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ABSTRACT

The induced polarization phenomenon, both in time domain and frequency domain, is
often parameterised using the empirical Cole—Cole model. To improve the resolution
of model parameters and to decrease the parameter correlations in the inversion
process of induced polarization data, we suggest here three re-parameterisations of the
Cole-Cole model, namely the maximum phase angle Cole—Cole model, the maximum
imaginary conductivity Cole—Cole model, and the minimum imaginary resistivity
Cole-Cole model. The maximum phase angle Cole—Cole model uses the maximum
phase ¢,,,, and the inverse of the phase peak frequency, 7, instead of the intrinsic
charge-ability 77, and the time constant adopted in the classic Cole-Cole model. The
maximum imaginary conductivity Cole-Cole model uses the maximum imaginary

conductivity o/, instead of m, and the time constant 7, of the Cole—~Cole model

max

in its conductivity form. The minimum imaginary resistivity Cole—~Cole model uses

4
min

the minimum imaginary resistivity o, instead of 72, and the time constant z, of the
Cole—Cole model in its resistivity form.

The effects of the three re-parameterisations have been tested on synthetic time-
domain and frequency-domain data using a Markov chain Monte Carlo inversion
method, which allows for easy quantification of parameter uncertainty, and on field
data using 2D gradient-based inversion. In comparison with the classic Cole-Cole
model, it was found that for all the three re-parameterisations, the model parame-
ters are less correlated with each other and, consequently, better resolved for both
time-domain and frequency-domain data. The increase in model resolution is par-
ticularly significant for models that are poorly resolved using the classic Cole-Cole
parameterisation, for instance, for low values of the frequency exponent or with low
signal-to-noise ratio. In general, this leads to a significantly deeper depth of inves-

"

tigation for the ¢, o/, and p/,,, parameters, when compared with the classic
m, parameter, which is shown with a field example. We believe that the use of re-
parameterisations for inverting field data will contribute to narrow the gap between

induced polarization theory, laboratory findings, and field applications.

INTRODUCTION characterisation of lithology and soil types (e.g., Slater and
Lesmes 2002; Kemna, Binley, and Slater 2004; Johansson
et al. 2016; Maurya et al. 2016) and characterisation of
contaminated sites and landfills (e.g., Vanhala 1997; Leroux,
Dahlin, and Svensson 2007; Gazoty et al. 2012; Johansson,
Fiandaca, and Dahlin 2015). Studies have also been inves-
tigating the link between the IP effect and the hydraulic
properties of the subsurface (e.g., Borner, Schopper, and
Weller 1996; Binley et al. 2005; Weller et al. 2015; Nordsiek
*E-mail: linemeldgaard@geo.au.dk etal. 2016).

The induced polarization (IP) method is a geophysical tech-
nique providing direct sensitivity to the electrical properties
of the subsurface at the interface between the rock matrix and
the wetting fluid. The method was originally used for mineral
exploration, but today, it is frequently applied in environ-

mental surveys where the applications include mapping and
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In time domain (TD), the IP phenomenon manifests itself
as a transient potential rise/decay following the switch on/off
of an electric current induced through a medium. In frequency
domain (FD), this corresponds to a phase shift between the
applied current and the arising potential. The IP effect of a ma-
terial can thus be described by a frequency-dependent complex
electrical resistivity. However, no universal physical model is
available to describe the effect and IP is often parameterised
using phenomenological models.

The classic Debye model describes the simplest form of a
dielectric relaxation response to an alternating current. Cole
and Cole (1941) extended the Debye model to account for
new experimental observations on different materials. The
original Cole~Cole model, expressed in terms of a complex
dielectric constant, was later rewritten by Pelton et al. (1978)
to describe the complex resistivity response of mineralised
rocks. A complex conductivity form of the original Cole-Cole
model is often encountered in literature as well (e.g., Tarasov
and Titov 2013).

Today, the Cole-Cole model (in resistivity or conduc-
tivity form) is one of the most prevailing models used for
parameterisation and inversion of TD IP data (e.g., Yuval and
Oldenburg 1997; Hénig and Tezkan 2007; Fiandaca et al.
2012), as well as FD IP data (e.g., Yoshioka and Zhdanov
20035; Loke, Chambers, and Ogilvy 2006).

Madsen et al. (2017) presented a sensitivity analysis of
Cole—Cole parameters retrieved from TD IP data. In this study,
the Cole—Cole model (resistivity form) was used in terms of
the following parameters: the direct current resistivity (o), the
intrinsic chargeability (m1,) as described by Seigel (1959), the
relaxation time (z,), and the frequency exponent (C). Here,
the 7, symbol is used instead of the classic 7 symbol for stress-
ing the fact that 7, refers to the resistivity Cole-Cole model.

The sensitivity analysis proved that spectral Cole-Cole
parameters can be retrieved from TD IP data when using
fulldecay data and an acquisition range above 2.5 decades
in time and that the resolution of the Cole-Cole parameters
decreases significantly for small values of C and for values
of 7, far outside the acquisition range (Madsen et al. 2017).
Furthermore, a strong correlation between 1, and C was de-
tected in both synthetic generated data and field data. The
correlation between 1, and C has also been detected from
inversion of FD IP data (Bérubé et al. 2017).

