
An efficient hybrid scheme for fast and accurate inversion
of airborne transient electromagnetic data

Anders Vest Christiansen1,4 Esben Auken1 Casper Kirkegaard1 Cyril Schamper2 Giulio Vignoli3

1Department of Geoscience, Aarhus University, Aarhus 8000, Denmark.
2Unité Mixte de Recherche 7619 Sisyphe, Université Pierre et Marie Curie, 75252 Paris, France.
3Geological Surveys of Denmark and Greenland, Aarhus 8000, Denmark.
4Corresponding author. Email: anders.vest@geo.au.dk

Abstract. Airborne transient electromagnetic (TEM) methods target a range of applications that all rely on analysis of
extremely large datasets, but with widely varying requirements with regard to accuracy and computing time. Certain
applications have larger intrinsic toleranceswith regard tomodelling inaccuracy, and there canbevaryingdegrees of tolerance
throughout different phases of interpretation. It is thus desirable to be able to tune a custom balance between accuracy and
compute time when modelling of airborne datasets. This balance, however, is not necessarily easy to obtain in practice.
Typically, a significant reduction in computational time can only be obtained by moving to a much simpler physical
description of the system, e.g. by employing a simpler forward model. This will often lead to a significant loss of accuracy,
without an indication of computational precision.

We demonstrate a tuneable method for significantly speeding up inversion of airborne TEM data with little to no loss
of modelling accuracy. Our approach introduces an approximation only in the calculation of the partial derivatives used
for minimising the objective function, rather than in the evaluation of the objective function itself. This methodological
difference is important, as it introduces no further approximation in the physical description of the system, but only in the
process of iteratively guiding the inversion algorithm towards the solution. By means of a synthetic study, we demonstrate
how our new hybrid approach provides inversion speed-up factors ranging from ~3 to 7, depending on the degree of
approximation. We conclude that the results are near identical in both model and data space. A field case confirms the
conclusions from the synthetic examples: that there is very little difference between the full nonlinear solution and the hybrid
versions, whereas an inversion with approximate derivatives and an approximate forward mapping differs significantly from
the other results.

Key words: AEM, approximate Jacobian, hybrid minimisation, large dataset inversion. 

Received 25 November 2014, accepted 8 July 2015, published online 13 August 2015

Introduction

The airborne transient electromagnetic (TEM) method has
its roots in mineral exploration (see Allard (2007) for an
overview), but also finds extensive use in modern applications
such as geothermal studies (Legault et al., 2011), groundwater
investigation (e.g. Siemon et al., 2009; Kirkegaard et al., 2011)
and petroleum resource characterisation (Pfaffhuber et al., 2009).
Most modern applications require high resolution capabilities
and dense data coverage, resulting in surveys that often span
thousands of line-kilometres of densely collected sounding data.
For the interpretation of such large-scale datasets, it is common
to choose a balanced scheme for the modelling, i.e. one that
provides the most attractive compromise between precision and
computational complexity. Inmany cases ofmineral exploration,
it is possible to identify targets bymeans of direct inspectionof the
data,making exhaustivemodelling unnecessary. For applications
that require more quantitative results, fast interpretation tools
can be found within the family of conductivity-depth transforms
(e.g. Huang and Fraser, 1996; Macnae et al., 1998; Sengpiel and
Siemon, 2000; Zhdanov, 2002). Suchmethods providemeans for
a direct and extremely fast translation of the measured data into
resistivity parameters of interest, having no need for inversion
schemes or complex forward modelling of the underlying

physical system. This type of approach has proven very
successful in the past, but unfortunately it comes without a
well defined measure of data fit, and it provides no means for
estimating uncertainty either. Thus, for applications that require a
high degree of accuracy, the only acceptable solution is provided
by inversion in combination with a suitable forward model.

Today, one-dimensional (1D) forwardmodelling that includes
all characteristics of the instrument transfer function is an efficient
and popular choice (Auken et al., 2014). Efficient forwardmodels
in two-dimensions (2D) (Wilson et al., 2006) and even three-
dimensions (3D) (Cox et al., 2010) are also being employed. Ley-
Cooper et al. (2015) discuss the choice of 1D versus 2D and 3D in
a detailed analysis of anAustralian dataset.A similar discussion is
found in Viezzoli et al. (2010) and in Minsley et al. (2012). The
choice of a forward model largely determines the total inversion
time, and it is important tonote that, evenwithin a1Dformulation,
it can take days or even weeks to invert a very large airborne
dataset. Hence, we argue that a 1D forward formulation is still an
important tool, and in many cases, the only viable solution for the
inversion of very large airborne surveys. In this paper we present
our latest development for speeding up this inversion process.

