations predict that the well catchment

rea includes area A, see Fig. 11 . This area is not included in the
ell catchment area, when the manually constructed geology is

sed to predict the well catchment area. Borehole information in

he well catchment area is very limited. Apart from two boreholes

hat are between 40 to 80 m deep, the few remaining boreholes
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Fig. 12. Head misfits and well catchment prediction for selected groups of realizations. a1), b1) and c1) show head misfits, and a2), b2), and c2) show the corresponding 

catchment predictions for each of the three groups of realizations. 

Fig. 13. Probabilistic representations of the four clusters, shown for a cross section through the center of the entire domain. The profile is oriented W-E. A value of 1 

indicates that the grid cell belongs to the given cluster across all 75 realizations. 

 

 

 

 

 

 

 

 

(  

a  

i  

w  

o  

s  

s  

D  
in the area are between 0 to 15 m deep (see Fig. 1 in Høyer et al.,

2015 ). AEM data in the area is missing too due the local noise con-

ditions. Thus, the spatial orientation of aquifer material is uncer-

tain in this part of the domain. Area B is also not predicted by the

manual geology. This area, although covered with AEM data, has

no borehole information to interpret the lithology. 

Nine realizations do not predict any particles for area B, while

another ten realizations predict only a few particles (or grid cells)

for area B. 
Fig. 12 shows head misfits (1) and predicted catchment area

2) for three groups of realizations. Fig. 12 a is the group of nine re-

lizations that do not predict the well catchment to area B, Fig. 12 b

s the group of ten realizations that predict a minor part of the

ell catchment to extend to area B, while Fig. 12 c is the group

f all realizations not including group a and group b. With re-

pect to the overall correspondence between simulated and ob-

erved heads, Fig. 12 a 1 and Fig. 12 c 1 resemble Fig. 9 b the most.

espite of the similarity between group a and group c in terms of
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imulated hydraulic heads, group a and group c disagree whether

he catchment includes area B or not. We cannot discriminate the

odels in group a and group c in terms of their ability to fit hy-

raulic head observations, but the two groups shows a clear differ-

nce in the predicted catchment area for well 89.1221. This illus-

rates that two models which have similar calibration performance

an produce significantly different predictions. 

Fig. 13 shows cluster occurrence probabilities of a W-E trend-

ng cross section through the domain at the location of pumping

ell 89.1221. The panels illustrate cluster 1 to cluster 4. Colors in-

icate the probability of a cluster occurring in a given grid node

cross the 75 realizations; given a value 1 (dark red areas) a grid

ode belongs to the same cluster throughout the 75 realizations.

lurred colors indicate uncertain areas due to data gaps. There is

o direct relationship between the uncertainty of the hydrostrati-

raphic model and the resulting well catchment uncertainty. 

. Conclusions 

This paper aims to demonstrate a sequential hydrogeophysi-

al inversion approach to estimate the predictive uncertainty of

 groundwater model, which originates from subsurface structural

ncertainty. The workflow integrates a large scale AEM dataset and

orehole information directly into the hydrological modeling pro-

ess. The demonstration is based on the delineation of a prob-

bilistic well catchment area. The paper shows an example for

n aquifer system in Denmark, which is formed by glacial activ-

ty, and results are compared to those obtained from a manually

enerated geological model. The workflow is a unique and semi-

utomatic hydrogeophysical approach to structure-dependent hy-

rological uncertainty estimation. 

We generated the ensemble of 75 hydrostratigraphic models us-

ng SIS based on indicator variograms of scattered categorical clus-

er. The clusters were obtained through a k-means cluster anal-

sis on resistivity values (obtained from inversion of AEM data)

nd clay-fraction values. A 45 km 

2 steady-state groundwater model

as used for the analysis. Each realization of the ensemble was

alibrated separately against observed hydraulic head and baseflow

stimates. Overall, hydraulic heads were fitted to an RMSE of 5.5 m

nd baseflow was fitted to between 0 and −4 percent error. 

Because the main geological features (the system of tunnel

alley aquifers) are captured in the AEM data, these features

re maintained throughout the ensemble of hydrostratigraphi-

al models. The variation between realizations represents discon-

ection/connection of conductive/impermeable aquifer material at

maller scales. This variation results in predicted well catchment

reas that are similar in terms of the overall shape and location,

ut with large local differences between the realizations. As a re-

ult the size of the delineated catchment area depends of the cer-

ainty/probability with which the catchment is wished to be delin-

ated. For example, area A is included in the catchment area in 64

ut of the 75 realizations. A comparison of three subgroups of the

nsemble confirmed that differentiation of realizations in terms of

alibration data (head observations) does not reflect variation in

he predicted well catchment area between the realizations. 

The probabilistic catchment area includes the catchment area

hat is predicted when the manually constructed geology is used

n the groundwater model. The overlap of respectively the deter-

inistic approach and the stochastic approach to model the hy-

rostratigraphy indicates that the main features of the aquifer sys-

ems have been captured by the ensemble. Area A and area B are

ot included in the well catchment area of the manually gener-

ted geology. There is no borehole information in area B. The deter-

inistic model reflects one interpretation of the resistivity models,

hich results in area B not being included in the catchment area,
hereas the ensemble reflects the possibility that the catchment

rea includes area B. 
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