To improve the model resolution retrieved from inver-
sion of IP data, we suggest three re-parameterisations of the
Cole—Cole model: the maximum phase angle (MPA) Cole-
Cole model, the maximum imaginary conductivity (MIC)
Cole-Cole model, and the Minimum Imaginary Resistiv-
ity (MIR) Cole-Cole model. The sensitivity of the classic

and the new Cole-Cole model parameters are compared us-
ing Markov chain Monte Carlo (MCMC) inversion, which
allows us to study the posterior probability distributions of
each parameter and quantify uncertainties without lineari-
sation. We show that models, which are poorly resolved
from inversion with the classic Cole-Cole model (e.g., due to
low signal-to-noise ratio) can be resolved well with the new
re-parameterisations and that the re-parameterisations work
equally well for TD and FDIP data. In addition, we present a
field example that shows that gradient-based inversions ben-
efit from the re-parameterisations as well and consequently
obtain a significantly deeper depth of investigation.

RE-PARAMETRISATIONS OF COLE-COLE

The Cole-Cole model describing the complex resistivity is
defined as follows (Pelton et al. 1978):

- 1
plw) = p'(w) +ip" (@) = py |:1—m0 (1_1+(1wl},)()i| (1)

where p,, m,, 7,, and C are the previously described Cole—

p’
Cole parameters, = 2nf is the angular frequency, and i is
the imaginary unit. The model space is thus defined as follows:

mresistivity Cole—Cole = {10()7 my, Ip’ C} (2)

Alternatively, the Cole-~Cole model can also be presented
in its conductivity form (e.g., Tarasov and Titov 2013), as
follows:

1
6 () =o'() +i0"(w) = oy [1 1 T(’)ﬂo (1 1+ (ot )Cﬂ 0

with the corresponding model space defined as follows:

m = {007 My, Ty s C} (4)

conductivity Cole—Cole

The conductivity and resistivity Cole—Cole models (CCC and
RCC, respectively) are identical, i.e., 6(w) = 1/p(w), when
the respective relaxation times 7, and 7, obey the following

relation:

T, =1, (1—m)"C (5)

a
The inverse of 7, represents the angular frequency of the max-
imum of the imaginary conductivity, as follows:

o =0"(0=1/1,), (6)

max

whereas the inverse of 7, represents the angular frequency of

the minimum of the imaginary resistivity, as follows:

Pmin = (@0 =1/7,). (7)

Figure 1 shows the absolute value of the complex resistivity
||, the phase of the complex conductivity ¢, the imaginary
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Figure 1 Cole-Cole model defined by py=100Qm, m, =
500 mV/V,t,=0.1s, and C = 0.2. (a) Amplitude of the
complex resistivity; (b) phase of the complex conductivity; (c)
imaginary conductivity; (d) imaginary resistivity.

conductivity o”, and the imaginary resistivity p” of the Cole-
Cole model as a function of frequency for the model defined
by py = 100 Qm, m, = 500 mV/V, 7, =0.1s,and C=0.2.
The high m,-value was chosen to emphasise the frequency
variation of the spectrum.

The phase of the complex conductivity, ¢(w) (Fig. 1b),
can be defined in terms of both equation (1) and equation
(3), so

oo =tan”t (28} = —eant (221, (3)
o'(w) P

The phase reaches a maximum, ¢, at an angular frequency

w, = 1z, (Fig. 1b), as follows:

(Y ()
Pres = tan (G,(l/rw»_ tan <p’<1/r¢>>’ ©)

where the relaxation time, 7, is linked to 7, and z, through
the other Cole-Cole parameters m3, and C, as follows:

7, =7, (1= )¢ = 7, - (1= )2, (10)

The differences among 7, 7,,, and 7, increase with an
increase of m; and/or with a decrease of C. Furthermore.

” and O_//

max m

Gmaxs as well as o, > increases with 72, and C. The

dependence of the phase shift on both 7, and C is the main
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reason for the parameter correlations described by Madsen
et al. (2017) and Bérubé et al. (2017), as depicted in Fig. 2. In
fact, with frequency ranges below 4 decades. which is typical
in field IP surveying; similar variations in the phase spectrum
can be induced by decreasing 1, (magenta line, Fig. 2a) or
C (blue line, Fig. 2a). A similar equivalence is found in TD,
with acquisition ranges below 4 decades (Fig. 2b). However.
it has to be noted that in order to take the acquisition range in
the TD forward response into account. the current waveform.
and particularly the duration of the current injection. has to
be modelled. This explains the difference between the step
response (dashed black line) and the response with limited
acquisition range (continuous black line) in Fig. 2b.

Maximum phase angle

We suggest a re-parameterisation of the Cole—Cole model
where instead of »1, and 7, the maximum phase ¢,,,, (equa-
tion (9) and Fig. 1b) and the phase relaxation time 7, (equa-
tion (10) and Fig. 1b) are used as model parameters. The
re-parameterised model space becomes as follows:

MINPA Cole—Cole = {pO > Pmax> 'L'(p, C} (1 1)

In Fig. 2c, the variations in the phase spectrum induced
by a decrease of ¢,,,, (blue line) and an increase of C (green
line) are shown. In comparison with the classic Cole-Cole
parameterisation (Fig. 2a), a much bigger data difference is
present between the responses, meaning that ¢,,,, and C are
less correlated than 73, and C. The same applies in the com-
parison of the TD responses in Fig. 2b and Fig. 2d. In TD,
we see that the green response (C 30% decrease) follows the
reference model at the early time and the blue response (¢,
30% decrease) at the late times (Fig. 2d).

To summarise, the parameter ¢, controls the FD maxi-
mum phase shift and the magnitude of the TD decays, whereas
the parameter C controls the width of the phase shift and the
decay shape.

Given the maximum phase angle (MPA) Cole-Cole
model parameters {0, ¢pnay» T,» C}, the corresponding param-
eters of the RCC (or CCC) model {py, 7, 7,, C} can be easily
computed through an iterative approach (See Appendix A).