By far the most time-consuming operation in the inversion of
TEM data is the calculation of the derivatives of the nonlinear
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forward modelling operator (Kirkegaard and Auken, 2015). For
this reason, derivative estimations play an important role in the
literature of geophysical data misfit minimisation (Huang and
Palacky, 1991).Actually,minimising the time spent onderivative
calculations is a general problem in inversion theory, which is not
only limited to the solution of geophysical problems. Several
different iterative minimisation algorithms are available, ranging
from simple schemes that rely on computing a large number of
low cost iterations, to more numerically costly algorithms with
much better convergence properties. An example of the former
is the conjugate gradient algorithm (Hestenes and Stiefel, 1952),
which can be used to minimise a functional without any
information on partial derivatives at all. On the other end of the
spectrum we find the full Newton’s method, which requires the
calculation of both first and second order partial derivatives (i.e.
the Jacobian and Hessian matrix). Generally, the computational
balance favours the simple methods when derivatives are
extremely numerically costly compared to the objective
functional itself, whereas the Newton method becomes
appealing when the opposite is true. Typically, the relative cost
of derivative calculation and functional evaluation is found
somewhere in between the extremes, making room for a range
of quasi-Newton methods that implicitly approximate the second
order derivatives. Such an algorithm is employed for the work
presented here in the form of a Gauss-Newton method with the
Levenberg-Marquardt modification (Marquardt, 1963). This
method essentially represents a hybrid between simple gradient
descent and the Gauss-Newton method, which requires the
calculation of the full Jacobian matrix at each iteration.
Comparable algorithms, such as the Broyden-Fletcher-Goldfarb-
Shanno method (BFGS, see Romdhane et al. (2011) for a seismic
application example), also approximate second order derivative
information, but require only the objective function gradient to
be computed in each iteration, rather than the full Jacobianmatrix.
This method can be attractive when it is more convenient to
compute the gradient only, e.g. the adjoint state method
(Plessix, 2006). For the case of the 1D TEM problem, however,
the only benefit of the BFGS method is a reduction in memory
consumption.Another popular choice isBroyden’s update formula
for the Jacobian matrix (Broyden, 1965, Loke and Barker, 1996;
Torres-Verdín et al., 2000; Christiansen and Auken, 2004). This
method eliminates the need for re-computing the Jacobian in every
iteration of a quasi-Newton scheme, but often at a reduced
convergence rate. Generally, it is desirable to use a minimisation
methodwith asmuchfirst and second order information as possible
(Haber et al., 2000), so rather than introducingmore approximation
in the minimisation algorithm, we choose to implement
approximations in the derivative calculation itself. Oldenburg
and Ellis (1991) used a similar approach by calculating 1D
derivatives for inversion of 2D magnetotelluric data. Meanwhile,
Christiansen andAuken (2004)performed2Dresistivity inversions
using 1Dderivatives, andTorres-Verdín et al. (2000) used a greatly
simplified finite-difference grid for the derivative calculation.

In this paper, we investigate the performance benefits and
applications of a specific hybrid implementation for airborne
TEM data, relying on the Levenberg-Marquardt method for
solving the inversion problem. The combined methodology is
implemented in AarhusInv (Auken et al., 2014), and uses a full
nonlinear forward model for the calculation of data misfit, and
an approximate forward for the calculation of derivatives.
Using this method we take much less computation time, while
arriving at results that are virtually identical to those without the
approximations. In this paper, we initially provide the theoretical
background behind our method by describing our forward and
inversemodelling schemes.We thenpresent our results for hybrid

inversion of both synthetic data and field data, after which we
present our conclusions.

Forward modelling

For our hybrid inversion scheme, we use two distinct forward
models: a full nonlinear 1D formulation for the evaluation of data
misfit, and an approximate forward model for the calculation of
partial derivatives for guiding the iterative steps of the inversion.
The full nonlinear implementation follows the methodology
of Ward and Hohmann (1988), whereas the approximate
implementation uses an adaptive Born approximation
(Christensen, 1997; Christensen et al., 2009). Both responses
account for all effects of relevant acquisition system parameters,
e.g. filters and waveforms (Christiansen et al., 2011).

In Figure 1, we show a comparison between the approximate
and full nonlinear forward responses for a simulated SkyTEM
system (Sørensen andAuken, 2004) at a characteristic instrument
altitude of 30m. The example in Figure 1a illustrates the most
common case of very similar forward modelling results, whereas
Figure 1b shows that significant deviations are also possible for
specificmodels. In this latter case,we see individual gates varying
~20% when stated as late time apparent resistivity for a model
with a deep lying conductor covered by a thick resistor. Based on
the results of this figure it is clear that sizeable errors can be
introduced if an inversion is performed solely on the approximate
forward model. The results, however, are still so similar that the
approximate forward model might prove a good choice for
calculating partial derivatives; after all, partial derivatives are
only needed for guiding the iterative steps of the inversion
algorithm.

Inverse modelling

Inversion of TEM data is the process of determining the
ground electrical resistivity distribution from the measurement
of a decaying magnetic field. Thus, the resistivity distribution
obtained by inversion is the subsurface resistivity model whose
forward calculated response best matches the observed data. As
the solution to this problem is, in general, ill-posed, it is
convenient to impose additional requirements on the properties
of the solution by including a regularising term. The general
objective functional to minimise thus becomes:

’ðmÞ ¼ kQd ðdobs � gðm ÞÞk2L2 þ kQp Rp mk2L2 : ð1Þ
In this equation, the first term represents the squared

L2-distance between the weighted observed data dobs and the
forward response g(m) of the model parameter vector m. The
second term, kQpRpmk2L2 , is a generic regularisation term that
allows for including a priori information and/or smoothness
constraints to the system of equations. Qd and Qp are the data
andmodel weight matrices, respectively. For our purposes we set
Qd to be a diagonal matrix holding the inverse of the data
variances, and use Qp to specify the different degrees of
variability associated with spatial constraints as described by
Rp. For full details on our use of spatial regularisation constraints
see the papers on laterally constrained inversion (LCI) and
spatially constrained inversion (SCI) (Auken and Christiansen,
2004; Viezzoli et al., 2008).

The framework of our implementation is the AarhusInv code
(Auken et al., 2014), which manages the minimisation of the
nonlinear objective functional of Equation 1 using the iterative
Levenberg-Marquart minimisation algorithm. The algorithm
provides an iterative model update formula for the (n+1)-th
iteration:
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Fig. 1. Forwardmodellingexamples for twodistinctmodelsusing thecharacteristics of thedualmomentSkyTEMsystemconfiguration
at an altitude of 30m.Model (a) has a shallow resistive last layer, whilemodel (b) has a deep conductive last layer. The blue and red lines
show responses based on the full nonlinear forward model and the approximate forward model, respectively.
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Fig. 2. Datafit distributions for inversions of the same synthetic dataset, calculated from8000 randomly generatedmodels and perturbed
by realistic noise. All sub-plots are based on inversions using the same methodology and settings, except for the degree of approximation
used for calculating the partial derivatives of the Jacobian matrix. (a) The Jacobian is calculated from the approximate forward model in
every iteration. (b) The Jacobian is calculated from the approximate forwardmodel formost iterations, butfinalisedwith a few iterations of
full nonlinear derivatives. (c) The Jacobian is calculated from full nonlinear forward model in every iteration (reference inversion).

An efficient hybrid scheme for airborne TEM inversion Exploration Geophysics C



mnþ1 ¼ mn þ ½GT
nC

�1
obsGn þ RT

pC
�1
c Rp þ lI��1:
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�1
obsðdobs � gðmnÞÞ þ RT
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c ð�RpmnÞ�

ð2Þ

Here, Gn is the Jacobian matrix based on the n-th model, I
is the identity matrix, Cobs

–1 = Qd
TQd is a covariance matrix

specifying the data uncertainties as described above, while
C–1
c = Qp

TQp specifies the strength of the regularising
constraints. l is a Marquardt damping parameter that is
iteratively updated over the course of the inversion to stabilise
and improve the performance of the minimisation process
(Marquardt, 1963). Roughly speaking, one can say that the
first term of the first bracket expresses the direction and size of
the step as suggested by the data and data errors; the second
term expresses the direction as suggested by the constraints
(roughness). In the second bracket, the first term balances the
direction according to the misfit with the observed data, and the
second term balances the step with the misfit to the suggested
constraints.

For the purposes of this paper we compare three iterative
inversion processes, (A)–(C), differing only in their calculation of
the elements ofGn. All approaches use a standard first order finite
difference formula for calculating partial derivatives from two
forward calculations separated by a small perturbation. Methods
(A) and (B) are fast hybrid methods utilising the approximate
forward model for the calculation of Gn, whereas method (C)

is a slower reference inversion utilising the full nonlinear
forward model for all derivative calculations. For method
(A) we use the highest degree of approximation in the sense
that we always use the Born approximate forward model for
calculating the derivatives. Method (B), on the other hand, uses
the approximate forward model for all iterations until the
convergence criteria are met. At this stage, the algorithm shifts
to calculating the derivatives using the full nonlinear forward
model for at least one more iteration, but typically 2–3 iterations,
in order to handle the potential situation of being caught in a local
minimum.