Maximum imaginary conductivity

Another re-parameterisation of the classic Cole-Cole model is
the MIC Cole-Cole model. The MIC model space is defined
in terms of the following:

G Cole—Cole = 190> Tmax> To» Cs (12)

© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 16, 385-399



388 G. Fiandaca, L.M. Madsen and P.K. Maurya

FD-mO,C FD-quaX,C FD-crmaX,C
10
(@ (c) (e) | [ —— FD/TD forward reference
/—\ — — TD forward, step response
’g’ m Typical field acquisition range
£ —30% mo/ ¢ __ [ c" decrease
- max
——30% C decrease
——30% C increase
1
102 10" 10" 10% 10 10" 10" 10® 10® 10" 10" 10°
frequency (Hz) frequency (Hz) frequency (Hz)
TD-mO,C TD-¢maX,C TD-o max’C
100
s [~=_ O F--_ @] F-~_ (f)
> =~ ~ =~ ~ ~ ~
£ ~ ~ ~
3’ ~N ~ ~N
=10
Ko}
[}
()
2
©
<
[$]
1

102 10* 102 10°
time (s)

10% 102 10°
time (s)

Figure 2 Variations of FD and TD responses with 77y, ¢,,.x+ Omaxs
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and C. Reference model: py = 100 Q12, 1m; = 100 mV/V, t,=0.1s, and C =

0.2. (a) FD responses, 1, and C variations; (b) TD responses, 71, and C variations; (c) FD responses, ¢,,,., and C variations; (d) TD responses,

Pmax>

where o

 « is the maximum of the imaginary conductivity

(Fig. 1¢) as defined in equation (6).

The influence of changes in o

max

and C on the phase
shift and the chargeability is shown in Fig. 2e and Fig. 2f,
respectively. The responses are very similar to those of
Omaxs because o). = o0, Given the MIC Cole-Cole
model parameters, the corresponding parameters of the
CCC models can be computed directly as shown in
Appendix A.

Minimum imaginary resistivity

The resistivity equivalence to the MIC Cole—Cole model is the
minimum imaginary resistivity MIR Cole—Cole model. The
model space is defined in terms of the following:

MMIR Cole—Cole = {10()’ p}/’!/’li)17 t/)’ C}v (13)

”
min

(Fig. 1d) as defined in equation (7). The responses of the MIR

where p/. is the minimum of the imaginary resistivity

Cole—Cole model are not shown in Fig. 2 as they are similar
to those of ¢,,,, and 0., because pl,, = — PoPimax -

and C variations; (e) FD responses, o/, and C variations; (f) TD responses, 0., and C variations.

Given the MIR Cole-Cole model parameters, the cor-
responding parameters of the RCC model can be computed

directly as shown in Appendix A.

DATA SPACE
Time-domain data

The data space, d,, for the MCMC and gradient-based in-
versions of TD IP data consists of apparent resistivity and
full-decay chargeability values, as follows:

dobs = {pa’ M}’l =1: I\Igates (14)

Where p, (2m) is the apparent resistivity, and the data-space
chargeability, M; (mV/V), is computed in each time gate, i, of
the transient full-decay IP signal as described by Olsson et al.
(2015). If no negative data are present, the inversion can be
performed in logarithmic data space.

A waveform with a 100% duty cycle, where the TD IP
data are measured in the current-on time as described by
Olsson et al. (2015), is applied for both the generation of
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synthetic data and in the field data acquisition. For the syn-
thetic data, each IP signal is recorded from 2.6 ms to 12,000
ms, and the decay is divided into 26 time gates (listed in
Appendix B) with an approximately logincreasing gate width
to improve the signal-to-noise ratio at late times (Fiandaca
etal. 2012). The same acquisition range (about 3.5 decades) is
also obtainable in field surveying when full-waveform record-
ings are processed for harmonic de-noising and background
removal (see details in the field example). Three stacks have
been modelled in the synthetic forward responses, whereas
two stacks have been used in the field example. The used
quadrupoles and the noise model are described in separate
results section for the synthetic data and field data.

Frequency-domain data

For the FD IP data, the data space consists of the amplitude,
A, (2@m), and the data-space phase, ¢; (mrad), which are mea-
sured at a range of frequencies, j. Similar to the phase defined
in model space, the data-space phase is defined here as the
phase of the complex conductivity. The data vector applied in

the inversion becomes the following:

dobs = {(/)/’, A/}v / =1: Z\Ifrequencies' (15)

For the synthetic data, we simulate measurements at 13 fre-
quencies in the range from 0.08 Hz to 327 Hz and thereby
get 26 data values in total, the same as the number of time
gates applied in TD. In total, about 3.5 decades in frequency
are spanned by the data, with the first and last frequencies ap-
proximately equal to the inverse of the last and first TD center
gate time, respectively. The applied frequencies are listed in
Appendix B. Used quadrupoles and noise model are described
in the results section.

INVERSION METHODOLOGY

The 1D TD forward response of synthetic data is computed
using the algorithm presented by Fiandaca et al. (2012). This
algorithm computes the full-decay IP response and models
the transmitter current waveform and the receiver transfer
function accurately. The same algorithm has been applied to
compute the FD forward response by disregarding the TD
transform. An extension of the algorithm, which computes
the 2D forward response (Fiandaca et al. 2013), has been
applied in the inversion of field data.

In the following analyses of the re-parameterisations of
the Cole-Cole model, we have used two different inversion
methods. First, an MCMC inversion algorithm is used to
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compute a non-linearised uncertainty analysis of all the model
parameters. Hereafter, a field example is inverted in 2D using
a gradient-based inversion approach in order to show how
field surveys may benefit from the re-parameterisations.

Markov chain Monte Carlo inversion

With the MCMC inversion method, it is possible to investigate
the distribution of models that fit a given dataset. Compared
with a gradient-based inversion, the MCMC method (as well
as other statistical inversion approaches) has an advantage
when it comes to quantifying parameter uncertainties and
correlations without linearising the problem as described
by Chen, Kemna, and Hubbard (2008) and Madsen ez al.
(2017).

In this study, we apply a Metropolis—Hastings sampling
algorithm (Metropolis et al. 1953; Hastings 1970) that, based
on a random walk in the model space, samples models ac-
cording to their likelihood. The sampled models make up a
Markov chain, which converges towards the posterior proba-
bility distribution of the model space.

The applied sampling algorithm, which is described in
detail by Madsen et al. (2017), works in two steps. First, a
model is proposed. Next, the model is accepted to the Markov
chain with an acceptance probability that depends only on
the last accepted model in the chain and none of the previous
models. These two steps are repeated for a predefined number
of times or until the distribution of the sampled models (the
posterior probability distribution) has converged.

Because we apply a symmetric model proposer, where
the possibility of walking from model m; to m; is the same
as walking from m; to m;, the acceptance probability of ;
can be computed simply as a likelihood ratio (Malinverno,
2002) as follows:

Py (m;) :| (16)

Pie(m;_y)

where the likelihood function is given by Mosegaard and
Tarantola (2002) as follows:

1 -
Plike(m) =k- exp [z(g(m) - dobs)l Cobs(g(m) - dobs)] ’ (17)

where g(m) is the forward response of the model m, C,; is
the covariance matrix of the observed data, d,, and & is a
normalisation constant.

Due to the logarithmic transform applied on the model
parameters, uncertainties are given as standard deviation fac-
tors (STDFs), where the STDF of the marginal posterior
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probability distribution, PDF (defined in the logarithmic
space), can be computed as follows:

STDF = exp(STD(PDF)). (18)

Assuming that the model parameters are normally distributed
in the logarithmic space, we get the following +STD limits:

STI;)F < < pu-STDF, (19)
where p is the mean of the distribution. So, with STDF =
1.1, the model parameter has a relative uncertainty of 10%,
whereas with STDF = 2.0, the uncertainty grows 10-fold to
100%. Using the terminology of Auken et al. (2005), an STDF
< 1.2 is a well-resolved parameter, 1.2 < STDF < 1.5 is a
moderately resolved parameter, 1.5 < STDF < 2 is a poorly
resolved parameter, and STDF > 2 is an unresolved parameter.

The posterior distribution of the classic Cole-Cole pa-
rameters is related to the ones of the re-parameterisations.
In theory, with a complete knowledge of the posterior dis-
tribution of the Cole-Cole model (including the asymp-
totic behavior) and an analytical expression for the mapping
between the parameterisations, it would be possible to obtain
the posterior distribution of the re-parameterisation from the
one of the classic Cole-Cole. This is difficult to obtain in prac-
tice, which is why we have chosen to sample the distributions
for each parameterisation individually.

Gradient-based inversion

For inversion of field data, we apply the gradient-based 2D
inversion scheme that is described in detail by Fiandaca et al.
(2013). The algorithm applies the first term Taylor expansion
for linearisation and uses an iterative method to minimise the

misfit, as follows:

S

N; + Ng

.= <5dTCUb¥5d+(srTchar>é 7 20)
where 8d is the data misfit, C,, is the covariance matrix
of the observed data, 87 is the model roughness, and Cj is
the covariance on the roughness constraints. N; and N are
the numbers of data parameters and roughness constrains,
respectively. No priors have been used in the inversion; how-
ever, if priors were applied, this would add an extra term to
equation (20).

From the inversion result, a linearised uncertainty anal-
ysis is computed based on the posterior covariance matrix
(Tarantola and Valette 1982), as follows:

C.=(G"Cy,'G+R'C,'R) ", (21)

where G is the Jacobian matrix holding the partial derivatives
of the mapping and R is the roughness matrix. Equivalent to
the uncertainty analysis in the MCMC approach (equations
(18) and (19)), we computed an STDF of the ith model pa-

rameter »; as follows:

STDF(1,) = exp (m : 22)

The STDFs computed for the gradient-based inversion (using
equations (21) and (22)) are influenced by the values of the
roughness constrains, which is why they should only be seen
as a relative measure of the uncertainty and cannot be directly
compared with the STDFs of constraint-free inversions (either
MCMC or other gradient-based results).

Alongside the linearised uncertainty analysis in terms
of STDFs, the DOI of the inversion model is computed. The
DOI algorithm used in this study is based on a cumulated
approximated analysis (CAA) that incorporates the actual
output model from the inversion and the data errors, as
described by Fiandaca, Christiansen, and Auken (2015). For
a given depth D, the CAA computes the data-driven (i.e.,
Ci =0) in equation (21)) cumulated uncertainty analysis,
model column by model column. This is done by cumulating
the sensitivity of all the model cells below the depth D. A
threshold value for the STDF of the CAA is defined, and
the DOI is computed as the depth at which this threshold is
reached. Based on experience, DOI threshold values between
2 and 5 give reasonable DOI estimations. The values of the
DOI threshold are usually increased for the t parameter,
which is significantly less resolved and for which the order of
magnitude is of interest even when the parameter resolution is
low. In this study, the DOI threshold is STDF = 4 for all pa-
rameter except t, for which STDF = 20. The approximation
in the CAA algorithm consists of neglecting the correlations
between model parameters belonging to different model
columns (lateral data correlation) but still considering the
correlation among the Cole—Cole parameters for each model
column. This means that the DOI algorithm gives results that
depend on the actual model parameterisation used in the in-
version and can thus be used as a comparative factor between
the parameters of different Cole-Cole parameterisations.