Inversion of synthetic data

In order to ensure a comprehensive comparison of our three
different inversion strategies, we now compare the accuracy in
both data and model space. To do this, we randomly generated
8000 models of five layers. These random models are
characterised by layer resistivity values and thicknesses
uniformly distributed in the interval 2–200 Wm and 5–50m,
respectively. These synthetic models were turned into synthetic
SkyTEM soundings (Sørensen and Auken, 2004) using the
full nonlinear forward model described in the forward
modelling section, and perturbed by synthetic noise. To make
the soundings resemble actual field data, we added two distinct
noise contributions: a uniform Gaussian component with 5%
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Fig. 3. Model fit distributions for inversions of the same synthetic dataset, calculated from 8000 randomly generated models
and perturbed by realistic noise. All sub-plots are based on inversions using the same methodology and settings, except for the
degree of approximation used for calculating the partial derivatives of the Jacobian matrix. (a) The Jacobian is calculated from the
approximate forwardmodel in every iteration. (b) The Jacobian is calculated from the approximate forwardmodel for most iterations, but
finalised with a few iterations of full nonlinear derivatives. (c) The Jacobian is calculated from full nonlinear forward model in every
iteration (reference inversion).
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standard deviation and a time-dependent contribution falling off
as t–1/2 with a value of 5 nV/m2 at 1ms (Auken et al., 2008).

In Figure 2, we show the data residual distributions for the
results of the three different inversion types, differing only in the
degree of approximation used for the calculation of the Jacobian
matrixGn. All inversions were performed using the same settings
for obtaining 20-layer 1Dmodels of fixed layer boundaries using
vertical smoothing regularisation. The data fits come out very
similar for the three different inversion types. Generally, data
misfits are below 1 due to a uniform contribution in our noise
model following the same approach asKirkegaard et al. (2012). In
Figure 3, we show an almost identical figure, but this time we
compare the residual in model space for each inversion type. The
residual between the true 5-layer model and each reconstructed
20-layer model was calculated by resampling them to obtain
two directly comparable 300-layer models. With the dense
reparameterisation, the error due to the differences in original
discretisation becomes negligible. After the resampling, the
normalised model residual can be calculated in the standard
way as the root mean square:

Dm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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By comparing the results of the hybrid inversions (Figure 3a, b)
with the full nonlinear result of Figure 3c, it is clear that
the different inversion schemes show almost equally good
performance in the model’s space. In order to further quantify
the model space differences, we should note that the mean of all
the three normalised model residual distributions is 0.012, while
their corresponding standard deviations are 0.013 (Figure 3a),
0.010 (Figure 3b) and 0.010 (Figure 3c).Hence, the differences of
the mean values are largely within the standard deviation
intervals. A similar argument is also true for the data misfit
distributions.

All the examples above are performed on a strictly 1Dmodel.
We expect the behaviour to be the same for any 2D or 3D affected
model that can be reasonably well inverted using a 1D model
assumption with the full nonlinear forward. If the full nonlinear
inversion cannot find a reasonable model describing the data, the
hybrid solutions will also fail.

Having investigated the data andmodel space properties of the
hybrid inversion schemes, we then compare the performance
of the algorithms, as seen in Figure 4. In Figure 4a we show the
distribution of speed-up factors for the models in the synthetic
dataset compared to the time consumption of the reference
inversion (C). For the most approximate method (A), we find
an average speed-up factor of 6.5, whereas the speed-up factor for
the less approximate (B) scheme is 2.8. It isworthmentioning that
the number of iterations used to solve the inversion problem
increases slightly for the hybrid (B) strategy because it calculates
iterations with accurate derivatives where method (A) stops. In
particular, Figure 4b shows that the number of iterations required
for the hybrid scheme (A) remains, on average, unchanged with
respect to the iterations necessary for the full nonlinear scheme
(C), while the hybrid (B) strategy needs 2–3 more iterations.

Inversion of field data

Having assessed the accuracy and performance of the hybrid
inversion schemes on synthetic data, we proceed to applying the
three inversion algorithms to actual field data. Our field example
consists of a portion of a larger SkyTEM dataset collected within
the CLIWAT project framework (Harbo et al., 2011) in the
western part of the Danish-German border area. Specifically,

we focus on the data subset recorded in the survey carried out on
the German side, close to Niebüll, during September 2008. The
survey is presented and analysed in detail by Jørgensen et al.
(2012).Wechose this dataset because it includes areas ofmild and
large resistivity contrasts.