UNCERTAINTY ANALYSIS

In the following, we present the results of an uncertainty
analysis computed using MCMC methods. The MCMC in-
version results are presented as marginal posterior probabil-
ity distributions, which are the distributions of the sampled
models shown for each individual model parameter, and the

© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 16, 385-399
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Figure 3 Posterior probability distributions of a homogenous half-space model with the parameters: oy = 10 mS/m, m; = 100 mV/V

(o = 0.13 mS/m), t

max o

= 0.1 s, and C = 0.3. The distributions are shown for (a) TD, conductivity Cole-Cole; (b) TD, MIC Cole-Cole;

(c) FD, conductivity Cole—-Cole; and (d) FD, MIC Cole-Cole. The red line marks the true model. NaN indicates that the distribution has not

converged. Note that the distributions of 7, are wider scaled.

uncertainty is given as the STDF of each distribution as de-
fined in equation (18).

The applied noise model has a relative and an absolute
term, for both TD and FD data. In TD, a 2% standard
deviation has been applied to the resistivity data; 10%
relative standard deviation plus 0.2 mV/V absolute noise has
been applied on the IP data. Similarly, in FD, a 2% standard
deviation is considered for the amplitude data; 10% relative
standard deviation plus 0.2 mrad absolute noise has been
applied on the phase data.

A homogenous half-space example

Synthetic data have been generated from a homogenous half-
space model using one quadrupole with electrode spacing
IABl = 7.5 m and IMNI| = 2.5 m.

Five different parameterisations have been investi-
gated: the classic CCC and RCC, and the three new
re-parameterisations (MPA, MIC, MIR). The values of the
parameters for all parameterisations were derived from the
CCC model: 0y, = 10 mS/m, m, = 100 mV/V, t, = 0.1 s,
and C = 0.2. MCMC inversions of TD and FD synthetic data
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were performed for each parameterisation individually using
five MCMC runs with different starting models and with one
million model proposes (iterations) in each run.

For both TD and FD, the inversion results from the CCC
model and the MIC Cole-Cole model are presented in Fig. 3.
The posterior probability distributions are plotted together
with the true model (red line) and the STDFs.

For both TD and FD, the resolutions of o, 7, and C are
the same and independent of the parameterisation (Fig. 3).

However, the resolution of o)., is significantly better than

the resolution of ;. As given by the STDFs, it is approxi-
mately a 3-fold improvement in both TD (from STDF = 1.4 to
STDF = 1.12) and FD (from STDF = 1.13 to STDF = 1.04).
The results of the MPA and the MIR model are very similar
to those of the MIC, which is why they are not shown here;
however, the STDFs are listed in Table 1. Overall, the results
show that the FD data give a better resolved than the TD data.
This is due to the choice of the relaxation time (r, = 0.1). If
we instead set 7, = 1, the TD data give the best resolution
(see Discussion).

Figure 4 shows the cross-plots of m, and o/, with the

max

remaining Cole-Cole parameters. A non-linear correlation is
present between 1, and 7, (Fig. 4b), whereas the correlation

between o/ . and t, is linear and spans a smaller area of
o p

max

the model space (Fig. 4e). The correlation between C and

"
max

my, or o, are both non-linear, but we see that o,

max

spans a
" isresolved better

max

smaller parameter range. Consequently, o,
than .

Changing the frequency exponent

To study the influence of the re-parameterisation on models
with different resolutions, we have varied the values of C
between C = 0.2 and C = 0.6 in the CCC model, whereas
the remaining parameters have been kept constant (i.e., 0y =
10 mS/m, m, = 100 mV/V, and t, = 0.1 s). Variation in C in
the CCC model gives rise to changes in not just C but also in
O fnaxs

models, as these parameters are functions of C and m,.

" : : :
@rax Pmin» T, and 7, in the equivalent re-parameterized

As the STDFs of o, py, 7,, 7,, 7,, and C do not vary
significantly between parameterisations (as seen in Fig. 3) and
the CCC and RCC results are equivalent, only the STDFs
of 1), Qraxs Omaxs and pl. are presented in the uncertainty
analysis in Table 1.

For TD and FD data, the resolution of 1y, ¢/, 0.
and p,, decreases as the value of C is decreased. For C =
0.2, the resolution of ¢,,., 0., and pl;,, is close to a 10-

fold improvement compared with the resolution of . For

TD CCC TD MIC
1.5
~ (a) (d)
339 1 — -+
0.5
’ (b) (e)
e
. |
g
4
0
(c) (f)
S
205
= \ \
-1

16 2 25-1 -0.§ 0
Iogﬂ)(mo) Iogw((r max)

Figure 4 Cross-plots of the model parameters determined from
inversion of TD data representing a homogenous half-space:
oo =10 mS/m, my =100 mV/V (0, = 0.13 mS/m), t, = 0.1's, and
C =0.3. Two different models have been used for parameterisation of
IP: (a—c) the conductivity Cole—Cole model; (d-f) the MIC Cole-Cole
model. The red cross marks the true model.

C = 0.4, the improvement is down to 2-fold in TD. When
C = 0.6, the uncertainty is approximately the same for all the
parameterisations. This shows that especially poorly resolved
models benefit from the re-parameterisations, but the impact

on well-resolved models is minor.

Changing the noise model

In the following, we show the influence of the noise model
on the resolution capabilities of the classic Cole—Cole model
compared to that of the re-parameterisations. This is done
by assuming different noise levels in the dataset generated
from the previous described model. The noise levels on
the data-space phase/ chargeability values are: 5% relative
noise plus 0.1 (mrad for FD and mV/V for TD) absolute
noise, 10% relative noise plus 0.2 mrad/mV/V absolute noise
(used in the previous examples), and 15% relative noise plus
0.3 mrad/mV/V absolute noise.

The results of the uncertainty analysis are presented in
Table 2 as the STDFs of the marginal posterior probability
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Table 1 Uncertainty analysis for different parameterisations and different values of C. Using MCMC inversion, we have analysed five different
models where the value of C varied between 0.2 and 0.6, and the remaining parameters have been kept constant: o) = 10 mS/m, m, = 100
mV/V, and 7, = 0.1 s. The results are shown for the conductivity Cole—Cole (1), the MIC Cole-Cole (o,,), the MIR Cole-Cole (p/;,), and

the MPA Cole-Cole (

wmax )

parameterisation. The uncertainties are given as the STDF of the marginal posterior probability distributions

Time-domain STDFs

"

C

Frequency-domain STDFs

"

my Omax Piin Pmax ) Omax Piiin Pmax
0.2 1.7 1.13 1.12 1.11 1.6 1.06 1.07 1.06
0.3 1.4 1.13 1.12 1.11 1.13 1.04 1.04 1.04
0.4 1.2 1.12 1.10 1.10 1.05 1.04 1.04 1.04
0.5 1.11 1.06 1.06 1.05 1.03 1.04 1.04 1.04
0.6 1.07 1.05 1.05 1.05 1.03 1.04 1.04 1.04

Table 2 Uncertainty analysis for different parameterisation and different noise models. The model has the parameters: oy = 10 mS/m, 2, = 100
mV/V, 1o = 0.1s,and C = 0.3. The results are shown from the conductivity Cole-Cole (1), the MIC Cole—Cole (5$$), the MIR Cole-Cole
and the MPA Cole-Cole (¢,,,,) parameterisations. The uncertainties are given as the STDF of the marginal posterior probability distributions

Time-domain

Frequency-domain

5% 10% 15% 5% 10% 15%
Noise 0.1 mV/V 0.2 mV/V 0.3 mV/V 0.1 mrad 0.2 mrad 0.3 mrad
STDF(my) 1.2 1.4 1.5 1.05 1.13 1.4
STDF(0//,,) 1.07 1.13 1.2 1.02 1.04 1.08
STDF(p}in) 1.05 1.12 1.2 1.02 1.04 1.09
STDF(¢hy,5,) 1.06 1.11 12 1.02 1.04 1.08

"

distributions of m,, 0.., P, and ¢,... For all parame-
terisations, we see that as the noise level is increases, the
STDF of the model parameters increases as well. This is
also valid for the parameters not shown in the table. The
analyses show that the resolution improvements gained from
the reparameterisations, which have been documented in the
previous figures, are valid for all the different noise levels.
For the low noise level, the improvement is between 3-fold
and 4-fold for TD and 2-fold for FD. For the high noise
level, the improvement is 2.5-fold in TD and 4-fold in FD. As
seen with the example in Fig. 3, the resolution improvement
gained with the re-parameterisations is less pronounced for

the remaining parameters.

A multilayer example

Synthetic TD and FD data generated from a three-layered
model have been inverted using the CCC model and the
re-parameterisations (MIC, MIR, and MPA). The model was
given the CCC model and the re-parameterisations (MIC,
MIR and MPA). The model was given the CCC parameters:
o, = [50, 50, 50] mS/m, m, = [5, 300, 5] mV/V, t, =
[0.1, 3, 5] s, C = [0.3, 0.3, 0.3] and thickness = [7, 7]
m. The data were generated from a vertical sounding with

20 quadrupoles, with electrode spacing IABl = 7.5-500 m
and IMNI = 2.5-65 m.

The inversion results of the TD and FD data show the
same features. Furthermore, the MIC, the MIR, and the MPA
Cole—Cole models preform equally well. For these reasons, we
only present the TD marginal posterior probability distribu-
tions of 1, (CCC) (MIC) in Fig. 5.

The inversion results show a 3- to 6-fold improvement

and o/,

to o/

in the resolution from m o

in the top and bottom
layers where the chargeability is low. It is an improvement
from poorly resolved parameters (Fig. 5a and Fig. 5¢) to
well-resolved parameters (Fig. 5d and Fig. 5f). For the re-
maining parameters, the differences between the two param-
eterisations are negligible. In the second layer, the MIC Cole-
relative

"
amax

Cole model produces a slightly lower STDF of
to m, (Fig. 5b and Fig. 5e), and again, the differences be-
tween the parameterisations are negligible for the remaining
parameters.

FIELD EXAMPLE

The field data were acquired at the Samsg island (Denmark).
The geology at the site is very heterogeneous in the first
10-12 m below the surface, which is characterised by
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Figure 5 Marginal posterior probability distribution and STDFs for
(the conductivity Cole-Cole model) and ¢/, (the MIC Cole-Cole
model) for the three-layered model: o = [50, 50, 50] mS/m, m, =
[5, 300, 5] mV/V, r, = [0.1, 3, 5] s, C = [0.3, 0.3, 0.3], and
thickness = [7, 7] m. The red line marks the true model values.

late-glacial meltwater deposits and postglacial freshwater
sand and peat. Below that, a clay-till layer approximately
20 m thick is present, followed by a regional aquifer in melt-
water sand and gravel deposits. Below the regional aquifer, a
till/clay layer is present, approximately at 40 m depth. TD IP
data were collected along a 2D profile using 49 electrodes with
3 m spacing, for a total length of 144 m. The quadrupole se-
quence consisted of a mix of gradient and dipole-dipole arrays,
for a total of 1161 quadrupoles. Data were acquired using the
ABEM Terrameter-LS instrument (www.guidelinegeo.com),
with full-waveform signal sampled at 3750 Hz. The full-
waveform signal was processed for harmonic de-noising and
background drift removal following Olsson et al. (2016) and
was gated using logarithmically spaced gates from 1073 to
12 s (with 10 points per decade). The de-noised and re-gated
TDIP data were imported to the Aarhus Workbench software
(www.aarhusgeosoftware.dk) for manual processing of the IP
decays. Single gates or entire decays showing poor quality,

for instance, due to poor signal-to-noise ratio, were removed.
On average, the TD decays have 3.4 decades of usable time
range after processing. A 1% standard deviation has been as-
signed to the resistivity data; 10% relative standard deviation
plus 0.05 mV/V absolute noise has been assigned to the IP
data. Vertical and horizontal constraints values, expressed as
STDFs, were set up to 1.5 and 1.15, respectively.