Figure 5 shows west-east cross-sections of the inversion
results for a flight line inverted for the three distinct inversion
types (A)–(C). The data was inverted for 1Dmodels of 29 layers,
utilising vertical and lateral smoothness constraints through the
spatially constrained inversion (SCI) methodology (Viezzoli
et al., 2008). Each cross-section in Figure 5 includes a data
residual curve shown in black. The inversion results are
blanked below the depth of investigation (Christiansen and
Auken, 2012). When inspecting the figure, we can distinguish
two parts. The first part between profile coordinates 0–5500m is
very heterogeneous, appears more resistive and is crossed by
several elongated, lower resistive bodies. This appearance can be
explained by a strong influence from glacial processes. The
second part (profile coordinates 5500–14000m) consists of a
less heterogeneous sequencewith roughly plane-parallel layering
and a clear low-resistive body. This part is primarily Miocene
layers that are undisturbed by glacial processes.

From the comparison of the inversions in Figure 5a–c, it is
clear that all the three inversion results are close to being identical;
to identify them takes a muchmore detailed display than possible
here. Likewise, it is very hard to detect any differences between
the data residual curves among the (A)–(C) cases in Figure 5.
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Having assessed the inversion results from cases (A)–(C),
we included another approximation (D) (Figure 5d) to further
illustrate potentially misleading results based on a full
Born approximation imaging. In case (D), instead of using a
full nonlinear forward response as in (A)–(C), the objective
functional is evaluated by using a Born approximation forward
model. Note, however, that the data residuals shown are
computed using the accurate forward response to reflect the
actual misfit, rather than the misfit obtained by the approximate
modelling itself when the convergence criteria is met. For
example, by comparing Figure 5c and Figure 5d, it is seen that
the reconstructions of the first left part of the sections are nearly
identical, both in terms of model results and data fit, with a slight
favour to the accurate response in (C). This is not surprising, as
this portion of the section is characterised by low resistivity
contrasts, and the Born approximation is known to perform
well in the presence of relatively small conductivity variations
(Christensen, 1997). This is confirmed by the fact that in the right
part of the profile, where resistivity contrasts are higher, the data

fits of the approximate algorithm (D) are significantly worse.
The models also differ significantly in the right part of the
profiles with the thickness of the conductive body (dash
outline) being underestimated by up to 50m (e.g. around
coordinate 7600m). Around coordinate 11 000–12 500m, a
very different layer sequence is suggested in the full
approximate model (D), which is most likely explained by
effects similar to what was discussed for Figure 1.

Conclusion

Wehave presented the theoretical background and computational
motivation for investigating a hybrid inversion scheme for
airborne TEM data that introduces approximations only in
the calculation of partial derivatives. The objective function
itself is evaluated with a full nonlinear 1D forward model,
whereas derivatives are calculated from an adaptive Born
approximation. Introducing approximation only in the calculation
of derivatives leaves the physical description of the system
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unaltered, thus providing potential for a significant inversion
speed up with very little loss of accuracy. This hypothesis is
investigated by comparing three different inversion
methodologies, differing only in their calculating of the partial
derivatives: (A) the Jacobian is calculated from an approximate
forward model in every iteration; (B) the Jacobian is calculated
from an approximate forward model for most iterations, but
finalised with a few iterations using full nonlinear derivatives;
and (C) the Jacobian is calculated from a full nonlinear forward
model in every iteration (reference inversion). The accuracy of
the three inversion methodologies was tested on a large set of
synthetic data, with the conclusion that the results are virtually
identical in both model and data space. With respect to
performance, we find that method (A) provides an average
speed-up factor of around 7 with a corresponding value of 3
for method (B). We back up our synthetic inversion comparison
by also inverting a relevant field dataset, and find that the
performance results agree with those from the synthetic case.
We conclude that our hybrid inversion scheme provides a very
efficient means for speeding up the inversion of airborne TEM
data, using different degrees of approximation to match the
application at hand. Method (A) provides by far the greatest
speed up at the expensive of only a fewminor deviations from the
reference result. We therefore conclude that this approach can be
used for any application that can tolerate a small amount of
inaccuracy, or for any preliminary inversion job. Method (B)
provides a smaller speed up, which is compensated by the fact
this it produces models that can be considered identical to those
of the reference inversion. We thus conclude that this method
can safely be used to speed up the inversion of any airborne
TEM dataset, as it provides absolute negligible loss of accuracy.
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