Figure 6 shows the inversion results for the CCC model.
Panels (a—d) represent the uncertainty on the inversion pa-

rameters (o, 1, 7,, C) computed following equation (22),

using the final inversion model for the Jacobian computa-
tion; panels (f-i) show the inversion model, for the o, m,,
7, and C parameters. On top of the (a-d) and (f-i) panels,
the DOI is shown as a black line. Panel (e) shows examples
of the recorded IP decays with error bars and fitting forward
responses (black lines), panel (j) shows the resistivity pseudo-
section, and panel (k) is the pseudosection of IP data. Panel (1)
shows the data misfit of DC data (blue line) and IP data (red
line).

Figure 7 shows the results of the MIC inversion, with
uncertainty on panels (a—b) and model on panels (f-i) for the
inversion parameters o, 0,,,, T, and C. On both Figs 6 and 7
the lithological information available from a nearby borehole
is superimposed on the inversion.

The o, 7,, and C inversion results are really similar
in the CCC and MIC inversion of Figs 6 and 7, in terms
of inversion model (panels (f-i)), uncertainty (panels (a—d)),
and DOL Significant differences exist between the 7z, and
o). results. The uncertainty values decrease with depth much
quicker, indicating less resolution at depth. This is reflected
also in the DOI estimation that is more than double for the
o).« parameter. Furthermore, a better correlation between

geology and o/,

max

exists, when compared to the m, results.
The sand layer at 4.0 m depth is better represented in the
o). section (with values below ~0.05 mS/m), with a superior
thickness resolution when compared to the low-m, anomaly
(with values below ~30 mV/V). Anomalies with high o/ .
values (above ~0.15 mS/m) and high s, values (above ~70
mV/V) correspond to the till layer (16 m thick) below 8.3 m,
but the o/, anomaly resembles better the geological layer.
Finally, the increase in o/, at depth correlates with the depth
of the till/clay layer present below the regional aquifer, at

depth of approximately 40 m.

DISCUSSION

The comparison between the classic Cole-Cole model and the
re-parameterisations of the Cole-Cole model has been carried
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Figure 6 Inversion model, uncertainty analysis, and misfit of field data from Samse, Denmark, obtained using the conductivity Cole-Cole
parameterisation. (a—d) The uncertainty analysis given as the STDF of the four model parameters; (e) three examples of IP decays with error
bars (the locations of the data cells are marked in panel (j and k)) and fitting forward response (black lines); (f-i) inversion model with borehole

information (white is sand, black is till, and grey is silt); (j) resistivity pseudosection showing the misfit x; (k) pseudosection of the root mean
square x for the entire IP decay (defined positive); (1) misfit of DC (blue) and IP (red) data of the inversion averaged vertically (and over all the
gates for the IP misfit) along the pseudosection. N;rf is the number of iterations. The black lines in panels (a—d) and (f-i) are the DOL

out on both TD and FD IP data, but it is beyond the scope
of this study to present a complete comparison of the TD
and FD IP methods. In fact, the settings of the TD and FD
data generation are selected focusing on getting equivalent ac-

quisition ranges, but a TD/FD comparison study should also

take other factors into account, e.g., the acquisition range

actually measurable in the

lab/field. Despite the same num-

ber of decades (approximately 3.5 decades) being used

for both TD and FD synthetic data generation, we see

that the two methods are not focused at the exact same
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Figure 7 Inversion model, uncertainty analysis, and misfit of field data from Samse, Denmark, obtained using the MIC Cole-Cole model for

parameterisation of IP. (a—d) The uncertainty analysis given as the STDF of the four model parameters; (e) three examples of IP decays with
error bars (the locations of the data cells are marked in panel (j and k)) and fitting forward response (black lines); (f-i) inversion model with
borehole information (white is sand, black is till, and grey is silt); (j) resistivity pseudosection showing the misfit x; (k) pseudosection of the root

mean square y for the entire IP decay (defined positive); (1) misfit of DC (blue) and IP (red) data of the inversion averaged vertically (and over
all the gates for the IP misfit) along the pseudosection. Ny is the number of iterations. The black lines in panels (a-d) and (f-i) are the DOL

spectral range. Indeed, for T = 0.1 s (the results presented TD data give the best resolution. With these remarks, the

in this study), we see that the synthetic FD data often re- TD and the FD methods show approximately the same
solve the model parameters better than the TD data. How- improvements with the application of the re-parameterised
ever, for t = 0.1 s, the situation is the opposite and the Cole—Cole models.
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The MPA, MIC, and MIR models show similar re-
sults in terms of uncertainty analysis. However, the MPA
modelling has an advantage when compared to the MIC and
the MIR parameterisations. Indeed, the ¢, parameter di-
rectly controls the magnitude of the IP response, whereas in
the MIC and MIR model, the response magnitude depends on
the o). /o, and p;./p, ratios, respectively.

On the other hand, many petrophysical relations involv-
ing IP properties are expressed in terms of real/imaginary con-
ductivity, for instance, the linear relation between the real and
imaginary surface conductivity described by Weller, Slater,
and Nordsiek (2013) or the relation between hydraulic perme-
ability and real and imaginary conductivity found by Weller
et al. (2015). In this respect, the MIC model is more suited for
applying petrophysical relations directly from the inversion
results. A final consideration can be made about the compari-
son of field and laboratory IP results. Typically, laboratory IP
measurements are carried out in FD, and the results are shown
in terms of amplitude/phase and/or real/imaginary conductiv-
ity. In this respect, inversions of field data in terms of MPA
or MIC models are much easier to compare with laboratory

results in comparison to classic Cole-Cole or MIR inversions.

CONCLUSION

We have derived and tested three re-parameterisation of the
Cole-Cole model for the inversion of TDIP and FDIP data,
namely the MPA Cole—Cole model {p,, ¢,,,> 7, C}, the MIC
Cole-Cole model {0y, 0., 7,, C}, and the MIR Cole-Cole
model {0y, ofin» 7,, C}.

The uncertainty analyses of synthetic homogenous half-
space models and multilayered model, which were computed
using the MCMC method, show that the MPA, MIC, and
MIR Cole-Cole parameters, compared with the classic Cole—
Cole parameters, are less correlated in the inversion of both
FD and TD IP data. Consequently, we see that the re-
parameterisations increase the resolution of the model pa-

"

rameters, specifically of the ¢, 0.\, and p/,, parameters in
comparison with the classic 71, parameter. The resolution im-
provement obtained by the re-parameterisations is especially
significant for models with low C values or low signal-to-noise
ratio (i.e., models that are poorly resolved using the classic
Cole-Cole model), where 3-fold improvements or better are
observed. The resolution improvements are less pronounced
or absent for models that are well resolved with the classic
Cole-Cole model.

A 2D field example where we compare the classic Cole—
Cole and the MIC models shows that gradient-based inversion

Re-parameterisations of the Cole-Cole model 397

methods benefit from the re-parameterisations as well. A sig-
nificantly deeper (more than double) DOI was found for o/,

max

in comparison with the classic 7, together with a better cor-
relation with geology.

Consequently, it is recommended to invert for one of the
re-parameterisations of the Cole-Cole model in any Cole-
Cole inversion of IP data and then, if needed, transform the
parameters back to the classic parameterisation. In particular,
we believe that the MPA and the MIC parameterisations will
be particularly effective for the spectral inversion of field IP
data and will contribute to narrow the gap among IP theory,
laboratory findings, and field applications.
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APPENDIX A
From MPA Cole-Cole to classic Cole-Cole

Given the MPA Cole—Cole model parameters {p,, T

Pmaxs Tops

C}, the corresponding parameters of the resistivity (or con-

ductivity) Cole-Cole model {p,, m,, 7,, C} can be computed

P
through the following iterative approach.
As a start, we define the variables and as follows:

1

(A.2)

© 2018 European Association of Geoscientists & Engineers, Near Surface Geophysics, 16, 385-399



Table B.1 IP gating
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Gate 1 2 3 4 N 6 7 8 9 10 11 12 13
Gate width (ms) 1.06 1.33 2.13 2.93 4 5.33 7.46 10.4 14.4 20 20 40 60
Gate 14 15 16 17 18 20 21 22 23 24 25 26

Gate width (ms) 80 100 140 200 280 380

540 760 1040 1460 2020 2800 2000

Table B.2 Acquisition frequencies

Frequencies (Hz)

0.08 0.16 0.32 0.64 1.28 2.56

5.12 10.2 20.4 40.9 81.9 163 327

where Re and Im indicate the computation of the real and
imaginary part of a complex number, respectively. Thus, equa-
tion (1) can be written as follows:

plw) = pl[1 —my(1 — (a(w) + ib(w)))]. (A.3)

We now iterate to minimise the following:

_ my(n) —my(n — 1)

Amy = , (A.4)

my(n)

where #2,(0) = 0. For the nth iteration, () and m,(n) are
computed as follows:

) = 7, - (1 = = 1) (A5)
1
a(n) = Re —C (A.6)
()
1
1 ()
my(n) = A~ ) (A.8)

(1 —a(n) - tan(—@,,,) + b(n)’

Once the classic Cole—Cole parameters {p,, 71, t,, C} are de-
> Cl, the
Cole—Cole complex resistivity (or conductivity) can be com-

fined in terms of the MPA parameters {04, @rax> T

puted through equation (1) (or equation (3)) at any frequency.

From MIC Cole-Cole to classic Cole-Cole

Given the MIC Cole-Cole model parameters {0, o,., 7, C},
the corresponding parameters of the resistivity (or conductiv-
ity) Cole-Cole model {p,, 72, 7,,, C} can be computed directly.

As a start, we define the variable d as:

d=Im<;.(,>
1+ (14)~

The chargeability of the Cole-Cole model, 1, is then given

(A.9)

as follows:

"
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The relaxation time in the resistivity form, z,, can now be
computed from equation (5)

From MIR Cole-Cole to classic Cole-Cole

Given the MIR Cole—Cole model parameters {0y, o T,» C},
the corresponding parameters of the resistivity (or conduc-

tivity) Cole-Cole model {p,, m,, 7,, C} can be computed

P
directly as follows:

”
P min

(Po‘dy

my = —

(A.11)

where d is as defined in equation (A.9).

APPENDIX B
Gating of TDIP signal

The gating of the transient IP signal, which is recorded from
2.6 ms to 12,000 ms, is listed in Table B.1

Acquisition frequencies

The frequencies used for the computation of synthetic FD IP
forward responses are listed in Table B.2
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